Crystal and Molecular Structure of Hexakisantipyrineyttrium Tri-iodide

By Roy W. Baker * \dagger and James W. Jeffery, Department of Crystallography, Birkbeck College London, Malet Street, London WC1H OAJ

The structure of the title compound has been determined by single-crystal X-ray diffraction. Crystals are rhombohedral with $Z=3$ in a unit cell (based on hexagonal axes) of dimensions: $a=13 \cdot 896(3) . c=31 \cdot 986(6) \AA$, $\gamma=120^{\circ}$, space group $R \overline{3}$. The structure was solved by Patterson and Fourier methods and refined by leastsquares using 825 observed three-dimensional photographic data to $R 0.073$. The Y^{3+} ion is co-ordinated to six antipyrine molecules through the carbonyl oxygen and the molecular symmetry is $\overline{3}, S_{6}$. The angle between the normals to the phenyl ring and the pyrazole ring is 58°.

IT is well known that antipyrine \ddagger forms complexes with transition, alkaline-earth, and rare-earth metals. Up to 1966 the only one whose structure had been reported was hexakisantipyrineterbium tri-iodide. This was a preliminary report ${ }^{1}$ and further details have not appeared. ${ }^{2}$

Interest in the antipyrine complexes arose in connection with the fluorescence studies of rare-earth compounds ${ }^{\mathbf{1 , 3 , 4}}$ and in connection with the geometry of the antipyrine molecule and the metal oxygen bonding in these complexes. ${ }^{\mathbf{5}, 6}$ It has also been reported ${ }^{\mathbf{1}}$ that

[^0]X-ray powder photographs of mixed rare-earth-hexakis(antipyrine) iodide complexes suggest that the compounds are isostructural. In order to complement the preliminary work on the terbium complex the structural investigation of the yttrium complex ${ }^{7}$ was therefore undertaken.

EXPERIMENTAL

Crystals are colourless, well formed, and show the following forms; basal pinacoid $\{0001\}$, two rhombohedra $\{01 \overline{1} 2\}$ and $\{10 \mathrm{I} 1\}$. The principal refractive indices ${ }^{8}$ are $\varepsilon 1.74$, $\omega l \cdot 61$.
${ }^{3}$ L. G. Van Uitert, J. Electrochem. Soc., 1960, 10\%, 803.
4 J. M. Baker and R. S. Rubins, Proc. Phys. Soc., 1961, 78, 1353.
${ }_{5}$ M. Vijayan and M. A. Viswamitra, Acta Cryst., 1966, 21, 522.
M. Vijayan and M. A. Viswamitra, Acta Cryst., 1967, 23, 1000.
${ }_{7}$ J. K. Marsh, J. Chem. Soc., 1951, 1337.
8 R. G. Wood and S. H. Ayliffe, Phil. Mag., 1936, (7), 21, 324,

Crystal Data (Based on Hexagonal Axes).- $\mathrm{C}_{66} \mathrm{H}_{72} \mathrm{I}_{3} \mathrm{~N}_{12} \mathrm{O}_{6} \mathrm{Y}$, $M=1599$, Rhombohedral, $a=13 \cdot 896(3), c=31 \cdot 986(6) \AA$, $c / a=2 \cdot 30, \quad U=5351 \quad \AA^{3}, \quad D_{\mathrm{m}}=1.488 \quad$ (by flotation), $Z=3, D_{\mathrm{c}}=1.488 \mathrm{~g} \mathrm{~cm}^{-3}$. Systematic absences for $-h+k+l \neq 3 n$, space group $R \overline{\mathbf{3}}$. Cu- K_{α} radiation, $\lambda=$ 1.5418; $\mu\left(\mathrm{Cu}-K_{\alpha}\right)=128 \mathrm{~cm}^{-1}$. Crystal radius $100 \cdot 9$ microns $\sigma(r)-\mathrm{I} \cdot \mathbf{6} \%$. Laue symmetry $\overline{3}$. Point group $\overline{3}$.
Cell dimensions were determined by use of a modified Farquhar and Lipson method, ${ }^{9}$ with spherical crystals. ${ }^{10}$
of full-matrix least-squares of positional and thermal motion parameters were carried out until all parameter shifts were $<0 \cdot 1 \sigma$. The function minimised was $\Sigma w\left(\left|F_{0}\right|-\right.$ $\left.\left|F_{\mathrm{c}}\right|\right)^{2}$ with $w=1$ for all data. Atomic scattering factors for neutral carbon, nitrogen, and oxygen were taken from ref. 18 and anomalous scattering factors for Y and I from ref. 20. The final R was 0.073 . Positional and thermal parameters are listed in Table 1, and molecular geometry in Table 2, and Figure 1. Observed and calculated

