Complexes of 2- and 4-Vinylpyridines with Cobalt(II) and Nickel(II) Halides and Pseudohalides

By Neville H. Agnew, Department of Chemistry, Rhodes University, P.O. Box 94, Grahamstown, South Africa Richard J. Collin and Leslie F. Larkworthy,* The Joseph Kenyon Laboratory, Department of Chemistry, University of Surrey, Guildford

Abstract

Complexes of cobalt(II) and nickel(II) with 2 -vinylpyridine (2 -vpy) and 4 -vinylpyridine (4-vpy) exhibit various stereochemistries according to their stoicheiometry and the anion X present: octahedral, $M(4-\mathrm{vpy})_{4} \mathrm{X}_{2}$ ($M=\mathrm{Co}$, $\mathrm{Ni} ; X=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{NCO}, \mathrm{NCS})$: polymeric octahedral, $\mathrm{M}(4-\mathrm{vpy})_{2} \mathrm{X}_{2}\left[\mathrm{M}=\mathrm{Co}, \mathrm{X}=\mathrm{Cl}\right.$ (mauve-form), $\mathrm{N}_{3} ; \mathrm{M}=\mathrm{Ni}$, $\left.X=\mathrm{Cl}, \mathrm{Br}, \mathrm{N}_{3}, \mathrm{NCS}\right]$; and tetrahedral, $\mathrm{Co}(4-\mathrm{vpy})_{2} \mathrm{X}_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$ and $\mathrm{Co}(2-\mathrm{vpy})_{2} \mathrm{X}_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{NCS})$. Structures have been assigned from the electronic, i.r., and far-i.r. spectra, and magnetic behaviour of the complexes. In several cases the assigned structures have been confirmed by X-ray powder investigations. The complexes $\mathrm{M}(4-\mathrm{vpy})_{2}\left(\mathrm{~N}_{3}\right)_{2}$ are antiferromagnetic while the complexes $\mathrm{Ni}(4-\mathrm{vpy})_{2} \mathrm{X}_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ are weakly ferromagnetic.

Cobalt(II) and nickel(II) halides and pseudohalides react with a large range of substituted pyridines to form adducts of the types $\mathrm{ML}_{n} \mathrm{X}_{2}$ where $n=2$ or 4 . The stereochemistries are known, from X-ray and other physical measurements, to be octahedral monomeric ($n=4$), polymeric octahedral $(n=2)$ with halogen or pseudohalogen bridging, or tetrahedral monomeric or planar. Previously, ${ }^{1}$ the complex $\mathrm{Co}(4-\mathrm{vpy})_{4} \mathrm{Cl}_{2}$ was shown to be octahedral while $\mathrm{Co}(4-\mathrm{vpy})_{2} \mathrm{Cl}_{2}$ and $\mathrm{Co}(2-\mathrm{vpy}){ }_{2} \mathrm{Cl}_{2}$ were tetrahedral (2-vpy and 4 -vpy are respectively 2 - and 4 -vinylpyridine). No polymeric octahedral species, similar to that formed by pyridine, was obtained from cobalt(II) chloride and 2 -vinylpyridine. Here we report a further series of cobalt(II) halide and pseudohalide complexes with these ligands, including polymeric $\mathrm{Co}(4-\mathrm{vpy})_{2} \mathrm{Cl}_{2}$, and also report a related series of nickel(II) complexes. Certain of the compounds were prepared in order to study their polymerisability in the solid state. ${ }^{2}$

Electronic Spectra.-Octahedral monomeric systems. In these complexes the stoicheiometric ratio of vinylpyridine to metal salt was $4: 1$. The results of previous workers have indicated that the symmetry of this species is not pure O_{h} but that tetragonal distortion along the z axis of the molecule leads to a symmetry closer to $D_{4 h}$. This has been confirmed ${ }^{3}$ by X-ray measurements, and it causes some modification of electronic spectra from that expected for O_{h} symmetry.

