Complexes of 2- and 4-Vinylpyridines with Cobalt(11) and Nickel(11) Halides and Pseudohalides

By Neville H. Agnew, Department of Chemistry, Rhodes University, P.O. Box 94, Grahamstown, South Africa Richard J. Collin and Leslie F. Larkworthy,* The Joseph Kenyon Laboratory, Department of Chemistry, University of Surrey, Guildford

Complexes of cobalt(II) and nickel(II) with 2-vinylpyridine (2-vpy) and 4-vinylpyridine (4-vpy) exhibit various stereochemistries according to their stoicheiometry and the anion X present: octahedral, $M(4-vpy)_4X_2$ (M = Co, Ni; X = Cl, Br, I, NCO, NCS); polymeric octahedral, $M(4-vpy)_2X_2$ [M = Co, X = Cl (mauve-form), N₃; M = Ni, X = CI, Br. N₃, NCS]; and tetrahedral, $Co(4-vpy)_2X_2$ (X = CI, Br, I) and $Co(2-vpy)_2X_2$ (X = CI, Br, I, NCS). Structures have been assigned from the electronic, i.r., and far-i.r. spectra, and magnetic behaviour of the complexes. In several cases the assigned structures have been confirmed by X-ray powder investigations. The complexes $M(4-vpy)_2(N_3)_2$ are antiferromagnetic while the complexes $Ni(4-vpy)_2X_2$ (X = Cl, Br) are weakly ferromagnetic.

COBALT(II) and nickel(II) halides and pseudohalides react with a large range of substituted pyridines to form adducts of the types ML_nX_2 where n = 2 or 4. The stereochemistries are known, from X-ray and other physical measurements, to be octahedral monomeric (n = 4), polymeric octahedral (n = 2) with halogen or pseudohalogen bridging, or tetrahedral monomeric or planar. Previously,¹ the complex Co(4-vpy)₄Cl₂ was shown to be octahedral while Co(4-vpy)₂Cl₂ and $\mathrm{Co}(2\text{-}\mathrm{vpy})_2\mathrm{Cl}_2$ were tetrahedral (2-vpy and 4-vpy are respectively 2- and 4-vinylpyridine). No polymeric octahedral species, similar to that formed by pyridine, was obtained from cobalt(II) chloride and 2-vinylpyridine. Here we report a further series of cobalt(II) halide and pseudohalide complexes with these ligands, including polymeric Co(4-vpy)₂Cl₂, and also report a related series of nickel(II) complexes. Certain of the compounds were prepared in order to study their polymerisability in the solid state.²

Electronic Spectra.—Octahedral monomeric systems. In these complexes the stoicheiometric ratio of vinylpyridine to metal salt was 4:1. The results of previous workers have indicated that the symmetry of this species is not pure O_h but that tetragonal distortion along the z axis of the molecule leads to a symmetry closer to D_{4h} . This has been confirmed ³ by X-ray measurements, and it causes some modification of electronic spectra from that expected for O_h symmetry.

In O_h symmetry six-co-ordinate, high-spin cobalt(II) exhibits⁴ three spin-allowed bands in the visible-u.v.

¹ N. H. Agnew and L. F. Larkworthy, J. Chem. Soc., 1965,

region: ν_1 , ${}^4T_{2g}(F) \leftarrow {}^4T_{1g}(F)$; ν_2 , ${}^4A_{2g}(F) \leftarrow {}^4T_{1g}(F)$; and v_3 , ${}^4T_{1g}(P) \leftarrow {}^4T_{1g}(F)$. The assignments are given under these general headings in Table 1. However, in D_{4h} symmetry the v_2 and v_3 bands are usually found, as here, to be multiple.⁴ The proximity and splitting of the v_2 and v_3 bands means that considerable overlap of the band envelopes occurs and a complex collection of bands, which cannot readily be assigned, is observed in the region 18 000–23 000 cm⁻¹ (Table 1).

The position of v_1 is in the region 8 000–9 000 cm⁻¹.⁴ In D_{4h} symmetry this band is observed to split into two components (${}^{4}B_{2g}$ and ${}^{4}E_{g}$) to an extent dependent upon the amount of distortion present. Thus the complexes $Co(4-vpy)_4(NCO)_2$ and $Co(4-vpy)_4(NCS)_2$ show no splitting of this band, and this indicates that the pseudohalogen is N-bonded.