Table 1
Fractional co-ordinates and thermal motion parameters (all $\left.\times 10^{4}\right)^{*}$ derived from least-squares refinement

Atom	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Y	0	0	0	418(22)	$418(22)$	570(21)	209(11)	0	0
I(1)	0	0	5000	1915(51)	1915(51)	$829(52)$	957(26)	0	0
I (2)	0	0	2100(01)	1343(29)	1343(29)	829(26)	671 (15)	0	0
N(1)	3069(15)	2658(14)	519 (05)	785(125)	741 (117)	674(104)	484(114)	--234(107)	$-59(98)$
$\mathrm{N}(2)$	3679(17)	3264(17)	877(06)	1020(161)	1137(176)	881 (155)	481(143)	-400(127)	-273(127)
$\mathrm{C}(3)$	3001 (25)	2768(25)	1213(07)	1277(235)	1460(249)	674(155)	807(213)	$-117(176)$	-117(176)
$\mathrm{C}(4)$	1994(20)	1883(18)	$1100(06)$	1056(191)	822(191)	622(155)	382(147)	- 283(127)	--215(117)
C(5)	2031(19)	1769 (18)	664 (06)	748(161)	616(139)	829(155)	418(136)	39(137)	98(127)
$\mathrm{O}(5)$	1398(10)	1104(10)	401(04)	646(88)	624(88)	726(104)	95(73)	- $156(68)$	-254(68)
C(21)	4653(20)	4407(20)	817(10)	814(176)	704(176)	2125(311)	$-213(154)$	-546(185)	-341(176)
C(31)	3403(27)	3317(26)	1642(07)	2216(330)	1790(286)	829(155)	833(260)	-653(195)	--770(185)
C(11)	3597(16)	2675(14)	130(07)	521 (132)	470(125)	1088(155)	202(106)	59(127)	-78(117)
$\mathrm{C}(12)$	3087(19)	2719(20)	$-245(08)$	580 (176)	1401(155)	933(155)	87(169)	- $215(156)$	-556(176)
$\mathrm{C}(13)$	3621 (31)	2649(33)	$-624(08)$	$587(367)$	$2179(367)$	777(155)	312(215)	-302(330)	215(215)
$\mathrm{C}(14)$	4537(35)	2520(38)	-614(08)	$916(345)$	1783(404)	2177(415)	$660(233)$	507(371)	1199(322)
$\mathrm{C}(15)$	4998(27)	2536(34)	$-222(14)$	1233(382)	2032(249)	$2281(415)$	1218(257)	127(361)	751 (273)
$\mathrm{C}(16)$	4546(17)	2587(18)	152(08)	448(147)	902(176)	1607(259)	301 (132)	429(146)	273(156)
* The Debye-Waller factor is defined as $T=\exp \left[-2 \pi^{2} \sum \sum a_{i}{ }^{*} a_{j}^{*} h_{i} h_{j} U_{i j}\right]$.									

