Reaction of Octacarbonyldicobalt with Organo-silanes, -germanes, and -stannanes: Formation, Properties, and Vibrational Spectra of Trimethylgermvltetracarbonylcobalt and Related Complexes

By Geraldine F. Bradley and Stephen R. Stobart,* Department of Chemistry, Queen's University, Belfast BT9 5AG

The hydrides R_3MH (R = Me, M = Si, Ge, or Sn; R = Et, M = Ge) react exothermically with $Co_3(CO)_8$ at 20 °C affording in high yield the complexes $R_3MCo(CO)_4$ [R = Me, M = Si (I); M = Ge (II); M = Sn (III); and R = Et, M = Ge (IV)]. Conversion of (I) to (II) or (III) and of (II) to (III) occurs on reaction with Me₃MH (M = Ge or Sn), and (II) can also be prepared from (I) with Me₃GeBr. The Ge-Co bond in (II) is cleaved by HCl or HgCl₂; (II) with Et_aN or piperidine forms tetracarbonylcobaltate adducts. The vibrational spectra of (II)—(IV) are reported, with v(M-Co) assigned to polarised Raman shifts respectively at 192, 177, and 188 cm⁻¹. Variation with M of the vapour-phase i.r.-intensity of one of the two a_1 CO stretching fundamentals expected for C_{3v} symmetry points to a significant out-of-plane displacement of equatorial carbonyl groups in the direction of the silicon atom in (I), but with no analogous effect in (II) or (III). Deviations from C_{3v} selection rules observed in the solid state for (II) and (III) are also discussed.

CATALYTIC activity of octacarbonyldicobalt in reactions involving organosilicon hydrides has recently been established,^{1,2} and has led to continuing interest in the chemistry of complexes with silicon-cobalt bonds.3 Formation of the latter directly from Co₂(CO)₈ was investigated by Chalk and Harrod in their study of silane addition to 1-olefins, and identification of hydridotetracarbonylcobalt as an initial product prompted them to suggest 4 that the observed reaction (1) could be represented as a combination of (2) and (3), involving $HCo(CO)_{A}$ as intermediate. This has been confirmed by subsequent work, and it has also been established that formation of the hydridocarbonyl is crucial to the catalysis by cobalt carbonyl of hydrosilation and related silvlation reactions.^{2,5} Baay and MacDiarmid have examined reaction (1) in more detail for R = Me, and have discovered ⁵ that while the reaction is rapid in the liquid phase, (3) does not occur between Me_aSiH and

$$2R_{3}SiH + Co_{2}(CO)_{8} \longrightarrow 2R_{3}SiCo(CO)_{4} + H_{2}$$
(1)

$$R_{3}SiH + Co_{2}(CO)_{8} \longrightarrow R_{3}SiCo(CO)_{4} + HCo(CO)_{4}$$
(2)

$$R_{3}SiH + HCo(CO)_{4} \longrightarrow R_{3}SiCo(CO)_{4} + H_{2}$$
(3)

 $HCo(CO)_{4}$ in the gas phase. Analogously, while hydrosilation of ethylene by Me₃SiH is catalysed in the liquid phase by $HCo(CO)_4$ to give the expected product

ethyltrimethylsilane, different products including $Me_3SiCo(CO)_4$ are formed from these reactants in the gaseous state.

Reaction (1) has thus found considerable application as a synthetic approach to a variety of tetracarbonylcobalt-silanes,4-6 but by contrast although corresponding germanium and tin species are known their isolation from reactions related to (1) has received scant attention.³ Exploration of such a route to complexes with bonds from cobalt to these two heavier Group IV elements is described in this paper, and has afforded the hitherto unreported trimethylgermyltetracarbonylcobalt. A full comparison of the latter with the known silicon⁵ and tin⁷ analogues has therefore become possible, particularly in relation to spectroscopic properties as a reflection of structural and bonding characteristics. Interconversion of the three compounds by exchange reactions at the M-Co bond (M = Si, Ge, or Sn) has also been investigated, together with some other aspects of the chemistry of the germane.

Trimethyl- and triethyl-germane and trimethylstannane react with resublimed octacarbonyldicobalt in the liquid phase in a manner apparently identical to trimethylsilane, to give metal-cobalt complexes according to equation (4). Properties of the products of these reactions are collected in Table 1. Reaction was

$$2R_3MH + Co_2(CO)_8 \longrightarrow 2R_3MCo(CO)_4 + H_2$$
 (4)

⁵ Y. L. Baay and A. G. MacDiarmid, Inorg. Chem., 1969, 8,

986.
⁶ A. J. Chalk, J. Organometallic Chem., 1970, 21, 207; L. H. Sommer and J. E. Lyons, J. Amer. Chem. Soc., 1968, 90, 4197.
⁷ S. Breitschaft and F. Basolo, J. Amer. Chem. Soc., 1966,

¹ J. F. Harrod and A. J. Chalk, J. Amer. Chem. Soc., 1965, **87**, 1133.