The related nickel(II) complexes are similar. Nickel-(II) complexes in O_h symmetry exhibit simple spectra with three spin-allowed transitions to the ${}^{3}T_{19}(P)$, ${}^{3}T_{1g}(F)$, and ${}^{3}T_{2g}$ levels in the regions 19 000–27 000 cm⁻¹ (v₃), 11 000–20 000 cm⁻¹ (v₂), and 7 000–13 000 cm^{-1} (v₁) respectively. Tetragonal distortion causes some splitting of certain levels,⁵ in particular those arising from the ${}^{3}F$ and ${}^{3}P$ states. Because of this splitting more electronic transitions are possible and v_{2} and especially v_1 , may be observed to split into two components. As with the cobalt(II) complexes similar donor properties of pyridine and pseudohalogen result

³ A. S. Antsyshkina, L. M. Dickereva, E. K. Jukhnov, and M. A. Porai-Koshits, Acta Cryst., 1957, 10, 784; A. S. Antsysh-kina and M. A. Porai-Koshits, Krist., 1958, 3, 684, 694; M. A. Porai-Koshits and A. S. Antsyshkina, Trudy Inst. Krist. Akad. Nauk S.S.S.R., 1954, 10, 117.

⁴ A. B. P. Lever, ⁴ I Elsevier, Amsterdam, 1968. 'Inorganic Electronic Spectroscopy,'

⁵ D. A. Rowley and R. S. Drago, Inorg. Chem., 1967, 6, 1092.

<sup>4669.
&</sup>lt;sup>2</sup> N. H. Agnew, Ph.D. Thesis, University of Natal, 1967;
N. H. Agnew and M. E. Brown, J. Polymer Sci., Part A-1, 1971, 9. 2561.