Intensity Measurements.-Three-dimensional X-ray diffraction data from a spherical crystal were collected by the integrating method and film photometry ${ }^{11-13}$ for layers $h 0-11$. The exposure time for integrating films was 12 days and for non-integrating films 4 days. Over 2000 intensities were measured and data reduction gave 825 symmetry-independent structure amplitudes $\left|F_{0}\right|^{2}$ out of a possible 1842 reflections (ignoring systematic absences) in the range $2 \sin \theta 0.14-1 \cdot 76$. Data were corrected for Lorentz, polarisation, and absorption effects and correlated by a least-squares method. ${ }^{12,14}$ The distribution probability ${ }^{15}$ was 0.591 and the space group was determined to be centrosymmetric, in keeping with a negative result obtained in the piezoelectric test. ${ }^{16}$

During the exposures the crystal turned brown. However the intensity pattern did not alter over 1440 h and i.r. spectra of exposed and unexposed crystals were identical.

Structure Solution and Refinement.-The positions of the yttrium and two iodine atoms in the asymmetric unit were found from an unsharpened Patterson synthesis and were almost identical to those in ref. 1. The data were phased ${ }^{17}$ using the heavy atoms with normal scattering factors for Y^{3+} and $\mathrm{I}^{-} .{ }^{18}$ Fourier summations ${ }^{19}$ of the phased data produced a satisfactory trial structure. Successive cycles

* See Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issue.
${ }^{9}$ M. C. M. Farquhar and H. Lipson, Proc. Phys. Soc., 1946, 58, 200.
${ }_{10}$ W. L. Bond, Rev. Sci. Instr., 1951, 22, 344.
11 J. W. Jeffery, J. Sci. Instr., 1963, 40. 494.
12 J. W. Jeffery and K. M. Rose, Acta Cryst., 1964, 17, 343.
${ }_{13}$ J. W. Jeffery and A. Whitaker, Acta Cryst., 1965, 19, 963.
14 W. C. Hamilton, J. S. Rollett, and R. A. Sparks, Acta Cryst., 1965, 18, 129.

15 A. J. C. Wilson, Acta Cryst., 1949, 2, 318.
structure factors are listed in Supplementary Publication No. SUP 20866 (2 1 pp., 1 microfiche).* All computational work was carried out on the University of London ATLAS computer.

Tablie 2
Interatomic bond distances (\AA) and angles $\left({ }^{\circ}\right)$ with standard deviations in parentheses

(a) Distances			
$\mathrm{Y}-\mathrm{O}(5)$	$2 \cdot 190$ (13)	$\mathrm{N}(2)-\mathrm{C}(21)$	1-498(33)
$\mathrm{O}(5)-\mathrm{C}(5)$	$1 \cdot 234(25)$	$\mathrm{N}(1)-\mathrm{C}(11)$	1:441(29)
$\mathrm{C}(5)-\mathrm{C}(4)$	1-406(28)	$\mathrm{C}(11)-\mathrm{C}(16)$	1-387(37)
$\mathrm{C}(5)-\mathrm{N}(1)$	$1 \cdot 427(30)$	$\mathrm{C}(11)-\mathrm{C}(12)$	1-410(36)
$\mathrm{C}(4)-\mathrm{C}(3)$	$1 \cdot 371$ (41)	$\mathrm{C}(12)-\mathrm{C}(13)$	1-449(40)
$\mathrm{C}(3)-\mathrm{N}(2)$	$1 \cdot 367$ (35)	$\mathrm{C}(13)-\mathrm{C}(14)$	1-373(64)
$\mathrm{C}(3)-\mathrm{C}(31)$	$1.533(35)$	$\mathrm{C}(14)-\mathrm{C}(15)$	1.401(61)
$\mathrm{N}(2)-\mathrm{N}(1)$	1-422(27)	$\mathrm{C}(15)-\mathrm{C}(16)$	$1 \cdot 369(52)$
(b) Angles			
$\mathrm{O}(\overline{5})-\mathrm{Y}-\mathrm{O}\left(5^{\prime}\right)$	89.2(0.5)	$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(5)$	107.3(1-9)
$\mathrm{Y}-\mathrm{O}(5)-\mathrm{C}(5)$	167.0(1-6)	$\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(11)$	122.5(1.7)
$\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{C}(4)$	$135 \cdot 0(2 \cdot 7)$	$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(5)$	$125 \cdot 5(1 \cdot 7)$
$\mathrm{O}(5)-\mathrm{C}(5)-\mathrm{N}(1)$	117-4(2.4)	$\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(16)$	$117 \cdot 0(2 \cdot 1)$
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	107.6(2-2)	$\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	118.3(1.9)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	$106 \cdot 5(2 \cdot 2)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$	124.6(2.1)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{N}(2)$	$112 \cdot 5(2 \cdot 9)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$115 \cdot 0(3 \cdot 0)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(31)$	$129.6(3 \cdot 3)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	121.9(4.4)
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(31)$	$117 \cdot 7(3 \cdot 0)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$117 \cdot 8(4 \cdot 5)$
$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{N}(1)$	106.0(2.4)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	124.3(3.5)
$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{C}(21)$	$131 \cdot 7(2 \cdot 5)$	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	$116 \cdot 2(2 \cdot 9)$
$\mathrm{C}(21)-\mathrm{N}(2)-\mathrm{N}(1)$	118.7(2.3)		
* Symmetry operator for $O(5)$ to produce $O\left(5^{\prime}\right)$ is $-y$, $-y, z$.			