 <sup>87, 1133.
 &</sup>lt;sup>2</sup> A. J. Chalk, Chem. Comm., 1970, 847.
 ³ F. Glockling and S. R. Stobart, M.T.P. Internat. Rev. Sci., Inorg. Chem. Ser. 1, 1972, 6, 63.
 ⁴ A. J. Chalk and J. F. Harrod, J. Amer. Chem. Soc., 1967,

^{89. 1640.}

judged to be somewhat slower for M = Ge or Sn, but yields of $R_3MCo(CO)_4$ [R = Me, M = Si (I); M = Ge (II); M = Sn (III). R = Et, M = Ge (IV)] did not appear to vary significantly (Table 1). An excess of

TABLE 1

Physical and ¹H n.m.r. data

		M.p.			Yield
	Appearance	(<i>t</i> /°C)	M^{a}	τCH_3	- (%) ^z
(I) $Me_3SiCo(CO)_4$	White solid	52—53 dec.	244	9·73 ¢	90
(II) $Me_3GeCo(CO)_4$	Very pale yellow solid	57—58	290	9.56 °	79
(III) Me ₃ SnCo(CO) ₄	Ivory needles	67—68 d	336	9·37 ¢	60
(IV) Et ₃ GeCo(CO) ₄	Pale yellow liquid	$<\!-25$	332	8·77 f	94

^{*a*} Molecular weight found (mass spectrum). ^{*b*} This work, from $R_3MH + Co_2(CO)_8$. ^{*c*} Cyclohexane soln.; in benzene = 9.41 for Me₃GeCo(CO)₄. ^{*d*} 74.5 °C, ref. 7. ^{*e*} Ref. 19. f CDCl₃ soln.

organometallic hydride was used throughout, with the result that $HCo(CO)_4$ was not observed, but its involvement in reaction (4) in a general sense [cf. reactions (2)] and (3)] seems likely, a view supported ² by its appearance in a number of cleavage reactions of compound (II).

Exothermic formation of cobalt-substituted germanes and stannanes at 20 °C contrasts strikingly with the low reactivity of $Me_{a}MH$ (M = Ge or Sn) towards binuclear carbonyls of manganese or rhenium,8 with which silanes do react⁹ although usually only at elevated temperatures. Correspondingly, in a preliminary experiment only 6% of a tin-molybdenum complex was isolated from reaction (5). These observations emphasise the recognised high reactivity of the Co-Co bond in $Co_2(CO)_8$,

$$2\operatorname{Me}_{3}\operatorname{SnH} + [(\pi - \operatorname{C}_{5}\operatorname{H}_{5})(\operatorname{CO})_{3}\operatorname{Mo}]_{2} \longrightarrow \\ 2\operatorname{Me}_{3}\operatorname{SnMo}(\pi - \operatorname{C}_{5}\operatorname{H}_{5})(\operatorname{CO})_{3} + \operatorname{H}_{2} \quad (5)$$

and analogously the M-Co bond (M = Si, Ge, or Sn) in compounds (I)-(III) very readily undergoes metal exchange in a similar way to that demonstrated for certain related intermetallic complexes.³ Thus compound (I) reacts completely with $Me_{a}MH$ (M = Ge or Sn) to give respectively (II) or (III) and trimethylsilane, these and associated reactions (Scheme) following the established pattern of attachment of the transitionmetal atom to the heavier Group IVB element. The reaction of compound (I) with dimethylchloroarsine to give a polymeric compound with As-Co bonds has been reported elsewhere,⁵ so that exchange might also be expected to occur with halogeno-Group IVB derivatives. Accordingly, the germyl complex (II) was obtained in good yield on treatment of (I) with Me₃GeBr, while no

reaction occurred between (II) and Me₃SiCl under identical conditions (see Scheme). Similarly facile replacement reactions take place between Group IVBiridium complexes and Group IVB organometallic hydrides; ¹⁰ more vigorous conditions are required to exchange ruthenium derivatives 11 and pentacarbonylmanganese species are virtually unreactive in this sense.⁸ A contribution to ease of substitution by a molecular mechanism of the lower co-ordination number of the transition metal atom in the cobalt and iridium

compounds is suggested, and additional evidence for this is found in recent observations concerning reactivity of alkyl-transition metal species. Thus while reaction of Me₃SnH with (Ph₂PCH₂PPh₂)PtMe₂ is rapid ¹² at 20 °C to give (Ph2PCH2PPh2)Pt(H)(SnMe3)3, 93% recovery of $MeW(CO)_3(\pi-C_5H_5)$ was made ¹³ from Me₃SnH after 6 days at 50 °C.