					Octa	thedral monomeric of Cohalt(r	omplexes (D ₄ A) 1)									
		T laster at	an an an far from	d a Virth Contract		Absorption	bands in the far-i.r. reg	cion (cm ⁻¹)	Ass pseudohal	ogen group	f bands		Analys	es (%)		
		FIECHOINC	renectance si	pectra (KK) a,º				Other mode		(cm -) 1.4			Louin	(care.)		1
Co(4-py) ₄ (NCO) ₂	RT	${}^{4}T_{1g}(P)\nu_{3}$ 21.6s, 20.8ssh, 19.65ms,sh, 18	4, 8-25ms 17	<i>d</i> 2 <i>θ</i> (<i>F</i>) <i>ν</i> 2 5-65m,sh	${}^{4}T_{2g}(F)\nu_{1}$ $9.4\mathrm{ms}$	ν (M-py) 214ms, 201s,	v(M-X) 308w,sh, 298s,f	(unassigned) 262w,sh, 250ms	^{vas} 2210s	۶ <mark>8</mark> 1325m	619ms	letal 10-4 6	10 C	N 45	Halogen 8	-
(rea)	ΓT	22.0ms, 21.05ms,sb, 20.05ms,	, 15	5-6w	9.8ms	195m,sh 215s, 202m,sh	290w,sh 307wm,sh, 301wm,sh	, 270m, 265w,sh,				9) (8 -01	3.9) (9.	U) (14	(8	
Co(4-vpy) (NCS)	RT	19./ms, 15.5ms 21.2s,sh, 20.35s, 18.6m,sh	10	5-6m,sh	9-6s	206s	294msf 276mf	253ms 266m, 252m,sh,	2090s		481ms	9 6-6	0.4	3 14	01	
(5)11	LT	21•4s,sh, 20•5s, 19•8s,sh	15	5-6m,sh	9-9s	212s,sh, 208s	280s f	262m, 254m,sh,				0) (e.e)	. +) (e.o	6) (14	1	
Co(4-vpy) Cl2	\mathbf{RT}	19-8ms, 18-95ms.	i, 18·2m,sh		9-35m,sh, 8-6m,	, 220s	198s	246s, 229w, 172w 273m, 246wm,				10.8 6	0-0 2 2	1	1 12.8	
(red) Co(4-vpy) ₄ Br ₃	LT RT	20-05ms, 19-05m 19-0ms, 18-45ms,	ıs, 18-4m,sh , 17-8m,sh		7.3m,sn 8-95m, 7-2m 8-6m, 6-0m,sh	$199 \mathrm{ms}$	137ms, $131m$, sh ,	132m 271wm, 253wm			-	10-1) (6 9-4 4	•e) (1-1	(1 8 91 8	z) (12-9) -3 20-9	~ -
(purple)	LT	19.2ms, 18.6ms,	17.8m,sh		8•8m, 6•2m	210s, 186ms	109m, 101m 140ms, <i>f</i> 136m, sh,	273wm, 258wm,				(9-2) (4	9-4) (4-	8) (8)	2) (20-9)	~
Co(4-vpy) ₄ I ₂ (olive green)	RT	18·4s, 17·4s,sh	15	5-05m,sh, 1-25m sh	8-3m, 5-35m	204m, sh, 107m, sh, 171mm	109m, 104wm,sh, 92m f	250w,sh 267m, 246w,sh				7-9 5 (8-0) (5	2.4 2.6) (4	4 (4) (8) (8) (8) (8) (8) (8) (8) (8) (8) (8	3 24-8 8) (25-0)	-
	LT	18-5ms, 17·6ms	22	5-2m,sh 5-2m,sh 3-05m,sh	8·ððm, 5·4m	$\begin{array}{c} 211 \text{ms}, 203 \text{m,sh}, \\ 174 \text{m} \end{array}$	108m,sh, 95m f	270m, 246w,sh				e) (0.0)	F) (0.7	o) (#	10.07) 10	~
		${}^{\mathfrak{s}L_{\mathfrak{f}}}(F)$		'n	$\Gamma_{20}(F)$	Nickel(11) •										
Ni(4-vpy) ₄ (NCO) ₂	RT	³ E _g ³ A ₂ g	${}^{1}E_{g}(D)$ 12.95w,sh	3B20	³Eq	228s, 222m,sh	310m , <i>f</i> 304m,sh	271m,sh, 262s	2210s	1314m	615ms	10.4 6	3.0	0 15	0	
(blue)	LT	17-5m	12-95w,sh		10.6m	233s, 223m,sh	314m, 308m	272s,sh,268s,			<u> </u>	10-4) (6	4·0) (5	0) (14	6)	
Ni(4-vpy),(NCS)2	\mathbf{RT}	17-4m	12-85m,sh		10-4m	226m	293mf	210wm 266ms, 253m,sh	2080s		488ms	9-6 19-6	9-5 2.4	9.14		
(violet) Ni(4-vpy) ₄ Cl ₂	LT RT	17.6m $16.3m,sh15.7ms$	12-8m,sh 10-35w,sh	12.2m	10-8m 8-55ms	234w,sh, 220m,sh	209s, 184m,sh, 178m	J 278wm, 256wm,				9) (0-01	(c.0) (c.0)(8) (14	1) 0 13-0	
Ni(4-vpy), Br2	LT RT	16.2ms 14.8m,sh 15.9ms 13.5m,sh	10-9w,sh 11-45m,sh	12-0m 12-4m,sh	8.6ms 7.6ms	208s	132m, f113m	144m, 140m 276m, 263m,sh			_	0) (z.11	() () () () () () () () () () () () () (1) (10 3 8	z) (12-9) 724-7	
Ni(4-vpy) d	$_{\mathrm{RT}}^{\mathrm{LT}}$	$\begin{array}{ccc} 15.4 \mathrm{ms} & 13.6 \mathrm{m} \\ 15.75 \mathrm{ms} & 12.4 \mathrm{m} \end{array}$	11•6m,sh 10•9m,sh	12·25m,sl 12·4m	n 8-0ms 7-2ms	219m, 208s, 186m	1 110m, f 100w, 86m	276m, 256w				(9·2) (5 8·0 (5 2)	2.6) 4. 4. 4. 6)	8) (8 8 (8	8) (25-0) 8 31-6	~
(man green)	LT	16-3m 12-6m	11.0 m/sh	$12.6 \mathrm{m}$	7-4ms							(8-0) (4	5.8) (3.	9) (J	6) (34-6)	
					Oct	tahedral polymeric o Cobalt(11)	omplexes (C _i)									
Co(4-vpy) ₃ Cl ₂	RT	${}^{\mathbf{t}}T_{\mathbf{j}\theta}(P)$ 19.8m,sh, 18.9ms, 18.05m	15.9 l	${}^{\bullet}A_{2} \rho(F)$	⁴ <i>T</i> ₂ <i>g</i> (<i>F</i>) 8.0br, 6.1m	216m	170m, 164m	152wm,sh				17-0 4	9-1 2, 4- 2, 4-	40 000	3 20-9	
(mauve) Co(4-vpy) ₂ (N ₃) ₂ (pink)	LT RT	19-9m,sh, 19-0 5 m 20-2m,sh, 18-8m, 1	n,sh 16·1 8·1m,sh, 17·4	lõms, 15·1m,sh im,sh	8-8m, 6-2m 8-05m				2135m	1349m, 1297m	665m, 620wm, (17-3) (4 16-4 4 16-7) (4	9.4) (4 8.1 4 7.6) (4	() () () () () () () () () () () () () (2) (20-9	
-	LT	20·2m,sh, 19·0ms,	18·2m,sh, 17·	-45m,sh	8-15m						602wm				:	

