Oxygen-17 Nuclear Magnetic Resonance. Part I. Oxvgen-Nitrogen Groupings

By Lars-Olov Andersson, Varian Research Laboratory, Steinhauserstrasse, 6300 Zug, Switzerland Joan Mason,* The Open University, Milton Keynes, Bucks.

Oxygen-17 shifts are reported for N_2O_3 , N_2O_4 , MeONO, Me_2NNO , NO_2^+ , and NOCI, with ¹⁷O in natural abundance. These are compared with literature values of ¹⁷O shifts in other oxygen–nitrogen groupings, and with the corresponding nitrogen shifts. The shifts of adjacent oxygen and nitrogen in the same chromophore are roughly in the proportion of their respective values of $\langle r^{-3} \rangle$, which gives the dependence of the paramagnetic shielding term (σ_n) on the radius of the 2p orbitals. The oxygen resonances tend to move downfield as the lowest-energy electronic absorption moves to longer wavelengths, but the scatter is large. The oxygen shielding in XNO and XNO_2 compounds (as in RCOX) reflects the conjugative effect of the substituent X. This contrasts with the nitrogen shielding, in which inductive effects are relatively more important. Inductive effects may however be among those responsible for oxygen shift relationships, in certain sets of compounds, that differ from the overall trends. The relative importance of the orbital terms that contribute to σ_p is compared for oxygen and nitrogen in these groupings.

WE report the ¹⁷O chemical shifts of some oxygen-nitrogen compounds, measured with ¹⁷O in natural abundance (0.037%) and with wide-line equipment because of the quadrupolar broadening (¹⁷O has I = 5/2). The shifts are given in the Table relative to $H_2^{17}O$, together with literature values for some related compounds. The samples were measured neat and at room temperature unless a solvent or a temperature is given. Since the reference substances H₂¹⁷O and ¹⁴NH₄(aq.) resonate at high field, the shifts are all to low field and are recorded as positive.

EXPERIMENTAL

The measurements were made (by L.-O. A. in 1968) with a Varian WL-9 spectrometer at 8 MHz. Large modulation amplitudes were used in order to increase the intensity of the weak signals. In many cases the dispersion signal was studied. Each shift value is the average of several measurements, with H_2O as external reference.

DISCUSSION

The Relation between the Nitrogen and Oxygen Shifts.— The ¹⁴N shifts of nitroso-¹ and nitro-² and related groups are given also in the Table. This and Figure 1 show that there is a rough proportionality between the shifts of adjacent nitrogen and oxygen in the same chromophore. The line in Figure 1 superimposed on the plotted points, which fits them reasonably well, has slope 1.75, which is the ratio of $\langle r^{-3} \rangle_{\text{oxygen}}$ to $\langle r^{-3} \rangle_{\text{nitrogen}}$, where $\langle r^{-3} \rangle$ is the mean inverse cube of the 2p electron radius (as given by Barnes and Smith³). The inverse cube is

J. Mason and W. van Bronswijk, J. Chem. Soc. (A), 1970,

J. Massin and W. Van Dronson, J. J. Chem. 1954, 93, 95.
R. G. Barnes and W. V. Smith, Phys. Rev., 1954, 93, 95.
J. A. Pople, Discuss. Faraday Soc., 1962, 34, 7; J. Chem. Phys., 1962, 37, 53, 60; 1963, 38, 1276; Mol. Phys., 1963, 7, 301.

the form of the radial dependence of the paramagnetic shielding constant, as in Pople's approximate expression ⁴ for the local term,

$$\sigma_p{}^{\mathrm{A}} = \frac{-e^2\hbar^2 \langle r^{-3} \rangle}{2m^2 c^2 (\Delta E)} \bigg[Q_{\mathrm{A}\mathrm{A}} + \sum_{\mathrm{B} \neq \Lambda} (Q_{\mathrm{A}\mathrm{B}}) \bigg]$$

which refers to the atom A bound to other atoms B.

FIGURE 1 Correlation of the oxygen and nitrogen shifts; the numbers refer to the Table; the line is of slope 1.75

¹ L.-O. Andersson, J. (Banus) Mason, and W. van Bronswijk, J. Chem. Soc. (A), 1970, 296.

The Q's are constitutive terms, and ΔE is a mean or effective excitation energy.

Similarly, if the ¹⁷O shifts ⁵ are plotted against the shifts of adjacent ¹³C in alcohols, ethers, and carbonyl compounds of various types, the points group themselves around a line of slope 3.5, which is the ratio of $\langle r^{-3} \rangle_{\text{oxygen}}$ to $\langle r^{-3} \rangle_{\text{carbon}}$.