Compounds (I)—(III) are physically very similar to one another and may readily be handled by trap-to-trap vacuum manipulations. Unlike its monogermyl relative $GeH_3Co(CO)_4$, the trimethylgermyl complex (II) does not darken noticeably on exposure to daylight, but, like the former ¹⁴ and compounds (I) and (III) in air, rapid decomposition occurs probably to Co₂(CO)₈. No evidence for thermal instability of (II) at 20 °C was forthcoming either during handling or from mass spectroscopy, in contrast to (I) which ^{5,15} slowly releases (Me₃Si)₂O, but above 80 °C in glass sample tubes rapid deposition of a black mirror was apparent.

Quantitative cleavage of the metal-metal bond in (II) resulted from treatment either with HCl or HgCl₂, to give $HCo(CO)_4$ and $Hg[Co(CO)_4]_2$ respectively as cobaltcontaining products. Recovery of 50% of (II) from methanol solution after 26 h without evidence for the formation of Me₃GeOMe (although the latter is known) contrasts with rapid and complete methanolysis⁵ of (I) according to reaction (6), and may be compared with a similarly much increased resistance to protolysis of Me₃SnMn(CO)₅ over the corresponding silane.⁸ In common with (I) and with $MH_3Co(CO)_4$ (M = Si¹⁶ or

¹¹ S. A. R. Knox and F. G. A. Stone, J. Chem. Soc. (A), 1969, 2559.

Dalton, 1972, 974. ¹⁵ F. E. Saalfeld, M. V. McDowell, and A. G. MacDiarmid,

⁸ R. A. Burnham, F. Glockling, and S. R. Stobart, J.C.S. Dalton, 1972, 1991; R. A. Burnham and S. R. Stobart, unpublished observations.

⁹ B. K. Nicholson and J. Simpson, J. Organometallic Chem., 1971, 32, C29; A. D. Berry and A. G. MacDiarmid, Inorg. Nuclear Chem. Letters, 1969, 5, 601.

¹⁰ F. Glockling and J. G. Irwin, Inorg. Chim. Acta, 1972, 6, 355.

 ¹² F. Glockling and R. J. I. Pollock, unpublished work.
 ¹³ R. A. Burnham, C. M. Regan, and S. R. Stobart, unpublished

results. ¹⁴ R. D. George, K. M. Mackay, and S. R. Stobart, J.C.S.

[.] Amer. Chem. Soc., 1970, 92, 2324.

¹⁶ B. J. Aylett and J. M. Campbell, J. Chem. Soc. (A), 1969, 1910.

Ge¹⁴), compound (II) reacted immediately with triethylamine to give a carbonyl complex with $\nu(CO)$ lowered in wavenumber to 1890 cm⁻¹ and therefore

$$Me_3SiCo(CO)_4 + MeOH \longrightarrow Me_3SiOMe + HCo(CO)_4$$
 (6)

identifiable as a germylammonium salt [cf. Na⁺Co(CO)₄⁻, v(CO) 1883 cm⁻¹]. With piperidine the adduct formed was, curiously, a liquid, which also showed $\nu(\rm CO)$ 1890 cm^{-1} and which with dry HCl rapidly formed HCo(CO)₄ but not Me₃GeCl, the germanium remaining as an uncharacterised involatile solid with a complex i.r. spectrum. Like the adducts formed by MH₃Co(CO)₄ (M = Si or Ge), these germanium-containing carbonylcobalt species were more ill defined stoicheiometrically than the silvlammonium tetracarbonylcobaltates investigated by Bald and MacDiarmid.¹⁷

Examination of compounds (I)---(III) using ¹H n.m.r. spectroscopy revealed a minor downfield trend in τCH_{3} , as expected from electronegativity considerations (Table 1). For the potentially more interesting triethylgermyl complex (IV), at 60 MHz the methyl and methylene resonances overlapped to give a complicated signal dominated by an asymmetric triplet [apparent J 3.5 Hz, centred 0.8 p.p.m. to low field of CH_3 in compound (II)].

Mass spectroscopy was used to confirm the identity and monomeric character of (I)-(III) and of Et₃GeCo- $(CO)_4$ (Table 1). Fragmentation patterns for all four compounds were similar with ion abundances comparable with those tabulated elsewhere ¹⁵ for (I). A marked increase in abundance of ions resulting from methyl loss was evident in the order M = Sn > Ge > Si, similar to the situation found for related pentacarbonylmanganese complexes,¹⁸ but otherwise little change with M was noted.