In O_{h} symmetry six-co-ordinate, high-spin cobalt(II) exhibits ${ }^{4}$ three spin-allowed bands in the visible-u.v.
${ }^{1}$ N. H. Agnew and L. F. Larkworthy, J. Chem. Soc., 1965, 4669.
${ }^{2}$ N. H. Agnew, Ph.D. Thesis, University of Natal, 1967; N. H. Agnew and M. E. Brown, J. Polymer Sci., Part A-1, 1971, 9, 2561.
region: $\quad{ }^{v_{1}},{ }^{4} T_{2 g}(F) \leftarrow{ }^{4} T_{19}(F) ; \quad v_{2},{ }^{4} A_{2 g}(F) \leftarrow{ }^{4} T_{1 g}(F) ;$ and $\nu_{3},{ }^{4} T_{1 g}(P) \leftarrow{ }^{4} T_{1 g}(F)$. The assignments are given under these general headings in Table 1. However, in $D_{4 h}$ symmetry the v_{2} and ν_{3} bands are usually found, as here, to be multiple. ${ }^{4}$ The proximity and splitting of the v_{2} and v_{3} bands means that considerable overlap of the band envelopes occurs and a complex collection of bands, which cannot readily be assigned, is observed in the region $18000-23000 \mathrm{~cm}^{-1}$ (Table 1).

The position of v_{1} is in the region $8000-9000 \mathrm{~cm}^{-1}$. ${ }^{4}$ In $D_{4 h}$ symmetry this band is observed to split into two components (${ }^{4} B_{2 g}$ and ${ }^{4} E_{g}$) to an extent dependent upon the amount of distortion present. Thus the complexes $\mathrm{Co}(4-\mathrm{vpy})_{4}(\mathrm{NCO})_{2}$ and $\mathrm{Co}(4-\mathrm{vpy})_{4}(\mathrm{NCS})_{2}$ show no splitting of this band, and this indicates that the pseudohalogen is N-bonded.

The related nickel(II) complexes are similar. Nickel(II) complexes in O_{h} symmetry exhibit simple spectra with three spin-allowed transitions to the ${ }^{3} T_{19}(P)$, ${ }^{3} T_{1 g}(F)$, and ${ }^{3} T_{2 g}$ levels in the regions $19000-27000$ $\mathrm{cm}^{-1}\left(\nu_{3}\right), 11000-20000 \mathrm{~cm}^{-1}\left(\nu_{2}\right)$, and $7000-13000$ $\mathrm{cm}^{-1}\left(v_{1}\right)$ respectively. Tetragonal distortion causes some splitting of certain levels, ${ }^{5}$ in particular those arising from the ${ }^{3} F$ and ${ }^{3} P$ states. Because of this splitting more electronic transitions are possible and ν_{2} and especially ν_{1}, may be observed to split into two components. As with the cobalt(II) complexes similar donor properties of pyridine and pseudohalogen result
${ }^{3}$ A. S. Antsyshkina, L. M. Dickereva, E. K. Jukhnov, and M. A. Porai-Koshits, Acta Cryst., 1957, 10, 784; A. S. Antsyshkina and M. A. Porai-Koshits, Krist., 1958, 3, 684, 694; M. A. Porai-Koshits and A. S. Antsyshkina, Trudy Inst. Krist. Akad. Nauk S.S.S.R., 1954, 10, 117.
${ }^{4}$ A. B. P. Lever, 'Inorganic Electronic Spectroscopy,' Elsevier, Amsterdam, 1968.

5 D. A. Rowley and R. S. Drago, Inorg. Chem., 1967, 6, 1092.
TABLE 1
$\underset{\substack{\text { Octahedral } \\ \text { Cobalt }(\mathrm{II})}}{\text { monomeric complexes }\left(D_{\mathrm{a}} h\right)}$