TABLE 1

yellow) yellow) ji(4-vpy) ₂ Br ₂ yellow) ji(4-vpy) ₂ (N ₃) ₂ green) ji(4-vpy) ₂ (NCS) ₂ green) o(4-vpy) ₂ Br ₂ o(4-vpy) ₂ 1 ² reen) iue) hue)	RI R	³ L ³ ³ L ³ 24.4hn 22.45m 23.6m 23.6m 23.6m 23.6m 23.6m 16.68, 15.68, 17.44, 17.44, 17.44, 16.66,	Election (P) (q(P))	omic reflecta ${}^{17}_{20}(D)$ $'$ 19.45w 20.5w 20.5w 21.1w,sh 21.1w,sh 21.5m,sh 21.5m	ncc spectra (kx 3.7_{19} 3.7_{10} 3.7_{10} 3.7_{10} 3.7_{10} 3.7_{10} 12.45 14.2un $12.9512.4$ un $12.9415.6$ un 15.6un 15.6un 15.6un 17.1u	$\begin{array}{c} \begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & $	0ct $\frac{2T_{2g}(F)}{E_g}$ $\frac{2T_{2g}(F)}{B_{2g}}$ E_g B_{2g}	altedral polymetre co Nickl(tr) Absorption 1 23:35 v(M-py) 22:4tn, 212m,sh 201m 201m 22:4tn, 212m,sh 201m 23:5tn, 22:4tn,sh 23:6tns, 22:0tn,sh 23:6tns, 22:0tn,sh 23:0tns, 22:0tn,sh 24:8tns, 23:0tn,sh 24:8tns, 23:0tn,sh 24:8tns, 23:0tn,sh 24:8tns, 23:0tn,sh	mplexes (c, i) bands in the far-i.r. tr w(M-X) 184s, 178m, 167m 154s, 148th 154s, 148th 294ms 294ms 294ms 294ms 54ms, 313ms 267m, 244m,sh 268m, 214m,sh 334m, 313ms 258m, 214m,sh 334m, 314m 334m, 264ms	2800 (cm ⁻¹) Other modes (unassigned) 291w 288m, 280m 248ms, 166m 248ms, 166m 248ms, 166m 248m, 264ms 248m, 137wm 285x, 271m 285w, 137w 122w, 51, 115wm 17wm 142w, 142w	2070s	ussignment (a072) gr (a072) gr (a073) gr (a02) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a	s of bands by bands 6.70w,sh 6.10w,sh 6.23w, 6.10m,sh 4.70ms	$\begin{array}{c} \operatorname{Metal} \\ \operatorname{Metal} \\ 17.2 \\ 13.5 \\ 13.5 \\ 13.5 \\ 13.7 \\ 13.7 \\ 13.7 \\ 13.7 \\ 13.7 \\ 11.3 \\ 1$	Anal Four Four 48:0 339-1 339-1 (47-5 (47-5) (447-5) (447-5) (447-5) (447-5) (447-5) (449-4) (149-9) ($ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ال (ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب ب
e) 2-vpy) ₂ 1 ₂ en)	LT RT	16.75, 16.35,	sh, 15.5s , 15.2s, 14.5		8-5s, 7-3s,s 8-1s, 6-7s,	h, 6-8s, 5 5-8s,sh	-9s	242wm,sh, 235m	216m	и≇мт, //мт 284wm, 277w,sh				(13.7) (2 11.4 3 (11.3) (2	59-2) (5 22-2 2 32-2) (2	() () () () () () () () () () () () () (ê 44
ucu) (2-vpy)2(NCS) luc)	, RT	16-25 16-95 17-1s,	s,sh, 15·2s, s, 15·4s,sh 15·8s,sh	(4- 0 05	8-25, 6-85, 9-055,sh, 7 8-255,br, 7-	5-75s -55s, 6-8s 0m,sh, 5-	,sh, 5·6ðm,sh 6ms	248wm, 220w	322m, 303ms	293m,sh, 163m, 80wm,sh	2078s 2055s	847w, 833w,	477m	15.1 4 15.1 4 (15.3) (4	2) (2, 2) (2 (3, 6) (3) (3)	() () (14- () (14-	# 4 2

J.C.S. Dalton

in smaller distortion and spectra approximately as expected for O_h symmetry.⁶

The data (Table 1) show that the splitting of the bands, especially ν_1 , increases in the order NCO \approx NCS < Cl < Br < I as expected from the positions of the ligands in the spectrochemical series. X-Ray powder investigations * show that $Ni(4-vpy)_4Cl_2$ and $Co(4-vpy)_{4}Cl_{2}$ are isomorphous.