Vibrational Spectra.--I.r. and Raman data for compounds (II)—(IV) are listed, together with approximate descriptions of bands attributable to fundamentals in Supplementary Publication No. 20854 (3 pp.).* Wavenumbers for certain i.r. bands in the spectrum of the trimethyltin complex (III) have been measured previously, but these are dispersed among several sources; 7, 19-21 likewise, partial i.r. (but not Raman) frequencies for (IV) have been recorded and assigned elsewhere.²² By contrast, related silanes have received verv much more attention: 5,16,22,23-25 for (I), vapour

- ¹⁹ D. J. Patmore and W. A. G. Graham, Inorg. Chem., 1967, 6, 981.
- 20 N. A. D. Carey and H. C. Clark, Inorg. Chem., 1968, 7, 94. ²¹ A. D. Beveridge and H. C. Clark, J. Organometallic Chem., 1968, 11, 601.
- ²² O. Kahn and M. Bigorgne, J. Organometallic Chem., 1967, 10, 137. ²³ A. P. Hagan and A. G. MacDiarmid, *Inorg. Chem.*, 1967,
- 6, 687.

and solid phase i.r. and solid-state Raman spectra have been discussed 25 on the basis of C_{3v} molecular symmetry, and augment the present data for the series of compounds (I)—(III). The C_{3v} model for interpretation of the vibrational spectra of the silvl cobalt carbonyl derivatives is supported by X-ray 26,27 and electron diffraction ²⁸ structure determinations, and has therefore been used in arriving at the proposed assignments.

Metal-metal stretching vibrations (a_1) are observed for (II)--(IV) as polarised Raman shifts at 175-195 cm^{-1} , having much enhanced intensities over v(Si-Co) in (I);²⁵ a similar situation was found for related pentacarbonylmanganese complexes.18 Calculation of approximate metal-metal stretching force constants, the character and limitations of which have been described in previous papers,^{18,29} affords the data of Table 2.

TABLE 2 Metal-metal stretching frequencies/cm⁻¹ and forceconstants/mdvn Å⁻¹

Compound	$v_{obs}(M-M)$	$F_{M-M}(DA)$ a	$F_{M-M}(PDA)$ a
Me ₃ SiCo(CO) ₄	292 0	0.95	2.57
Me ₃ GeCo(CO) ₄	192	0.71	1.51
$Et_3GeCo(CO)_4$	188	0.69	1.71
$Me_3SnCo(CO)_4$	177	0.73	1.54
a	See refs. 18 and	1 29. ^b Ref. 25	

The small wavenumber variation for ν (Ge-Co) between (II) and (IV) is also reflected in the $F_{M-M}(DA)$ values, suggesting that this vibration is relatively free from interaction with other a_1 fundamentals, of which those involving bond stretching are in any case considerably higher in energy. This in turn indicates that in compound (III), $\nu(Sn-Co)$ should be a comparatively unmixed vibration. The same conclusion has been reached for $\nu(\mbox{Sn-Co})$ in $\mbox{Cl}_3\mbox{SnCo}(\mbox{CO})_4$ through detailed normal co-ordinate calculations,24 but the metal-metal stretching frequency is here 204 cm⁻¹, 27 cm⁻¹ (or 15%) higher that that for (III). It therefore seems at least possible that this increase reflects an increase in tin-cobalt bond strength as a result of the well attested strong π -acceptor character of the Cl₃Sn grouping.³⁰ It can also be noted that the Raman spectrum of (III) confirms the earlier tentative assignment 20 of a rather poorly resolved far-i.r. absorption to v(Sn-Co).

The possible sensitivity of carbonyl stretching fre-

24 K. L. Watters, J. N. Brittain, and W. M. Risen, Inorg. Chem., 1969, 8, 1347.

²⁵ J. R. Durig, S. J. Meischen, S. E. Hannum, R. R. Hitch,
 S. K. Gondal, and C. T. Sears, *Appl. Spectroscopy*, 1971, 25, 182.
 ²⁶ K. Emerson, P. R. Ireland, and W. T. Robinson, *Inorg.*

Chem., 1970, 9, 436.

27 W. T. Robinson and J. A. Ibers, Inorg. Chem., 1967, 6, 1208.

28 A. G. Robiette, G. M. Sheldrick, R. N. F. Simpson, B. J. Aylett, and J. M. Campbell, J. Organometallic Chem., 1968, 14, 279.