The scatter in the nitrogen : oxygen and carbon : oxygen correlations is reduced somewhat if certain corrections are made. First, solvent shifts are large in oxygen in MeONH₂, or ethers, than for oxygen with only one of these, as in RCOX, XNO, or XNO₂. Correction for this diamagnetic term thus moves the points for oxygen in the first category about 35 p.p.m. upfield relative to the rest. This correction becomes increasingly important from oxygen to nitrogen,⁷ and to carbon,⁸ as the possible number of such ligands increases. But even when such corrections are made, the shifts do show local trends, within closely related groups of compounds, that differ from the overall relationship.

		17O		¹⁴ N		Long-wavelength band maxima †				
		Shift		Shift		$n \rightarrow \pi */Bands$		Other bands		
No.	Compound	(p.p.m.)	Ref.	(p.p.m.)	Ref.	λ/nm	ε	λ/nm	ε	Ref.
1	MeONH,+(Cl ⁻ , ag.)	35	5	98	d			ca. 200		
$\overline{2}$	CH.NO. Na+(MeOH)	190 + 20	a	303	a			232	7940	i
3	$Me\tilde{N}NO_{a}^{-}Na^{+}$ (aq.)	335 + 15	b	327	b					
4	NO_2^{-} (ag.)	410 + 15		353		302	7			j
õ	$HNO_{3}(100\%)$	414	9	298	f	257	10			k
6	$CH(NO_{2})_{2}^{-}Na^{+}$ (aq.)	420	а	333	a			362		i
7	NO ₂ ⁺ HŠÕ₄ [−] (conc. Ĥ ₂ SC	$(a) 420 \pm 40$		228	f					
8	$N_{3}O_{4}(-2\vec{6}^{\circ}C)$	420 + 30		342	2	340	175			l
9	MeNHNO,	420	b	330	g			231	7590	m
10	$ONNO_2$ (-63 °C)	425 ± 20		420	ľ	645	10			n, o
11	Dimethylfurazan	460	5	382	h			220	3630	Þ
12	EtONO, -O-	340								-
	NO ₂	470	с	316	е	265	16sl	L		q, m
13	Dimethylfurazan N-oxi	de 350								-
	2	475	5	333	h			262	6760	Y
14	$C(NO_2)_3$ Na ⁺ (aq.)	514	a	322	a	415	$^{\rm sh}$			i
15	$PhNO_2$	569	5	345	g	330	165			S
16	$C(NO_2)_4$	590	a	307	g	272	145			i
17	MeNO ₂	590	5	353	$\tilde{2}$	275	8			t
18	NO_2^{-} (aq.)	650 ± 20		585	2	280	8			и
						357	23			
19	Me_2NNO	660 ± 25		510	1	361	125			v
20	MeONO -O-	420 ± 30								
	NO	790 ± 30		541	1	341	100			п
21	O₂N <i>NO</i> (−63 °C)	885 ± 40		655	1	645	10			
22	NOCI	915 ± 40		575	1	(335)	32)			
						440	5			w
						475	5			
						(602	1)			

 \dagger sh = Shoulder.