Polymeric octahedral systems. Two forms of cobalt(II) halogeno-complex containing a 2:1 ratio of pyridine to metal have been shown to exist in the solid state,7 a mauve polymeric octahedral form and a blue tetrahedral monomeric form. As in the case of $Co(py)_2Cl_2$ (py = pyridine), it is found that the two forms of $Co(4-vpy)_2Cl_2$ can be readily distinguished by their colour and electronic spectra and also by their magnetic behaviour and far-i.r. spectra. The electronic spectrum of the mauve compound resembles more closely the spectra of the 4: 1 monomeric systems than those of the blue form and the other 2:1 complexes. The 2:1 azido-complex also shows a similar spectrum, indicating an octahedral polymeric structure.

The mauve form of Co(4-vpy)₂Cl₂ is stable at room temperature. As with $Co(py)_2Cl_2$ on heating, to 98°, a rapid solid-state rearrangement⁸ to the blue complex occurred. The same transformation occurred on prolonged exposure to sunlight, but the X-ray powder pattern indicated that the change was not quantitative. The complexes, mauve Co(4-vpy)₂Cl₂ and Ni(4-vpy)₂Cl₂ have very similar X-ray powder patterns and are isomorphous, or nearly so. The powder diffractogram of the tetrahedral blue form of Co(4-vpy)₂Cl₂ is quite different.

To interpret the spectra of the 2:1 nickel(II) complexes the approximation to D_{4h} symmetry is again made and the bands assigned as for the 4:1 complexes, but since the positioning of the pyridine and halogen ligands is reversed with respect to the 4:1 complexes, the splittings of the bands are inverted.

Monomeric tetrahedral systems. These complexes were also of pyridine to metal ratio 2:1, but of symmetry C_{2v} . Tetrahedral, four-co-ordinate cobalt(II) complexes exhibit two broad and split absorption bands in the near-i.r. and visible regions: ν_3 , the ${}^4T_2(P) \leftarrow {}^4A_2$ transition, and v_2 , the ${}^4T_1(F) \leftarrow {}^4A_2$ transition.^{9,10}

The tetrahedral ¹¹a and polymeric bridged ¹¹b structures assigned to blue and to mauve Co(4-vpy)₂Cl₂ respectively have been confirmed by X-ray investigations.¹¹ The

* Data deposited with the N.L.L. as Supplementary Publication No. 20850 (4 pp.). See J.C.S. Dalton, 1972, Index Issue for details of this scheme.

⁶ A. B. P. Lever and S. M. Nelson, J. Chem. Soc. (A), 1966, 859.

⁷ J. D. Dunitz, Acta Cryst., 1957, 10, 307.
 ⁸ W. W. Wendlandt, J. Thermal Analysis, 1969, 1, 469.
 ⁹ F. A. Cotton, D. M. L. Goodgame, M. Goodgame, and A. Sacco, J. Amer. Chem. Soc., 1961, 83, 4690.

¹⁰ J. Ferguson, J. Chem. Phys., 1960, **32**, 528.

¹¹ (a) J. Admiraal and G. Gafner, Chem. Comm., 1968, 1221; (b) M. Laing and E. Horsfield, ibid., 1969, 902.

¹² M. D. Glonek, C. Curran, and J. V. Quagliano, J. Amer. Chem. Soc., 1962, 84, 2014.

metal-ligand bond lengths are very similar to those in Co(py)₂Cl₂.

All the complexes of 2-vinylpyridine prepared with cobalt(II) were tetrahedral. The X-ray powder pattern of Co(2-vpy)₂Cl₂ was very similar to that of Zn(2-vpy)₂Cl₂ which is also expected to be tetrahedral. Bivalent cobalt readily takes up a tetrahedral stereochemistry. Tetrahedral nickel(II) halide pyridine complexes are less common¹² than the octahedral forms and attempts to prepare such complexes with 2-vinylpyridine resulted in failure, anhydrous nickel halides being obtained in every case. 2-Substituents favour the formation of tetrahedral nickel(II) complexes, e.g. Ni(2-Mepy)₂Cl₂ but with 2-vinvlpyridine and nickel(II) the steric effect is perhaps too large to permit complex formation except in solution. Construction of molecular models indicates that the steric effect of 2-vinylpyridine is greater than that caused by 2-methylpyridine in this type of system.