^{279.}
²⁹ K. M. Mackay and S. R. Stobart, J.C.S. Dalton, 1973, 214.
³⁰ G. W. Parshall, J. Amer. Chem. Soc., 1966, 88, 704; V. I. Baranowskii, V. P. Sergeev, and B. E. Dzevitskii, Doklady Akad. Nauk S.S.S.R., 1969, 184, 632; D. D. Spencer, J. L. Kirsch, and T. L. Brown, Inorg. Chem., 1970, 9, 235; J. D. Graybeal, S. D. Ing, and M. W. Hsu, *ibid.*, p. 678.

^{*} For details of Supplementary Publications see Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issue. Items less than 10 pp. are sent as full-size copies.

¹⁷ J. F. Bald and A. G. MacDiarmid, J. Organometallic Chem., 1970, 22, C22.

¹⁸ R. A. Burnham and S. R. Stobart, J.C.S. Dalton, 1973, 1269.

quencies (and derived parameters) to changes in the characteristics of transition-metal to substituent bonding is a subject which has been well ventilated, especially recently in relation to metal-metal bonded carbonyl derivatives.³¹ Stone and co-workers have found ³² that simplified CO stretching force constants for complexes $R_3MCo(CO)_4$ (M = Si, Ge, Sn, or Pb) show a linear dependence on the Taft polarity constants (σ^*) for the substituent R on M, and similar relationships have been identified ²² by Kahn and Bigorgne; the CO stretching frequency data for (I)-(IV) can be shown to support these earlier inferences and require no further comment.

Assignment of observed i.r. bands attributable to the $2a_1 + e$ fundamentals predicted for carbonyl stretching in $R_3MCo(CO)_4$ complexes assuming C_{3v} symmetry has been carried out using the method of oscillating dipoles, developed for systems of this type by Orgel 33 and by El-Sayed and Kaesz,34 and subsequently adopted by others.^{19,23,35} The relative intensities of the $a_1^{(2)}$ (equatorial), $a_1^{(1)}$ (axial), and *e* modes have also been

Vapour-phase i.r. spectra for (a) $Me_3GeCo(CO)_4$, (b) Me₃SnCo(CO)₄ (note scale change at 2000 cm⁻¹)

rationalised on this basis, resonance interaction between the two a_1 vibrations resulting in a non-zero intensity in the i.r. for that at higher energy (equatorial).^{19,23} More recently, structural studies of tetracarbonylcobaltsilanes have revealed significant displacement of equatorial carbonyl groups towards the silvl substituent.³⁶ This has been interpreted in terms of a bonding interaction between the silicon and C_{eq} atoms, with which orbital overlap calculations and electron impact fragmentation data are also consistent. In the light of the present investigation and certain earlier observations,^{14,16,19,23} it now seems possible to unite these structural conclusions with i.r. intensity considerations.

A conspicuous feature of the vapour-phase i.r. spectra of (I)--(III) is the variation in intensity of the band attributable to the $a_1^{(1)}$ carbonyl stretching mode.

³¹ J. Dalton, I. Paul, and F. G. A. Stone, J. Chem. Soc. (A), 1969, 2744 and references therein; F. T. Delbeke, E. G. Claeys, G. P. Van der Kelen, and R. M. de Caluwe, J. Organometallic Chem., 1970, 23, 497.

This is shown in the Figure, and by comparison of the latter with Figure 2 of ref. 25, where the corresponding contour for compound (I) is reproduced. Earlier discussion of band intensities for related molecules has assumed ¹⁹ coupling of the two predicted a_1 vibrations to give combinations which can be represented by

where (A) is the $a_1^{(2)}$ (equatorial) and (B) the $a_1^{(1)}$ (axial) mode. Both of these will be i.r.-active, and the expression derived by Bor³⁷ relating their intensities for a general $XCo(CO)_4$ system can be applied. This is

$$\frac{\left(I_{\rm A}\right)^{\dagger}}{\left(\overline{I_{\rm B}}\right)^{\dagger}} = \frac{\sqrt{1 - \cos\beta} - \sqrt{3}(1 + \cos\beta) \cdot \sin\delta}{\sqrt{1 + \cos\beta} + \sqrt{3}(1 - \cos\beta) \cdot \sin\delta}$$
(7)

where $\cos \beta$ is a variable relating the symmetrised F-matrix elements generated in a limited force-constant treatment of the carbonyl stretching vibrations, and δ is the displacement angle shown in (A). Calculation of the Cotton-Kraihanzel type force constants f_{eq} , f_{ax} , f_{11} , and f_{12} defined by Bor leads, by graphical examination of their inter-relationship, to $0.3 \leqslant \cos \beta \leqslant 0.5$ as reasonable limits for (I)—(III), whence substitution with observed intensity ratios into (7) affords values for δ as presented in Table 3. These data suggest that while