Assignments of pseudohalogen group bands $\left(\mathrm{cm}^{-1}\right)$ e,g			Analyses (\%) Found (Calc.)				
$\nu_{\text {as }}$	ν_{B}	δ	Metal	C	H	N	Halogen
2210s	1325 m	619 ms	$\begin{gathered} 10 \cdot 4 \\ (10 \cdot 4) \end{gathered}$	$\begin{gathered} 63 \cdot 2 \\ (63 \cdot 9) \end{gathered}$	$\begin{gathered} 5 \cdot 1 \\ (5 \cdot 0) \end{gathered}$	$\begin{gathered} 14.8 \\ (14 \cdot 9) \end{gathered}$	
2090s		481 ms	$\begin{gathered} 9 \cdot 9 \\ (9 \cdot 9) \end{gathered}$	$\begin{gathered} 60 \cdot 4 \\ (60 \cdot 5) \end{gathered}$	$\begin{gathered} 5 \cdot 3 \\ (4 \cdot 8) \end{gathered}$	$\begin{gathered} 14 \cdot 2 \\ (14 \cdot 1) \end{gathered}$	
			$\begin{gathered} 10 \cdot 8 \\ (10.7) \end{gathered}$	$\begin{gathered} 60 \cdot 9 \\ (61 \cdot 1) \end{gathered}$	$\begin{gathered} 5 \cdot 1 \\ (5 \cdot 1) \end{gathered}$	$\begin{gathered} 10 \cdot 1 \\ (10 \cdot 2) \end{gathered}$	$\begin{gathered} 12 \cdot 8 \\ (12 \cdot 9) \end{gathered}$
			$\begin{array}{r} 9 \cdot 4 \\ (9 \cdot 2) \end{array}$	$\begin{array}{r} 49 \cdot 1 \\ (49 \cdot 4) \end{array}$	$\begin{array}{r} 4 \cdot 4 \\ (4 \cdot 2) \end{array}$	$\begin{array}{r} 8.3 \\ (8 \cdot 2) \end{array}$	$\begin{array}{r} 20.9 \\ (20.9) \end{array}$
			$\begin{gathered} 7.9 \\ (8 \cdot 0) \end{gathered}$	$\begin{gathered} 52 \cdot 4 \\ (52 \cdot 6) \end{gathered}$	$\begin{gathered} 4 \cdot 4 \\ (4 \cdot 4) \end{gathered}$	$\begin{gathered} 8.3 \\ (8.8) \end{gathered}$	$\begin{gathered} 24 \cdot 8 \\ (25 \cdot 0) \end{gathered}$
2210 s	1314m	615 ms	$\underset{(10 \cdot 4)}{10 \cdot 4}$	$\begin{gathered} 63 \cdot 9 \\ (64 \cdot 0) \end{gathered}$	$\begin{gathered} 5 \cdot 0 \\ (5 \cdot 0) \end{gathered}$	$\begin{gathered} 15.0 \\ (14.9) \end{gathered}$	
2080s		488 ms	$\begin{gathered} 9.9 \\ (10 \cdot 0) \end{gathered}$	$\begin{gathered} 59.5 \\ (60 \cdot 5) \end{gathered}$	$\begin{aligned} & 4 \cdot 9 \\ & (4 \cdot 8) \end{aligned}$	$\stackrel{14 \cdot 0}{(14 \cdot 1)}$	
			$\begin{gathered} 11 \cdot 1 \\ (11 \cdot 2) \end{gathered}$	$\begin{gathered} 60 \cdot 8 \\ (61 \cdot 1) \end{gathered}$	$\begin{gathered} 5 \cdot 1 \\ (5 \cdot 1) \end{gathered}$	$\begin{aligned} & 10 \cdot 0 \\ & (10.2) \end{aligned}$	$\begin{gathered} 13 \cdot 0 \\ (12 \cdot 9) \end{gathered}$
			$\begin{gathered} 9 \cdot 0 \\ (9 \cdot 2) \end{gathered}$	$\begin{aligned} & 51 \cdot 8 \\ & (52 \cdot 6) \end{aligned}$	$\begin{gathered} 4 \cdot 3 \\ (4 \cdot 4) \end{gathered}$	$\begin{gathered} 8.7 \\ (8.8) \end{gathered}$	$\begin{gathered} 24.7 \\ (25 \cdot 0) \end{gathered}$
			$\begin{gathered} 8.0 \\ (8 \cdot 0) \end{gathered}$	$\begin{gathered} 45 \cdot 4 \\ (45 \cdot 8) \end{gathered}$	$\begin{gathered} 3.8 \\ (3.9) \end{gathered}$	$\begin{gathered} 7.8 \\ (7 \cdot 6) \end{gathered}$	$\begin{gathered} 31 \cdot 6 \\ (34 \cdot 6) \end{gathered}$
			$\begin{gathered} 17.0 \\ (17.3) \end{gathered}$	$\begin{gathered} 49 \cdot 1 \\ (49 \cdot 4) \end{gathered}$	$\begin{aligned} & 4 \cdot 4 \\ & (4 \cdot 2) \end{aligned}$	$\begin{gathered} 8 \cdot 3 \\ (8 \cdot 2) \end{gathered}$	$\begin{array}{r} 20 \cdot 9 \\ (20 \cdot 9 \end{array}$
2135 m	$\begin{aligned} & 1349 \mathrm{~m}, \\ & 1297 \mathrm{~m}, \end{aligned}$	665 m , 620 wm , 602 wm	$\begin{aligned} & 16.4 \\ & (16.7) \end{aligned}$	$\begin{gathered} 48 \cdot 1 \\ (47.6) \end{gathered}$	$\begin{gathered} 4 \cdot 3 \\ (4 \cdot 0) \end{gathered}$	$\begin{gathered} 31 \cdot 7 \\ (31.7) \end{gathered}$	