[^1]

Figure 1 Bond distances and angles of the antipyrine group

Figure 2 Molecular co-ordination viewed down a

DISCUSSION

Description of the Molecular Structure.-The atom numbering system used for the antipyrine group is given in Figure 1.

Co-ordination Around the Y^{3+} Ion.-The Y^{3+} ion in the structure occupies a symmetry centre at the origin of the unit cell. Six antipyrine molecules are octahedrally disposed about the Y^{3+} ion which is entirely in keeping with the stereochemical arrangement predicted by the valence-bond and ligand-field theories. The $\mathrm{Y}-\mathrm{O}$ bond length is $2 \cdot 19(1) \AA$ which is somewhat shorter than those in $\mathrm{Y}_{2} \mathrm{BeO}_{4}{ }^{21}$ The $\mathrm{O}-\mathrm{Y}-\mathrm{O}-$ bond angles of $89 \cdot 20(50)$ and $90 \cdot 80(50)^{\circ}$ are in good agreement with the theoretical value of 90°. The oxygen packing around the Y^{3+} ion leads to $\mathrm{O} \cdots \mathrm{O}$ contacts of 3.073 and $3 \cdot 119 \AA$. The distance between two oxygens related by the centre of symmetry on which the Y atom is positioned is $4 \cdot 378 \AA$. Figure 2 shows the molecular co-ordination about Y^{3+}.
Geometry of the Autipyrine Molecule.-The geometry of the antipyrine molecule is shown in Figure 1 and torsion angles in Table 3. The benzene ring and pyrazole

Table 3
Torsion angles (${ }^{\circ}$)

ring are both planar within experimental error (Table 4). Equations of the mean planes and displacements of the atoms from them are given in Table 4. The interplanar angle is 58°. Distances and angles appear to be in good agreement with those reported. ${ }^{5,6}$
Molecular Packing.-The molecular packing within the unit cell is shown in Figure 3. The crystal structure can be considered as a rhombohedrally packed structure of dimpled spheres, the dimples are at the N and S poles of the sphere with the crystallographic c axis passing through $\mathrm{N}-\mathrm{S}$. The sphere is formed by six

[^2]antipyrine molecules co-ordinated to Y through oxygen. The three iodide ions associated with Y sphere are