Far-i.r. Spectra.—The metal-substituted pyridine vibrations have been assigned on the assumption that for a series of complexes of equivalent stereochemistry, the vibrations will occur at approximately the same frequencies 13,14 if significant coupling with other vibrational modes is absent. Some coupling between vibrations of the same symmetry would be expected to occur and this would cause some variation in the band positions. It has been shown, for example, by normal co-ordinate analysis, that in $Si(py)_{2}Cl_{4}$ the purity of the metal-nitrogen mode is in the region of 40-67%.15 However, since the vibrations are primary stretchings the variations would be expected to be small.

Since several sets of compounds of the same stereochemistry were available in which the halogen varied from Cl to Br to I it was possible to assign the metalhalogen stretching vibrations (Table 1) with reasonable certainty. For the tetrahedral complexes the ratios: $\nu(M-Br)/\nu(M-Cl)$ and $\nu(M-I)/\nu(M-Cl)$, from these assignments, were about 0.75 and 0.65 as usual,¹⁴ but the values of terminal v(M-Br) were sometimes slightly below the lower limit of the quoted ¹⁴ range (300-200 cm⁻¹). As in the pyridine complexes, the ν (M-Halogen) frequencies diminished as the co-ordination number increased, but the frequencies of the octahedral monomers and polymers were similar.

In the 4:1 monomeric octahedral species only one i.r.-active stretching vibration would be expected, but in the polymeric octahedral, and tetrahedral species two bands are expected (Table 1). This was found to be the case in the tetrahedral (2:1) complexes studied, but

¹³ D. M. Adams, 'Metal-Ligand and Related Vibrations,' Arnold, London, 1967, pp. 207, 285. ¹⁴ (a) R. J. H. Clark and C. S. Williams, *Inorg. Chem.*, 1965,

^{4, 350;} R. H. Nuttall, *Talanta*, 1968, **15**, 157; R. J. Collin, F. W. Parrett, and D. J. Phillips, unpublished results; M. Goldstein and W. D. Unsworth, *Inorg. Chim. Acta*, 1970, **4**, 342; (b) M. Goldstein and W. D. Unsworth, *Spectrochim. Acta*, 1972, **28A**, 1297; (c) K. Nakamoto, 'Infrared Spectra of Inorganic and Co-ordination Compounds,' 2nd edn., Wiley, New York, 1970.

¹⁵ I. R. Beattie, T. R. Gilson, and G. A. Ozin, J. Chem. Soc. (A), 1968, 2772.

only partially true in the spectra of polymeric (2:1)and monomeric (4:1) complexes. Metal-pseudohalogen vibrations, although not as well characterised as the metal-halogen vibrations, were found in the 250-300 cm⁻¹ region.¹⁶

LUBL	Æ	2

Magnetic	data	a, l
----------	------	------

	Co(4-vpy)	$_{2}(N_{3})_{2}$			Ni(4-	$vpy)_2(N_3)_2$	
T/K	χа		μe	T_{i}	K	XA	μ
296	9 6	20	4.77	29)6 3	3 840	3.01
263	10 5	30	4.71	26	53 ·	4 177	$2 \cdot 96$
230	11.6	90	4.63	23	80 ·	4 559	$2 \cdot 90$
199	13 0	20	4.53	19	9	$5\ 037$	2.83
167	14 6	20	4.41	16	57 5	$5\ 641$	2.74
136	16.3	40	$4 \cdot 21$	13	6 ($5\ 286$	2.59
104	17.99	90	3.85	10)4 '	7 160	$2 \cdot 45$
90	18 5	40	3.63	(90 '	7839	$2 \cdot 36$
6	$\theta = 86^{\circ}$, χ	$\mathbf{L} = \mathbf{l}$	48		$\theta = 1$	$10^{\circ}, \chi_{\rm L} = 1$	148
	Co(4-vp	y)2Cl					
	(mau	ıve)	Ni	(4 -vp	$_{2}Cl_{2}$	Ni(4-v)	py)2Br2
T/K	XA	μ		XΑ	μ_{e}	XA	μ
295	11 700	5.26	4	895	$3 \cdot 40$	4 720	3.34
262	$13\ 180$	5.24	5	543	$3 \cdot 42$	$5\ 280$	3.33
230	$15\ 050$	5.26	6	370	3.43	6 077	3.34
199	$17\ 370$	5.25	7	532	$3 \cdot 42$	7 091	3.32
166	$20 \ 480$	5.21	9	187	3.49	8 549	3.37
136	24 600	5.16	11	696	3.57	10 802	3.41
104	31 160	5.08	15	975	3.64	14 330	3.44
90	35 370	5.03	19	111	3.71	$16\ 802$	3.48
	θ ===	14°,	θ		17°,	$\theta = 0$	—11°,
	$\chi_{\rm L} =$	166	ג	L = 1	66	$\chi_{L} =$	- 195
Co(4-	vpy)4(NC	O)2	Ni(4-vpy	7)4(NC	CO) ₂	Ni(4-vpy)	4Cl2
T/K	XA	μ_e	χA	μ	T/K	XA	μ_e
295	$10 \ 350$	4.94	$4\ 211$	3.14	5 306	$4\ 082$	3.17
263	11 550	$4 \cdot 92$			287	4 356	3.18
198	$15\ 070$	4.88	$6\ 486$	3.20) 271	4586	3.17
167	17 750	4.86			229	5 407	3.16
103	$26\ 870$	4.70			189	6504	3.12
95	$28 \ 750$	4.67			150	$8\ 225$	3.12
					121	$10\ 180$	3.14
					101	$12\ 130$	3.14
		133	2 K 9295	$3 \cdot 1'$	7		
	$\theta = 18$	3°,	θ ==	0°,		$\theta =$	3°,
	$\chi_{L} = 2$	93	$\chi_{\rm L} =$	293		$\chi_{ m L} =$	332