[†] sh = Shoulder. ^a E. T. Lippmaa, M. Ya. Myagi, Ya. O. Past, S. A. Shevelev, V. I. Erashko, and A. A. Fainzil'berg, *Izvest. Akad. Nauk S.S.S.R.*, *Ser. khim.*, 1971, **5**, 1006. ^b M. Ya. Myagi, E. T. Lippmaa, S. A. Shevelev, V. I. Erashko, and A. A. Fainzil'berg, *Izvest. Akad. Nauk S.S.S.R.*, *Ser. khim.*, 1971, **5**, 1006. ^b M. Ya. Myagi, E. T. Lippmaa, S. A. Shevelev, V. I. Erashko, and A. A. Fainzil'berg, *Izvest. Akad. Nauk S.S.S.R.*, *Ser. khim.*, 1970, **6**, 1450. ^c H. E. Weaver, B. M. Tolbert, and R. C. LaForce, *J. Chem. Phys.*, 1955, **23**, 1956. ^d Measured by J. G. Vinter. ^e M. Witanowski, *J. Amer. Chem. Soc.*, 1968, **90**, 5683. ^f R. A. Ogg and J. D. Ray, *J. Chem. Phys.*, 1956, **25**, 1285. ^g M. Witanowski, T. Urbanski, and L. Stefaniak, *J. Amer. Chem. Soc.*, 1964, **86**, 2569. ^h G. Englert, *Ber. Bunsengesellschaft Phys. Chem.*, 1961, **65**, 854. ^f G. Kortüm, *Z. phys. Chem.*, 1939, *B*, **43**, 271. ^j D. Meyerstein and A. Treinin, *Trans. Faraday Soc.*, 1961, **57**, 2104. ^k R. N. Jones, G. D. Thorn, M. Lyne, and E. G. Taylor, *Nature*, 1947, **159**, 163. ^f T. C. Hall and F. E. Blacet, *J. Chem. Phys.*, 1952, **20**, 1745. ^m M. Kortüm and B. Finckh, *Z. phys. Chem.*, 1940, *B*, **48**, 32. ^m J. Mason, unpublished work. ^e J. Mason, *J. Chem.*, *Canad. J. Res.*, 1949, *B*, **27**, 828. ^r J. H. Boyer, V. Toggweiler, and G. A. Stoner, *J. Amer. Chem. Soc.*, 1957, **79**, 1748. ^e J. N. Murrell, 'Theory of the Electronic Spectra of Organic Molecules,' Methuen, London, 1963, pp. 186—187. ^e N. S. Bayliss and E. G. McRae, *J. Phys. Chem.*, 1954, **58**, 1006. ^e D. L. Friedman, *J. Chem. Phys.*, 1953, **21**, 319. ^e R. N. Haszeldine and J. Jander, *J. Chem. Soc.*, 1954, 691. ^e C. F. Goodeve and S. Katz, *Proc. Roy. Soc.*, 1939, *A*, **172**, 432; E. V. Genkina, A. I. Finkel'shtein, and A. A. Artem'ev, *Doklady Akad. Nauk S.S.S.R.*, 1956, **109**, 528. A. A. Artem'ev, Doklady Akad. Nauk S.S.S.R., 1956, 109, 528.

resonance (particularly in aqueous solutions, and where ions are involved). They are smaller in nitrogen resonance, and smaller still in carbon resonance. For example, the ¹⁷O line of dilute aqueous acetone is 57 p.p.m. upfield, and the ¹³C line 11 p.p.m. downfield, of the corresponding lines for pure acetone.⁶ Secondly, the (nearest-neighbour) diamagnetic term 7 is about 35 p.p.m. larger for oxygen with two second-row ligands, as

⁵ H. A. Christ, P. Diehl, H.-R. Schneider, and H. Dahn, Helv. Chim. Acta, 1961, 44, 685; H. A. Christ and P. Diehl, Helv. Phys. Acta, 1963, **63**, 170. ⁶ W. H. de Jeu, Mol. Phys., 1970, **18**, 31.

These corrections apply also to Figure 2, which shows that the oxygen line tends to move downfield as the lowest-energy electronic absorption moves to longer wavelength [*i.e.* as $(\Delta E)^{-1}$ increases], as has been demonstrated for carbonyl compounds,⁹ and also for nitrogen resonance.1,2

XNO Compounds.—In XNO compounds the sequence of the nitrogen lines is found¹ to reflect the factors

- ⁷ R. Grinter and J. Mason, J. Chem. Soc. (A), 1970, 2196.
 ⁸ J. Mason, J. Chem. Soc. (A), 1971, 1038.
 ⁹ B. N. Figgis, R. G. Kidd, and R. S. Nyholm, Proc. Roy. Soc. (A), 1962, 269, 469.

influencing the energy of the long-wavelength $n \longrightarrow \pi^*$ transition, namely the inductive and mesomeric effects of X. As X becomes less electronegative the lone pair electrons are destabilised relative to the π^* orbital, the electronic absorption moves to longer wavelengths and the nitrogen line tends to move downfield. The observed sequence is roughly that of the inductive effect, which decreases in the order (NOF >) MeONO > $O_2NNO > Me_2NNO > NOCl (> NOBr > RSNO >$ RNO). The appearance of the Me₂NNO line at higher field than that of MeONO is attributable to the mesomeric effect, the delocalisation of lone-pair electrons on X into the (NO) π^* orbital, raising the excitation energy, so that the line tends to shift upfield by an amount that decreases in the order $Me_2NNO > MeONO > NOCl >$ RNO. The downfield position of the line for O₂NNO, in

FIGURE 2 Correlation of the oxygen shifts with the inverse energy of the long-wavelength electronic absorption; the numbers refer to the Table; a, Bu^tONO, ref. 5.

which the (NO) π orbitals are extended over five atoms, may be a conjugative effect also.