Table 1 (Continued)

\author{[^0]
 为
}
in smaller distortion and spectra approximately as expected for O_{h} symmetry. ${ }^{6}$

The data (Table 1) show that the splitting of the bands, especially v_{1}, increases in the order $\mathrm{NCO} \approx$ $\mathrm{NCS}<\mathrm{Cl}<\mathrm{Br}<\mathrm{I}$ as expected from the positions of the ligands in the spectrochemical series. X-Ray powder investigations * show that $\mathrm{Ni}(4-\mathrm{vpy})_{4} \mathrm{Cl}_{2}$ and $\mathrm{Co}(4 \text {-vpy })_{4} \mathrm{Cl}_{2}$ are isomorphous.

Polynueric octahedral systems. Two forms of cobalt(II) halogeno-complex containing a $2: 1$ ratio of pyridine to metal have been shown to exist in the solid state, ${ }^{7}$ a mauve polymeric octahedral form and a blue tetrahedral monomeric form. As in the case of $\mathrm{Co}(\mathrm{py})_{2} \mathrm{Cl}_{2}$ ($\mathrm{py}=$ pyridine), it is found that the two forms of $\mathrm{Co}(4-\mathrm{vpy})_{2} \mathrm{Cl}_{2}$ can be readily distinguished by their colour and electronic spectra and also by their magnetic behaviour and far-i.r. spectra. The electronic spectrum of the mauve compound resembles more closely the spectra of the 4:1 monomeric systems than those of the blue form and the other $2: 1$ complexes. The $2: 1$ azido-complex also shows a similar spectrum, indicating an octahedral polymeric structure.

The mauve form of $\mathrm{Co}(4-\mathrm{vpy})_{2} \mathrm{Cl}_{2}$ is stable at room temperature. As with $\mathrm{Co}(\mathrm{py})_{2} \mathrm{Cl}_{2}$ on heating, to 98°, a rapid solid-state rearrangement ${ }^{8}$ to the blue complex occurred. The same transformation occurred on prolonged exposure to sunlight, but the X-ray powder pattern indicated that the change was not quantitative. The complexes, mauve $\mathrm{Co}(4-\text { vpy })_{2} \mathrm{Cl}_{2}$ and $\mathrm{Ni}(4-\text { vpy })_{2} \mathrm{Cl}_{2}$ have very similar X-ray powder patterns and are isomorphous, or nearly so. The powder diffractogram of the tetrahedral blue form of $\mathrm{Co}(4-v p y)_{2} \mathrm{Cl}_{2}$ is quite different.