TABLE 3

I.r. intensity ratios for a_1 carbonyl stretching modes and derived displacement angles δ

$(I_A/I_B)^{\dagger \circ} \longrightarrow M - Co$	с. С.
$\cos \beta$ 0.3 0.4 0.5 ang	le »
(I) $Me_3SiCo(CO)_4$ ° 0.35 +9° 25′ +7° 38′ +5° 37′ 82	12
(II) $Me_{3}GeCo(CO)_{4} 0.90 -3^{\circ} 6' -4^{\circ} 48' -6^{\circ} 25' 94$	12
(111) $Me_3SnCo(CO)_4$ 1.10 $-6^{\circ} 40' - 8^{\circ} 20' - 10^{\circ} 15'$ 98	12
• Values estimated to ca. ± 0.07 from integrated ba	ınd-

• Force constants used to define $\cos\beta$ calculated from $\nu(\overline{CO})$ frequencies of ref. 23.

in (I) there is a significant tilt $(7\frac{1}{2} \pm 2^{\circ})$ of the three equatorial carbonyl groups towards the silicon atom, by contrast for (II) and (III) the M-Co- C_{eq} angles are quite similar and represent a small displacement in the opposite sense. The calculated bond angle of $82\frac{1}{2}^{\circ}$ for the silvl complex is consistent with those of $85\frac{1}{2}^{\circ}$

³² J. Dalton, I. Paul, J. G. Smith, and F. G. A. Stone, J. Chem. Soc. (A), 1968, 1199.
 ³³ L. E. Orgel, Inorg. Chem., 1962, 1, 25.
 ³⁴ M. A. El-Sayed and H. D. Kaesz, J. Mol. Spectroscopy, 1962,

9, 310. ³⁵ A. R. Manning and J. R. Miller, J. Chem. Soc. (A), 1966,

36 A. D. Berry, E. R. Corey, A. P. Hagan, A. G. MacDiarmid, F. E. Saalfeld, and B. B. Wayland, J. Amer. Chem. Soc., 1970, 92, 1940. ³⁷ G. Bor, Inorg. Chim. Acta, 1967, **1**, 81.

determined by X-ray crystallography for the related species $X_3SiCo(CO)_4$ (X = F²⁶ or Cl²⁷); unfortunately we have been unable to find any similar structural data for tetracarbonylcobalt–germanes or –stannanes in the literature, so that further comparisons are not possible. It should also be emphasised that the values of Table 3 are calculated from i.r. data measured in the vapour phase, where molecular distortion due to crystal packing and other intermolecular effects should be minimal; a gas-phase structural determination by electron diffraction revealed ²⁸ a Si-Co-C_{eq} angle reduced to $81\frac{1}{2}^{\circ}$ for $H_3SiCo(CO)_4$.

It may be tentatively concluded that the M-Co-C_{eq} bond angles calculated from relative i.r. band intensities (Table 3) provide support for the idea ³⁶ of a bonding interaction between the silicon and equatorial carbon atoms in $Me_3SiCo(CO)_4$, but indicate that similar effects in the corresponding germane and stannane are negligible. Orbital overlap calculations indicate 36 that the most significant contribution to Si- C_{eq} interaction involves carbon $2p_z$ and silicon 3s and $3p_z$ orbitals. Lower M-C_{eq} overlap energies due to less effective participation of $4(s,p_z)$ and $5(s,p_z)$ orbitals for M = Ge and Sn could account for the calculated structural changes, and indeed ineffective competition with a weak C_{eq} - C_{ax} bonding interaction, which was also suggested ³⁶ from overlap population analysis, could lead to δ negative, as predicted in Table 3 for M = Sn. Since involvement of silicon 3d orbitals appeared to supplement the Si-C_{eq} bonding by only 20% or so, relative (p-d) overlap for Si, Ge, and Sn (a contentious subject in any argument ³⁸) should not be an important factor.

Further indirect evidence for Si- C_{eq} bonding has been adduced ³⁶ from fragmentation patterns of RCo(CO)₄ complexes. While similar examination of ion abundances does lead to higher Co(CO)_n⁺/Me₃MCo(CO)_{n-1}⁺ ratios for (II) and (III) than for (I), particularly when n = 4 or 3, the differences are not especially convincing. However, the intensity change for the $a_1^{(1)}$ CO stretch in the i.r., with its possible structural implications, does seem to be general and is noticeable for example between $H_3SiCo(CO)_4^{-16}$ (Si-Co- C_{eq} angle = 81°) and D₃GeCo-(CO)₄ ^{14,39} [for the hydridic analogue of the latter the ν (GeH) and ν (CO) bands are not completely resolved].