In ¹⁷O resonance, however, the conjugative (mesomeric) effect dominates, the shielding decreasing in the order $NO_2^- > Me_2NNO > MeONO > O_2NNO >$ NOCI. We should of course expect the inductive effect to be less important for oxygen than for nitrogen, which is directly attached to the substituent X.

These observations begin to account for the correlation of the ¹⁴N and ¹⁷O shifts as shown in Figure 1. The $n \rightarrow \pi^*$ paramagnetic circulations on oxygen and nitrogen are linked through the common π^* orbital, and also through the in-plane overlap of the n_N and n_O orbitals to give filled π' and π'^* orbitals [the relevant overlap integral, *ca.* 0·1,¹⁰ is half as big as that for the (NO) π bond]. The circulation between these orbitals and the (NO) π^* and σ^* orbitals, in the magnetic field, deshields oxygen and nitrogen.¹

 XNO_2 Compounds.—In XNO_2 compounds the nitrogen resonances lie within a small region above the highest XNO line (that of NOF), and this disposition reflects the

¹⁰ From the Tables of R. S. Mulliken, C. A. Rieke, D. Orloff, and F. Orloff, J. Chem. Phys., 1949, 17, 1248.

absence now of n_N electrons; deshielding is due to $(NO_2) \sigma \longrightarrow \pi$ circulations, as well as to $n_0 \longrightarrow \pi^*$ and $n_0 \longrightarrow \sigma^*$. Following the inductive effect of X, the electronic absorption is expected to move to longer wavelength and the line to move downfield in the order $(NO_2F > N_2O_5 >) \text{ RONO}_2 > O_2\text{ NNO}_2 > ONNO_2 > MeNHNO_2 > PhNO_2 > MeNO_2 > NO_3^-$. The appearance of the MeNHNO₂ and ONNO₂ lines at higher and lower fields respectively than given by this sequence is attributable to conjugative effects, as for XNO. The observed order is more appropriate to the $\sigma \longrightarrow \pi^*$ than to the $\pi \longrightarrow \sigma^*$ energy.²

In oxygen resonance, again, the conjugative effects dominate. The ¹⁷O line is at relatively high field in compounds such as $^{-}CH_2NO_2$, Me NNO_2 , or NO_3^{-} in which charge transfer from the substituent raises the π^* orbital in the nitro-group. The expected conjugative sequence is then Me $NNO_2 > NO_3^{-} > MeNHNO_2 >$ RON $O_2 > RNO_2$, and also $O_2NNO_2 > ONNO_2 >$ PhNO₂ > RNO₂, agreeing with the one observed.

The dependence of the oxygen resonance in carbonyl compounds RCOX on the mesomeric effect of the substituent X has been demonstrated by Christ, Diehl, Schneider, and Dahn,⁵ the ¹⁷O line moving downfield in the substituent order $R_2N > RO > F > Cl > Br > C$.

Correlation of the Oxygen Shift with the Electronic Absorption.—The scatter in Figure 2 is large. Figgis, Kidd, and Nyholm⁹ obtained a linear plot of the ¹⁷O shift against the wavelength of the $n \longrightarrow \pi^*$ transition for carbonyl compounds, their line accommodating also the points for two alkyl nitrites and an N-nitrosamine.

Of the compounds in Figure 2, more than one putative $n \longrightarrow \pi^*$ band is observed for NO_2^- and NOCl, and two are plotted for each of these compounds. We previously described ¹ the long-wavelength absorption bands of XNO compounds as $n_N \longrightarrow \pi^*$ and the shorter-wavelength low-intensity bands as $n_0 \longrightarrow \pi^*$, but the $n_0 \longrightarrow \pi^*$ description for the long-wavelength band seems preferable.¹¹ For alkyl nitrites and N-nitrosamines a second $n \longrightarrow \pi^*$ band may be masked by the strong (magnetically inactive) charge-transfer bands. In Figure 2 the longest wavelength is of this ($\pi \longrightarrow \pi^*$) type for $-CH_2NO_2$, MeNHNO₂, furazan, and furazan N-oxide.