To interpret the spectra of the $2: 1$ nickel(iI) complexes the approximation to $D_{4 h}$ symmetry is again made and the bands assigned as for the $4: 1$ complexes, but since the positioning of the pyridine and halogen ligands is reversed with respect to the $4: 1$ complexes, the splittings of the bands are inverted.

Monomeric tetrahedral systems. These complexes were also of pyridine to metal ratio $2: 1$, but of symmetry $C_{2 v}$. Tetrahedral, four-co-ordinate cobalt(II) complexes exhibit two broad and split absorption bands in the near-i.r. and visible regions: v_{3}, the ${ }^{4} T_{2}(P) \leftarrow{ }^{4} A_{2}$ transition, and v_{2}, the ${ }^{4} T_{1}(F) \leftarrow{ }^{4} A_{2}$ transition. ${ }^{9,10}$

The tetrahedral ${ }^{11 a}$ and polymeric bridged ${ }^{11 b}$ structures assigned to blue and to mauve $\mathrm{Co}(4-\mathrm{vpy})_{2} \mathrm{Cl}_{2}$ respectively have been confirmed by X-ray investigations. ${ }^{11}$ The

[^1]metal-ligand bond lengths are very similar to those in $\mathrm{Co}(\mathrm{py})_{2} \mathrm{Cl}_{2}$.
All the complexes of 2 -vinylpyridine prepared with cobalt(II) were tetrahedral. The X-ray powder pattern of $\mathrm{Co}(2-\mathrm{vpy})_{2} \mathrm{Cl}_{2}$ was very similar to that of $\mathrm{Zn}(2-\mathrm{vpy})_{2} \mathrm{Cl}_{2}$ which is also expected to be tetrahedral. Bivalent cobalt readily takes up a tetrahedral stereochemistry. Tetrahedral nickel(II) halide pyridine complexes are less common ${ }^{12}$ than the octahedral forms and attempts to prepare such complexes with 2 -vinylpyridine resulted in failure, anhydrous nickel halides being obtained in every case. 2-Substituents favour the formation of tetrahedral nickel(II) complexes, e.g. $\mathrm{Ni}(2-$ Mepy) $)_{2} \mathrm{Cl}_{2}$ but with 2-vinylpyridine and nickel(II) the steric effect is perhaps too large to permit complex formation except in solution. Construction of molecular models indicates that the steric effect of 2 -vinylpyridine is greater than that caused by 2 -methylpyridine in this type of system.

Far-i.r. Spectra.-The metal-substituted pyridine vibrations have been assigned on the assumption that for a series of complexes of equivalent stereochemistry, the vibrations will occur at approximately the same frequencies ${ }^{\mathbf{1 3 , 1 4}}$ if significant coupling with other vibrational modes is absent. Some coupling between vibrations of the same symmetry would be expected to occur and this would cause some variation in the band positions. It has been shown, for example, by normal co-ordinate analysis, that in $\mathrm{Si}(\mathrm{py})_{2} \mathrm{Cl}_{4}$ the purity of the metal-nitrogen mode is in the region of $40-67 \% .^{15}$ However, since the vibrations are primary stretchings the variations would be expected to be small.

Since several sets of compounds of the same stereochemistry were available in which the halogen varied from Cl to Br to I it was possible to assign the metalhalogen stretching vibrations (Table 1) with reasonable certainty. For the tetrahedral complexes the ratios: $v(\mathrm{M}-\mathrm{Br}) / v(\mathrm{M}-\mathrm{Cl})$ and $v(\mathrm{M}-\mathrm{I}) / v(\mathrm{M}-\mathrm{Cl})$, from these assignments, were about 0.75 and 0.65 as usual, ${ }^{14}$ but the values of terminal $v(\mathrm{M}-\mathrm{Br})$ were sometimes slightly below the lower limit of the quoted ${ }^{14}$ range ($300-200 \mathrm{~cm}^{-1}$). As in the pyridine complexes, the $v(\mathrm{M}-\mathrm{Halogen})$ frequencies diminished as the co-ordination number increased, but the frequencies of the octahedral monomers and polymers were similar.