Splitting of degenerate fundamentals by static field effects was observed 25 for (I), consistent with site symmetry C_1 and suggesting 24,25 a structure identical with that of $Cl_3SiCo(CO)_4$. Clear splitting of the *e* carbonyl stretching mode into components at 1984, 1979 cm⁻¹ was similarly observed in the Raman spectrum of a solid sample of (II), and under the same conditions a low-frequency shoulder was resolved on the corresponding shift for (III). Durig *et al.* have reported 25 that immediate decomposition of a solution of (I) in cyclohexane resulted on laser illumination at 632.8 nm. While similar difficulties were encountered here with

(II) and (III), the liquid triethylgermyl complex (IV) was more amenable to Raman investigation, even at 488.0 nm, and reproducible polarisation data could be measured. Shifts due to the carbonyl stretching vibrations of highest (2094 cm⁻¹) and lowest energy (1987 cm⁻¹) were found to have depolarisation ratios o of ca. 0.05 and ca. 0.8 respectively, confirming their assignment as a_1 and e modes assuming C_{3v} symmetry: unexpectedly, however, the remaining band at 2033 cm⁻¹ had ρ ca. 0.8, conflicting with its assignment as the $a_1^{(1)}$ vibration. Lowering of symmetry through non-threefold orientation of the ethyl groups (or less likely by adoption of the C_{2v} axially substituted configuration) ^{19,23} should leave this as a totally symmetric mode, with ρ ca. 0. This suggests that an alternative explanation of the observed ρ value is required, and it seems possible that while the two a_1 modes interact to give (A) and (B), the latter also gains intensity from the e mode by some other (e.g. rotation-vibration) interaction, resulting in a depolarised Raman shift, a conclusion in exact agreement with the predictions of El-Saved and Kaesz.³⁴ Such an interpretation is also consistent with the further observation that, while the spectra obtained were not very satisfactory, the corresponding Raman bands at 2022 and 2016 cm⁻¹ respectively for (II) and (III) appeared not to be conspicuously polarised in cyclohexane solution.

EXPERIMENTAL

Standard vacuum-line techniques were used for the manipulation of volatile materials, reactions being carried out in evacuated break-seal tubes or similar demountable vessels. I.r. spectra were measured using Perkin-Elmer 457 and Grubb-Parsons Spectromajor instruments, Raman spectra from 488.0 nm (Ar ion laser) with a Cary 83 spectrometer, and ¹H n.m.r. and mass spectra respectively with Varian A60-D and A.E.I. MS 902 spectrometers. Octacarbonyldicobalt was resublimed immediately before use. Trimethyl-silane, -germane, and -stannane were synthesised by LiAlH₄ reduction of the halogeno-derivatives, and triethylgermane was prepared similarly from a commercial sample of Et_3 GeCl. Other reagents were purified by standard procedures.

Reaction of Octacarbonyldicobalt.—With trimethylsilane. Me₃SiH (0.275 g, 3.71 mmol) was condensed onto $\text{Co}_2(\text{CO})_8$ (0.391 g, 1.15 mmol) in a 10.0 ml reaction tube fitted with a greaseless tap. On warming to room temperature reaction was accompanied by bubbling in the liquid phase and evolution of heat, as described by Baay and MacDiarmid; removal of hydrogen at -196 °C followed by fractionation of volatiles yielded trimethylsilyltetracarbonylcobalt (0.503 g, 2.06 mmol) as a white solid in a trap at -45 °C, identified by its gas-phase i.r. spectrum.

With trimethylgermane. Reaction of Me₃GeH (0.456 g, 3.85 mmol) with $\text{Co}_2(\text{CO})_8$ (0.502 g, 1.47 mmol) under conditions identical to those described above appeared to be much slower to start. Evolution of non-condensible material ceased after *ca.* 1.5 h at 20 °C, when fractionation afforded unreacted Me₃GeH (0.106 g, 0.90 mmol) condensed at -196 °C and trimethylgermyltetracarbonylcobalt (0.672 g,

³⁹ R. D. George, Ph.D. Thesis, University of Nottingham, 1969.

³⁸ E. A. V. Ebsworth in 'Organometallic Compounds of the Group IV Elements,' ed. A. G. MacDiarmid, vol. 1, part 1, ch. 1 and references therein.

2·32 mmol) at -45 °C, as an almost colourless crystalline solid (Found: C, 28·6; H, 2·95. Calc. for $C_7H_9CoGeO_4$: C, 29·15; H, 3·15%).