Table 4

Equations * of mean planes, with atom displacements (\AA) in square brackets

```
Plane (1):
\(\mathrm{C}(3)-(1), \mathrm{N}(2), \quad 0.793 X-0.600 Y+0.107 Z=4.595\)
    C(3)-(5)
        \([\mathrm{N}(1)-0.02, \mathrm{~N}(2) 0.01, \mathrm{C}(3) 0.01, \mathrm{C}(4)-0.02, \mathrm{C}(5) 0.02\),
                \(\mathrm{O}(5) 0.08, \mathrm{C}(21)-0.39, \mathrm{C}(31)-0.10, \mathrm{C}(11) 0.41]\)
Plane (2): \(\mathrm{C}(11)-(16) \quad 0.085 X+0.996 Y-0.022 Z=5.015\)
            \([\mathrm{C}(11)-0.01, \mathrm{C}(12) 0.00, \mathrm{C}(13) 0.01, \mathrm{C}(14)-0.03, \mathrm{C}(15)\)
                \(0.02, \mathrm{C}(16) 0.00]\)
            * In the form \(A X+B Y+C Z=D\) where \(X\) is parallel to
    the crystallographic \(a\) axis, \(Y\) is perpendicular to \(X\) and in the
    plane \(a b\), and \(Z\) is perpendicular to \(X\) and \(Y\) and completes a
    right-handed set of axes \(X Y Z\).
```

located in the elongated space along the three-fold axis between two Y spheres. The closest approach of two iodide ions is ca. $9 \AA$. The nearest atoms to the iodide ions are listed in Table 5 . The 2 -methyl attached

Figure 3 Molecular packing in the lower third of the unit cell
through N of the pyrazolone group is ca. $4 \AA$ from the iodide ion at $z=0.21$ and $5 \cdot 1 \AA$ from that at $z=0.5$. The 3 -methyl attached through C is $c a .4 \cdot 7 \AA$ from both iodides. The temperature factors of all atoms in the structure are high. This fact is not so surprising when it is noted that the intensities of the reflections recorded fall off rapidly with $\sin \theta$. High temperature factors for iodine, carbon, and nitrogen are not unknown. In the structure determination ${ }^{22}$ of $\mathrm{NMe}_{4} \mathrm{Ag}_{2}$ isotropic tem-
perature factors after refinement were given as I 6.78.5 and C and N both $9 \AA^{2}$.

Molecular contacts of the antipyrine group which are $<3 \cdot 6 \AA$ are given in Table 6 and the contacts of the

Table 5
Molecular contacts $<5 \AA$ involving the iodide ions

Atom (1) Atom (2)	Distance	Symmetry operators for atom $(2)^{*}$
$\mathrm{I}(1) \cdots \mathrm{C}(31)$	$4 \cdot 71$	$(1)-(6)$
$\mathrm{I}(1) \cdots \mathrm{C}(14)$	$4 \cdot 25$	$(7)-(9),(13)-(15)$
$\mathrm{I}(2) \cdots \mathrm{N}(2)$	$4 \cdot 26$	$(7)-(9)$
$\mathrm{I}(2) \cdots \mathrm{C}(3)$	$4 \cdot 92$	$(10)-(12)$
$\mathrm{I}(2) \cdots \mathrm{C}(3)$	$4 \cdot 75$	$(7)-(9)$
$\mathrm{I}(2) \cdots \mathrm{C}(4)$	$4 \cdot 18$	$(10)-(12)$
$\mathrm{I}(2) \cdots \mathrm{C}(21)$	$4 \cdot 00$	$(7)-(9)$
$\mathrm{I}(2) \cdots \mathrm{C}(31)$	$4 \cdot 90$	$(10)-(12)$
$\mathrm{I}(2) \cdots \mathrm{C}(31)$	$4 \cdot 71$	$(7)-(9)$
$\mathrm{I}(2) \cdots \mathrm{C}(16)$	$4 \cdot 32$	$(7)-(9)$