In the $4: 1$ monomeric octahedral species only one i.r.-active stretching vibration would be expected, but in the polymeric octahedral, and tetrahedral species two bands are expected (Table 1). This was found to be the case in the tetrahedral ($2: 1$) complexes studied, but

[^2]only partially true in the spectra of polymeric $(2: 1)$ and monomeric ($4: 1$) complexes. Metal-pseudohalogen vibrations, although not as well characterised as the metal-halogen vibrations, were found in the $250-300$ cm^{-1} region. ${ }^{16}$

Table 2

Room-temperature results (compounds above excluded)

	μ_{e}	χ_{L}		$\mu_{\text {e }}$	χ_{L}
$\mathrm{Co}(4-\mathrm{vpy})_{4} \mathrm{Br}_{2}$	$5 \cdot 10$	320	$\mathrm{Ni}(4-\mathrm{ppy})_{4} \mathrm{Br}_{2}$	$3 \cdot 22$	320
$\mathrm{Co}(4-\mathrm{ppy})_{2} \mathrm{I}_{2}$	$4 \cdot 49$	227	$\mathrm{Ni}\left(4\right.$-vpy) ${ }_{4} \mathrm{I}_{2}$	$3 \cdot 21$	352
$\mathrm{Co}\left(2\right.$-vpy ${ }_{2}{ }^{2} \mathrm{Br}_{2}$	$4 \cdot 62$	195	$\mathrm{Ni}(4-\mathrm{ppy})_{4}(\mathrm{NCS})_{2}$	$3 \cdot 18$	313
			$\mathrm{Ni}(4-\mathrm{ppy}){ }_{2} \mathrm{Br}_{2}$	$3 \cdot 33$	195
			$\mathrm{Ni}(4-\mathrm{ppy})_{2}(\mathrm{NCS})_{2}$	$3 \cdot 07$	188

[^3]Difficulty was experienced with the assignments of the spectra of monomeric octahedral complexes because of the unexpected multiplicity of bands. Examples can be seen in the Figure which shows the spectra obtained for the compounds $\mathrm{Ni}(4-\mathrm{vpy})_{4} \mathrm{X}_{2}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, or I$)$. The spectra are similar in the $200 \mathrm{~cm}^{-1}$ region; hence the bands here are assigned to metal-pyridine vibrations. The main halogen-dependent vibrations seem to be at 184 and $176 \mathrm{~cm}^{-1}$ (chloride), 132 and 113 (bromide), and

16 R. J. H. Clark and C. S. Williams, Spectrochim. Acta, 1966, 22, 1081.
${ }_{17}$ P. C. H. Mitchell and R. J. P. Williams, J. Chem. Soc., 1960, 1912.

110 and $86 \mathrm{~cm}^{-1}$ (iodide). The higher frequency band in each case is assigned to the metal-halogen stretching vibration. This agrees with recent work ${ }^{14 b}$ on $\mathrm{Ni}(\mathrm{py})_{4} \mathrm{X}_{2}$ (py $=$ pyridine), except that $v(N i-C l)$ was placed at $207 \mathrm{~cm}^{-1}$ where in our spectra intense halogen-insensitive bands occur.

Ligand and Internal Pseudohalogen Vibrations.-The i.r. spectra of the co-ordinated organic ligands show only relatively small differences from the spectra of the free ligands.

Three pseudohalogen frequencies can be of use in determining the bonding mode of the group; these are the symmetric and asymmetric vibrations, ν_{s} and ν_{as}, and the deformation, δ. These are respectively found

in the regions $1400-600,2200-2000$, and $800-600$ cm^{-1} (Table 1). The increase in frequency of $v_{a s}$ in going from $\mathrm{Ni}(4 \text {-vpy })_{4}(\mathrm{NCS})_{2}$ to $\mathrm{Ni}(4 \text {-vpy })_{2}(\mathrm{NCS})_{2}$ is as commonly found for terminal and bridged NCS. ${ }^{17}$ The medium intensity of the ν_{s} vibration in all the azidocomplexes indicates that it forms a single-atom bridge ${ }^{18}$ since for a linearly bridged complex the vibration should be i.r. inactive as in the azide ion. In this limited series of compounds i.r. evidence alone does not lead to an unambiguous assignment of the donor atoms of the pseudohalides.