Room-temperature results (compounds above excluded)

$Co(4-vpy)_{1}Br_{2}$ $Co(4-vpy)_{2}I_{2}$ $Co(2-vpy)_{2}Br_{2}$	με 5·10 4·49 4·62	χι 320 227 195		$\begin{array}{l} Ni(4\text{-}vpy)_4Br_2 \\ Ni(4\text{-}vpy)_4I_2 \\ Ni(4\text{-}vpy)_4(NCS)_2 \\ Ni(4\text{-}vpy)_2Br_2 \\ Ni(4\text{-}vpy)_2(NCS)_2 \end{array}$	$\mu_{e} \\ 3.22 \\ 3.21 \\ 3.18 \\ 3.33 \\ 3.07 \\$	χ_L 320 352 313 195 188
--	----------------------------	-------------------------	--	--	--	---

^{*a*} Curie-Weiss law taken as $\chi_A \propto 1/(T + \theta)$. ^{*b*} χ_A in c.g.s.u. $\times 10^6$; μ_e in B.M.; χ_L = diamagnetic correction $\times 10^6$.

Difficulty was experienced with the assignments of the spectra of monomeric octahedral complexes because of the unexpected multiplicity of bands. Examples can be seen in the Figure which shows the spectra obtained for the compounds $Ni(4-vpy)_4X_2$ (X = Cl, Br, or I). The spectra are similar in the 200 cm⁻¹ region; hence the bands here are assigned to metal-pyridine vibrations. The main halogen-dependent vibrations seem to be at 184 and 176 cm⁻¹ (chloride), 132 and 113 (bromide), and

¹⁶ R. J. H. Clark and C. S. Williams, Spectrochim. Acta, 1966, 22, 1081. ¹⁷ P. C. H. Mitchell and R. J. P. Williams, J. Chem. Soc.,

1960, 1912.

110 and 86 cm⁻¹ (iodide). The higher frequency band in each case is assigned to the metal-halogen stretching vibration. This agrees with recent work 14b on Ni(py)₄X₂ (py = pyridine), except that v(Ni-Cl) was placed at 207 cm⁻¹ where in our spectra intense halogen-insensitive bands occur.

Ligand and Internal Pseudohalogen Vibrations.—The i.r. spectra of the co-ordinated organic ligands show only relatively small differences from the spectra of the free ligands.

Three pseudohalogen frequencies can be of use in determining the bonding mode of the group; these are the symmetric and asymmetric vibrations, v_s and v_{as} , and the deformation, δ . These are respectively found

in the regions 1 400-600, 2 200-2 000, and 800-600 cm⁻¹ (Table 1). The increase in frequency of v_{as} in going from $Ni(4-vpy)_4(NCS)_2$ to $Ni(4-vpy)_2(NCS)_2$ is as commonly found for terminal and bridged NCS.¹⁷ The medium intensity of the v_s vibration in all the azidocomplexes indicates that it forms a single-atom bridge 18 since for a linearly bridged complex the vibration should be i.r. inactive as in the azide ion. In this limited series of compounds i.r. evidence alone does not lead to an unambiguous assignment of the donor atoms of the pseudohalides.