The scatter of the XNO_2 points suggests that the $n_0 \longrightarrow \pi^*$ is not the most important paramagnetic circulation in ¹⁷O resonance. Of the $(NO_2) \sigma \longrightarrow \pi$ circulations, the $\pi \longrightarrow \sigma^*$ increases in energy with increased mesomeric effect, as required for the observed sequence of shifts. Conceivably the curvature of the plot in Figure 2 can be attributed in part to the variation of the Q_{AA} term,⁴ discussed below, which is much more sensitive to the bond type for oxygen than for nitrogen; but the uncertainties in the energies, and in the energy approximation, remain. The O_2NNO resonance lies at unexpectedly high field also in the plot of the ¹⁴N shifts against the $n \longrightarrow \pi^*$ wavelength.¹

¹¹ R. Ditchfield, J. E. Del Bene, and J. A. Pople, J. Amer. Chem. Soc., 1972, **94**, 703.

Among the carbonyl compounds, small groups of closely related compounds show opposite trends to those observed overall. For the group of simple aldehydes and ketones the oxygen line moves upfield (50 p.p.m.) with increasing wavelength of the $n_0 \rightarrow \pi^*$ transition, while the ¹³C line goes down (17 p.p.m.). In increasingly dilute aqueous acetone, the ¹⁷O line moves upfield (57 p.p.m.) with decreasing $n_0 \rightarrow \pi^*$ wavelength, whereas the ¹³C line moves downfield (11 p.p.m.).⁶ The scatter in Figure 2 suggests that local trends that are against the general trend may be found.

The Orbital Terms Contributing to σ_p .—The magnitude of the p-orbital terms in the expression for the paramagnetic shielding constant σ_p can be estimated from Pople's equations.⁴ Q_{AB} Depends on the π -bonding; it is zero for singly bonded oxygen and increases to 0.43 for XNO in the sequence $R_2O < NO_3^- < NO_2^+ \sim$ $RNO_2 \sim NO_2^- < RNO$. The resemblance to the observed sequence is to some extent fortuitous, because of the variation in Q_{AA} , which depends on the imbalance of charge in the p orbitals. Q_{00} rises from 1 for XO⁻ to ca. 1.65 for RNO₂ and RNO. Thus ΣQ (the sum in the square bracket) for oxygen runs from 1.44 for NO_3^- to 2.1 for RNO in the sequence $\mathrm{NO_3^-} < \mathrm{R_2O} < \mathrm{NO_2^-} <$ $NO_2^+ \sim RNO_2 < RNO$. For oxygen shielding, then, in certain groups of compounds, changes in these constitutive terms may be commensurate with changes in ΔE . For nitrogen, Q_{NN} varies rather little, but Q_{AA} has a larger range than for oxygen.

 Q_{00} Is sensitive to inductive and mesomeric influences of the substituents. Loss of one quarter of a p electron from oxygen through the σ -bonds in XNO increases Q_{00} by 12% (and electron gain decreases Q_{00} similarly). Similar figures apply to XNO₂ compounds for loss or gain of a quarter of a p electron by each oxygen, which is of course more than we expect to find, since the *s* electrons are affected correspondingly, and inductive loss may be offset by conjugation. It is interesting that the change in Q_{00} is twice as large for changes in π electron density as for equal changes in σ -electron density. Changes in Q_{00} are much larger than changes in Q_{NN} , for comparable polarisations.

Variation in the ϕ charge density affects the radial term similarly for oxygen and nitrogen: loss of one quarter of a p electron, σ or π , from oxygen increases $\langle r^{-3} \rangle_{2p}$ by 6%, as estimated for Slater orbitals from the increase in effective nuclear charge.⁴ (Electron gain decreases $\langle r^{-3} \rangle_{2p}$ similarly.) These changes are not negligible, for the paramagnetic shielding term relative to the bare nucleus ¹² is ca. 800 p.p.m. for MeNO₂, for example. Thus with increased conjugative effect of the substituent X, the line tends to move upfield with decrease in $(\Delta E)^{-1}$, and also in Q_{AA} and $\langle r^{-3} \rangle_{2p}$; the importance of these terms perhaps decreasing in this order, for oxygen magnetic resonance. With increased (negative) inductive effect, on the other hand, the line tends to move upfield with decrease in $(\Delta E)^{-1}$, against the smaller increases in $\langle r^{-3} \rangle$ and Q_{AA} , in nitrogen magnetic resonance. But just as inductive and conjugative effects are detected in nitrogen resonance, so inductive and other effects may also be detectable in oxygen resonance, giving shift sequences in certain sets of compounds that differ from the overall trends.

[3/1522 Received, 19th July, 1973]

¹² W. H. Flygare and V. W. Weiss, J. Chem. Phys., 1966, 45, 2785.