Magnetochemical Results.-The magnetic moments of the cobalt(II) compounds of the stoicheiometry $\mathrm{Co}(4-$ $\mathrm{vpy})_{4} \mathrm{X}_{2}$ are of the magnitude expected ${ }^{19}$ for high-spin, six-co-ordinate cobalt(II) compounds, and $\mathrm{Co}(4-\mathrm{vPy})_{4^{-}}$ $(\mathrm{NCO})_{2}$ obeyed the Curie-Weiss law with a moderate θ value, showing the usual temperature variation of magnetic moment arising from varying orbital contribution in this type of compound. The mauve form of $\mathrm{Co}(4-\mathrm{vpy})_{2} \mathrm{Cl}_{2}$ also behaved magnetically as an octa-

[^4]hedral complex in agreement with the polymeric structure assigned from spectral data. The azidocomplex $\mathrm{Co}(4-\mathrm{vpy})_{2}\left(\mathrm{~N}_{3}\right)_{2}$ obeyed the Curie-Weiss law with a large θ value of 86° and a magnetic moment of 4.77 B.M. at room temperature which is reduced even below the spin-only value (3.87 B.M.) at 90 K . The reduction would indicate that unlike in polymeric octahedral $\mathrm{Co}(4-\mathrm{vpy})_{2} \mathrm{Cl}_{2}$ considerable antiferromagnetic interactions are present in addition to the normal orbital contribution. The magnetic moments of $\mathrm{Co}(2-\mathrm{vpy})_{2} \mathrm{Br}_{2}$ and $\mathrm{Co}(2-\mathrm{vpy})_{2} \mathrm{I}_{2}$ are as expected ${ }^{19}$ for tetrahedral complexes ($4 \cdot 4-4 \cdot 8$ B.M.).

The magnetic moments of the nickel(II) complexes at room temperature are compatible ${ }^{19}$ with octahedral structures, tetrahedral structures being excluded by the reflectance spectra. The halide-bridged compounds $\mathrm{Ni}(4-\mathrm{vpy})_{2} \mathrm{Cl}_{2}$ and $\mathrm{Ni}(4-\mathrm{vpy})_{2} \mathrm{Br}_{2}$ show weak ferromagnetic interactions as has been found ${ }^{20}$ in some similar compounds. The failure of the reflectance and far-i.r. spectra to alter significantly on cooling showed that the magnetic results were not affected by stereochemical changes. The corresponding azido-nickel(II) compounds have low, temperature-dependent magnetic moments arising from antiferromagnetic interactions, and this would suggest that, as in related manganese(ii) complexes, ${ }^{18}$ the azido-groups form bridges through a single nitrogen atom.

EXPERIMENTAL

Most complexes were prepared by the addition of the stoicheiometric amount of ligand in alcoholic solution to an aqueous alcoholic or aqueous solution of the metal halide or pseudohalide. Ethanol was used in the preparation of the nickel complexes and propan-2-ol in the preparation of the
${ }^{20}$ D. M. L. Goodgame, M. Goodgame, and M. J. Weeks, J. Chem. Soc., 1964, 5194.
${ }_{21}$ A. V. Butcher, Ph.D. Thesis, University of Surrey, 1968.
cobalt(II) complexes since the latter were very soluble in ethanol. Except in the cases of cobalt iodide and thiocyanate, metal iodides and pseudohalides were not used directly but were prepared by metathesis of the transitionmetal nitrate with the appropriate alkali-metal salt in ethanolic or aqueous ethanolic solution.

Several attempts were made to prepare the 2 -vinylpyridine complexes of nickel halides. Ethanolic solutions of the pyridine and the metal salt were vacuum distilled, and benzene added to replace the ethanol removed. This method, proved successful with related systems, ${ }^{21}$ gave only anhydrous nickel halides. A blue oil was obtained by the addition of ether to a solution of the reactants in dimethylformamide, but this rapidly decomposed to the anhydrous chloride in the atmosphere.