* Operators

> (1) $-\frac{1}{3}+x,-\frac{2}{3}+y, \frac{1}{3}+z$
> (2) $\frac{1}{3}-x, \frac{2}{3}-y, \frac{2}{3}-z$
> (3) $\frac{z}{3}-y, \frac{1}{3}+x-y, \frac{1}{3}+z$
> (4) $-\frac{2}{3}+y,-\frac{1}{3}-x+3, \frac{1}{3}-z$
> (5) $-\frac{1}{3}-x+y, \frac{1}{3}-x, \frac{1}{3}+=$
> (6) $\frac{1}{3}+x-y,-\frac{1}{3}+x, \frac{2}{3}-z$
> (7) $\frac{2}{3}-x, \frac{1}{3}-y, \frac{1}{3}-$:
> (8) $-\frac{1}{3}+y, \frac{1}{3}-x+y, \frac{1}{3}-z$
> (9) $-\frac{1}{3}+x-y,-\frac{3}{3}+x, \frac{1}{3}-=$
> (10) x, y, z
> (11) $-y, x-y, z$
> (12) $-x+y,-x, z$
> (13) $-\frac{2}{3}+x,-\frac{1}{3}+y, \frac{2}{3} \div z$
> (14) $\frac{1}{3}-y,-\frac{1}{3}+x-y, \frac{2}{3}+z$
> (15) $\frac{1}{3}-x+y, \frac{2}{3}-x, \frac{2}{3}+5$

Table 6
Intermolecular contacts $<3 \cdot 6 \AA$ for the antipyrine group

$\mathrm{N}(1) \cdots \mathrm{C}\left(14^{\text {I }}\right.$)	$3 \cdot 59$	O(5) $\cdots \mathrm{O}\left(5^{1}\right)$	3.12
$\mathrm{C}(5) \cdots \mathrm{C}\left(13{ }^{\text {I }}\right.$)	3.55	$0(5) \cdots \mathrm{C}\left(12^{\text {IV }}\right.$)	$3 \cdot 40$
$\mathrm{O}(5) \cdots \mathrm{O}\left(5^{\text {II }}\right)$	$3 \cdot 07$	$\mathrm{C}(15) \cdots \mathrm{C}\left(15^{\mathrm{v}}\right)$	$3 \cdot 48$
$\mathrm{O}(5) \cdots \mathrm{O}\left(5^{\mathrm{HI}}\right)$	3.07	$\mathrm{C}(15) \cdots \mathrm{C}\left(15^{\text {VI }}\right)$	3.48
$\mathrm{O}(5) \cdots \mathrm{O}\left(5^{\text {IV }}\right.$)	$3 \cdot 12$		

Roman numeral superscripts refer to the following transformations relative to the reference molecule at $x, y, z:$

$$
\begin{array}{cc}
\text { I } x-y, x,-z & \text { IV } y,-x+y,-z \\
\text { II }-y, x-y, z & \text { V } 1-y, x-y, z \\
\text { III }-x+y,-x, z & \text { VI } 1-x+y, 1-x, z
\end{array}
$$

iodide ions with the antipyrine groups are given in Table 5.

We thank the S.R.C. for financial support, Dr. Garton for the crystals, and Patricia Brennan for assistance.
[3/1128 Received, 1st June, 1973]
${ }^{22}$ Von H-J. Meyer, Acta Cryst., 1963, 16, 788.

[^0]: \dagger Present addvess: Department of Chemistry, University College London, Gordon Street, London WC1H 0AJ.
 \ddagger Antipyrine $=2,3$-dimethyl-1-phenyl- Δ^{3}-pyrazoline-5-one.
 ${ }^{1}$ L. G. Van Uitert and R. R. Soden, J. Chem. Phys., 1962, 36, 1797.

 2 'Molecular Structures and Dimensions,' ed. O. Kennard and D. G. Watson, published for the Crystallographic Data Centre Cambridge and International Union of Crystallography by N. V. A. Oosthoek's Uitgevers Mij, Utrecht, 1971.

[^1]: ${ }^{16}$ E. Giebe and A. Scheibe, Z. Phys., 1925, 33, 760.
 ${ }^{17}$ G. Shearing, A Crystallographic SFLS Program in AA, University of Manchester, 1965.

 18 D. T. Cromer and J.'T. Waber, Acta Cryst., 1965, 18, 104.
 19 J. Dollimorc, A Fourier Program for LUNA, University of London Institute of Computer Science, Circular No. 1.2.
 ${ }^{20}$ C. H. Dauben and D. H. Templeton, Acta Cryst., 1955, 8, 841.

[^2]: ${ }_{21}$ L. A. Harris and H. L. Yakel, Acta Cryst., 1967, 22, 354.