Magnetochemical Results .--- The magnetic moments of the cobalt(II) compounds of the stoicheiometry Co(4 $vpy)_4X_2$ are of the magnitude expected ¹⁹ for high-spin, six-co-ordinate cobalt(II) compounds, and Co(4-vpy)₄-(NCO)₂ obeyed the Curie-Weiss law with a moderate θ value, showing the usual temperature variation of magnetic moment arising from varying orbital contribution in this type of compound. The mauve form of Co(4-vpy)₂Cl₂ also behaved magnetically as an octa-

¹⁸ J. Nelson and S. M. Nelson, J. Chem. Soc. (A), 1969, 1597. ¹⁹ B. N. Figgis and J. Lewis, Progr. Inorg. Chem., 1964, 6, 37.

1974

hedral complex in agreement with the polymeric structure assigned from spectral data. The azidocomplex Co(4-vpy)₂(N₃)₂ obeyed the Curie-Weiss law with a large θ value of 86° and a magnetic moment of 4.77 B.M. at room temperature which is reduced even below the spin-only value (3.87 B.M.) at 90 K. The reduction would indicate that unlike in polymeric octahedral Co(4-vpy)₂Cl₂ considerable antiferromagnetic interactions are present in addition to the normal orbital contribution. The magnetic moments of Co(2-vpy)₂Br₂ and $Co(2-vpy)_2I_2$ are as expected ¹⁹ for tetrahedral complexes (4·4-4·8 B.M.).

The magnetic moments of the nickel(II) complexes at room temperature are compatible 19 with octahedral structures, tetrahedral structures being excluded by the reflectance spectra. The halide-bridged compounds Ni(4-vpy)₂Cl₂ and Ni(4-vpy)₂Br₂ show weak ferromagnetic interactions as has been found 20 in some similar compounds. The failure of the reflectance and far-i.r. spectra to alter significantly on cooling showed that the magnetic results were not affected by stereochemical changes. The corresponding azido-nickel(II) compounds have low, temperature-dependent magnetic moments arising from antiferromagnetic interactions, and this would suggest that, as in related manganese(II) complexes,¹⁸ the azido-groups form bridges through a single nitrogen atom.

EXPERIMENTAL

Most complexes were prepared by the addition of the stoicheiometric amount of ligand in alcoholic solution to an aqueous alcoholic or aqueous solution of the metal halide or pseudohalide. Ethanol was used in the preparation of the nickel complexes and propan-2-ol in the preparation of the

20 D. M. L. Goodgame, M. Goodgame, and M. J. Weeks, J. Chem. Soc., 1964, 5194. ²¹ A. V. Butcher, Ph.D. Thesis, University of Surrey, 1968.

cobalt(II) complexes since the latter were very soluble in ethanol. Except in the cases of cobalt iodide and thiocyanate, metal iodides and pseudohalides were not used directly but were prepared by metathesis of the transitionmetal nitrate with the appropriate alkali-metal salt in ethanolic or aqueous ethanolic solution.

Several attempts were made to prepare the 2-vinylpyridine complexes of nickel halides. Ethanolic solutions of the pyridine and the metal salt were vacuum distilled, and benzene added to replace the ethanol removed. This method, proved successful with related systems,²¹ gave only anhydrous nickel halides. A blue oil was obtained by the addition of ether to a solution of the reactants in dimethylformamide, but this rapidly decomposed to the anhydrous chloride in the atmosphere.

Pyridine complexes of nickel iodide are often planar, but attempts to prepare similar complexes of 4-vinylpyridine failed. When 2:1 ratios of amine and iodide were mixed in ethanol only the 4:1 complex separated. Complete removal of the ethanol and treatment with benzene left an intractable mixture. Similarly only $Co(4-vpy)_4(NCS)_2$ could be obtained.

All materials were of reagent grade or purer. Ligands were purified as before.¹ Analyses were carried out by standard procedures.22

Electronic spectra (40 000-5 000 cm⁻¹) were recorded at room and liquid nitrogen temperatures by the diffuse reflectance technique on a Unicam SP 700 C spectrophotometer. Far-i.r. spectra (400-30 cm⁻¹) of the solid complexes as Nujol mulls between Polythene plates were determined at room and liquid-nitrogen temperatures on an R.I.I.C. FS 720 Fourier spectrometer. Magnetic moments from room to liquid-nitrogen temperature were measured by the Gouy method using a Newport Instruments Gouy balance. The susceptibilities of all the compounds investigated were independent of field strength.

[3/313 Received, 12th February, 1973]

²² A. I. Vogel, 'A Textbook of Quantitative Inorganic Analysis,' 3rd edn., Longmans, London, 1961.