Pyridine complexes of nickel iodide are often planar, but attempts to prepare similar complexes of 4 -vinylpyridine failed. When 2:1 ratios of amine and iodide were mixed in ethanol only the $4: 1$ complex separated. Complete removal of the ethanol and treatment with benzene left an intractable mixture. Similarly only $\mathrm{Co}(4-\mathrm{vpy})_{4}(\mathrm{NCS})_{2}$ could be obtained.

All materials were of reagent grade or purer. Ligands were purified as before. ${ }^{1}$ Analyses were carried out by standard procedures. ${ }^{22}$
Electronic spectra ($40000-5000 \mathrm{~cm}^{-1}$) were recorded at room and liquid nitrogen temperatures by the diffuse reflectance technique on a Unicam SP 700 C spectrophotometer. Far-i.r. spectra ($400-30 \mathrm{~cm}^{-1}$) of the solid complexes as Nujol mulls between Polythene plates were determined at room and liquid-nitrogen temperatures on an R.I.I.C. FS 720 Fourier spectrometer. Magnetic moments from room to liquid-nitrogen temperature were measured by the Gouy method using a Newport Instruments Gouy balance. The susceptibilities of all the compounds investigated were independent of field strength.
[3/313 Received, 12th February, 1973]
${ }^{22}$ A. I. Vogel, 'A Textbook of Quantitative Inorganic Analysis,' 3rd edn., Longmans, London, 1961.

[^0]: wner

[^1]: * Data deposited with the N.L.L. as Supplementary Publication No. 20850 (4 pp .). See J.C.S. Dalton, 1972, Index Issue for details of this scheme.
 ${ }^{6}$ A. B. P. Lever and S. M. Nelson, J. Chem. Soc. (A), 1966, 859.

 7 J. D. Dunitz, Acta Cryst., 1957, 10, 307.
 \& W. W. Wendlandt, J. Thermal'Analysis, 1969, 1, 469.
 ${ }^{9}$ F. A. Cotton, D. M. L. Goodgame, M. Goodgame, and A. Sacco, J. Amer. Chem. Soc., 1961, 83, 4690.
 ${ }_{10}$ J. Ferguson, J. Chem. Phys., 1960, 32, 528.
 11 (a) J. Admiraal and G. Gafner, Chem. Comm., 1968, 1221; (b) M. Laing and E. Horsfield, ibid., 1969, 902.
 ${ }_{12}$ M. D. Glonek, C. Curran, and J. V. Quagliano, J. Amer. Chem. Soc., 1962, 84, 2014.

[^2]: ${ }^{13}$ D. M. Adams, 'Metal-Ligand and Related Vibrations,' Arnold, London, 1967, pp. 207, 285.

 14 (a) R. J. H. Clark and C. S. Williams, Inovg. Chem., 1965, 4, 350 ; R. H. Nuttall, Talanta, 1968, 15, 157 ; R. J. Collin, F. W. Parrett, and D. J. Phillips, unpublished results; M. Goldstein and W. D. Unsworth, Inovg. Chim. Acta, 1970, 4, 342 ; (b) M. Goldstein and W. D. Unsworth, Spectrochim. Acta, 1972, 28A, 1297; (c) K. Nakamoto, 'Infrared Spectra of Inorganic and Co-ordination Compounds,' 2nd edn., Wiley, New York, 1970.
 ${ }_{15}$ I. R. Beattic, T. R. Gilson, and G. A. Ozin, J. Chem. Soc. (A), 1968, 2772.

[^3]: ${ }^{a}$ Curie-Weiss law taken as $\chi_{\mathrm{A}} \propto 1 /(T+\theta) .{ }^{\delta} \chi_{\mathrm{A}}$ in c.g.s.u. $\times 10^{6} ; \mu_{\mathrm{e}}$ in B.M.; $\chi_{\mathrm{L}}=$ diamagnetic correction $\times 10^{6}$.

[^4]: 18 J. Nelson and S. M. Nelson, J. Chem. Soc. (A), 1969, 1597. 19 B. N. Figgis and J. Lewis, Progr. Inorg. Chem., 1964, 6, 37.