With triethylgermane. A similar exothermic reaction between Et₃GeH (0·431 g, 2·68 mmol) and Co₂(CO)₈ (0·440 g, 1·29 mmol) followed by prolonged pumping through a trap maintained at 0 °C (Hg diff. pump vacuum) condensed out a very pale yellow liquid. After recovery from the trap under an atmosphere of dry nitrogen gas, this was identified as triethylgermyltetracarbonylcobalt (0·79 g, 2·4 mmol) (Found: C, 36·5; H, 4·7. Calc. for C₁₀H₁₅CoGeO₄: C, 36·3; H, 4·55%).

With trimethylstannane. An excess of Me₃SnH (0·470 g, 2·84 mmol) and Co₂(CO)₈ (0·342 g, 1·00 mmol) were allowed to react as above for 2 h, when fractionation yielded trimethylstannyltetracarbonylcobalt (0·403 g, 1·20 mmol) as a white solid collected at -45 °C and identified spectroscopically.

Reactions of Trimethylgermyltetracarbonylcobalt.—With hydrogen chloride. The complex (43.4 mg, 0.15 mmol) was treated with an excess of dry HCl for 5 h. Incondensible gas was formed and volatile products were $HCo(CO)_4$ and Me_3GeCl , identified by gas-phase i.r. spectroscopy, and from a mixture of which pure Me_3GeCl (14.7 mg, 0.10 mmol) was separated.

With methanol. An excess of degassed AnalaR methanol was added to the complex ($45\cdot5$ mg, $0\cdot16$ mmol). After 26 h a clear deep yellow solution yielded on fractionation Me₃GeCo(CO)₄ ($23\cdot0$ mg, $0\cdot08$ mmol) and unidentified involatile material.

With mercuric chloride. The complex (71.0 mg, 0.25 mmol), HgCl₂ (45 mg, 0.17 mmol), and THF (2.0 ml) reacted immediately at room temperature to give a yellow solid. After 14 days the tube was opened and Me₃GeCl was identified (i.r.) in the volatiles. Washing the residue with THF gave insoluble yellow Hg[Co(CO)₄]₂ (69 mg, 0.13 mmol) (i.r.).

With triethylamine, and with piperidine. Reaction of the

complex with an excess of either NEt₃ or $C_5H_{11}N$ led to rapid formation of involatile products showing i.r. bands at 1890vs,br cm⁻¹ and 550vs cm⁻¹ as well as those attributable to presence of the base. Treatment of the colourless *liquid* adduct from the piperidine reaction with an excess of dry HCl afforded HCo(CO)₄ approximately stoicheiometrically.

Exchange Reactions between Trimethyl-Group IVB-Cobalt complexes and Trimethyl-Group IVB Hydrides and Halides.---A series of reactions between Me₃MCo(CO)₄ (M = Si, Ge, or Sn) and Me_3MH (M = Ge or Sn) or Me_3MX (M = Si or Sn, X = Cl; M = Ge, X = Br) was carried out, of which the following are typical. (i) Dry benzene (2.0 ml), Me₃SiCo(CO)₄ (122 mg, 0.50 mmol), and Me₃SnH (82 mg, 0.50 mmol) were allowed to react at 20 °C for 24 h. Fractionation afforded MeaSiH (30 mg, 0.41 mmol) and $Me_{3}SnCo(CO)_{4}$ (identified by its i.r. spectrum); no $Me_{3}SnH$ or Me₃SiCo(CO)₄ could be detected. (ii) Excess of Me₃GeBr was condensed on to Me₃SiCo(CO)₄ (180 mg, 0.74 mmol) in dry ether (2.0 ml). The resulting colourless solution gradually turned brown, and after 3 days Me₃GeCo(CO)₄ (162 mg, 0.56 mmol) was recovered from the mixture. No unchanged Me₃SiCo(CO)₄ was found. (iii) A similar reaction to (ii) between Me₃SiCl (23 mg, 0.19 mmol) and Me₃GeCl(CO)₄ (50 mg, 0.17 mmol) in ether gave after 3 days 72% recovery of unchanged germyl-cobalt complex. Results of related experiments are summarised elsewhere (see Scheme).

Reaction of Bis(cyclopentadienyltricarbonylmolybdenum) with Trimethylstannane.— $[Mo(\pi-C_5H_5)(CO)_3]_2$ (400 mg, 0.82 mmol), Me₃SnH (267 mg, 1.62 mmol), and ether (1.5 ml) afforded after 17 days at room temperature a small amount of incondensible gas, and trimethylstannyl(cyclopentadienyl)tricarbonylmolybdenum (39 mg, 0.10 mmol), separated from unreacted dimer by sublimation and characterised by comparison of its i.r. spectrum with that of an authentic sample.

[3/1421 Received, 9th July, 1973]