Crystal and Molecular Structure of Tetraphenylcyclotetraphosphine Monosulphide

By Harry P. Calhoun and James Trotter,* Department of Chemistry, The University of British Columbia, Vancouver 8, British Columbia, Canada

Crystals of $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{P}\right]_{4} \mathrm{~S}$ are orthorhombic, $a=24 \cdot 700(6), b=13 \cdot 508(3), c=13 \cdot 410$ (2) $\AA, Z=8$, space group Pbca. The structure was solved from diffractometer data by direct methods, and refined by full-matrix least-squares methods to $R 0.083$ for 1475 observed reflexions. The phosphorus and sulphur atoms form a five-membered ring which has a puckered conformation, with the sulphur atom nearly in the mean plane through the ring atoms and the phosphorus atoms alternately above and below it. Mean bond lengths are: P-P 2•190(5), P-S 2•116(5), $\mathrm{P}-\mathrm{C} 1.831$ (22), and C-C $1.382(16) \AA$. The angle at sulphur is $110.4(2)^{\circ}$ and the endocyclic angles at phosphorus range from $104 \cdot 2(2)-105 \cdot 9(2)^{\circ}$, mean $105 \cdot 2^{\circ}$. The phenyl rings are nearly perpendicular to the mean plane through the five-membered $P_{4} S$ ring. Pairs of phenyl rings on the same side of the $P_{4} S$ ring are close to being parallel to each other and perpendicular to the pair on the other side.

THE structure of tetraphenylcyclotetraphosphine monosulphide has previously been postulated ${ }^{\mathbf{1}}$ as either a four- (Ia) or five-membered (Ib) ring. The compound can be prepared by a variety of methods ${ }^{2}$ and appears

(Ia)

(Ib)
to be quite stable, as indicated by the difficulty of removing the sulphur with tributylphosphine. ${ }^{2}$ The preparative reactions are structurally uninformative, however, and a crystal structure analysis was thus undertaken.

EXPERIMENTAL

Crystals are yellow needles elongated along b. A crystal of dimensions ca. $0.20 \times 0.40 \times 0.15 \mathrm{~mm}$ was placed in a sealed glass capillary.
${ }^{1}$ L. Maier, in ' Organic Phosphorus Compounds,' eds. G. M. Kosolapoff and L. Maier, Wiley-Interscience, New York, 1972, vol. 1, p. 12 .

Crystal Data. $-\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{P}_{4} \mathrm{~S}, \quad M=464 \cdot 38$, Orthorhombic, $a=24 \cdot 700(6), b=13 \cdot 508(3), c=13 \cdot 410(2) \AA, U=4474$ $\AA^{3}, \quad D_{\mathrm{c}}=1.379 \mathrm{~g} \mathrm{~cm}^{-3}, Z=8, \quad F(000)=1920 . \quad$ Space group Pbca (No. 61) from absent reflexions: $0 k l, k \neq 2 n$, $h 0 l, l \neq 2 n, h k 0, h \neq 2 n$. Mo- K_{α} radiation, $\lambda=0.71069 \AA$; $\mu\left(\right.$ Mo- $\left.K_{\alpha}\right)=4.37 \mathrm{~cm}^{-1}$.

Unit-cell parameters were obtained by least-squares refinement of $\sin ^{2} \theta$ values for 28 reflexions measured on a General Electric XRD 6 diffractometer. Intensity data were collected on a Datex-automated General Electric XRD 6 diffractometer with a scintillation counter, $\mathrm{Mo}-K_{x}$ radiation (zirconium filter and pulse-height analyser) and a $\theta-2 \theta$ scan. The scanwidth in 2θ was $(1.80+0.86 \tan \theta)^{\circ}$ with 20 s background counts taken on either side of every scan. All reflexions with $2 \theta\left(\mathrm{Mo}-K_{\alpha}\right) \leq 45^{\circ}$ were measured. A check reflexion was monitored every 30 reflexions throughout data collection and its intensity had decreased by $c a .18 \%$ of its starting value at the end. The intensity of this reflexion was used to put the data on the same relative scale. Lorentz and polarization corrections were applied and structure amplitudes derived. Correction for absorption was considered unnecessary because of the
${ }^{2}$ H. P. Calhoun, M. R. LeGeyt, N. L. Paddock, and J. Trotter, J.C.S. Chem. Comm., 1973, 623.
small value of μ. Of 2934 reflexions measured, 1475 (50.3%) were considered observed, having intensities $>2 \sigma(I)$ above background, where $\sigma^{2}(I)=S+B+$ $(0.03 S)^{2}$, with $S=$ scan count and $B=$ background count.

Structure Analysis.-The structure was solved by direct methods. Sixteen sets of signs for 300 reflexions with $|E| \geq 1.84$ were determined by a computer program which uses Sayre relationships in an iterative procedure. ${ }^{3}$ The starting set of reflexions is given in Table 1. One

Table 1
Starting set of reflexions
$\left.\begin{array}{rrrc}\hbar & k & l & E \\ 1 & 10 & 8 & 5 \cdot 79 \\ 16 & 5 & 3 & 3 \cdot 49 \\ 15 & 7 & 4 & 3 \cdot 13\end{array}\right\}$ Origin-determining
set of signs converged in 7 cycles and had the highest consistency index ${ }^{3}(0.93)$ with 152 positive signs and 148 negative signs. An E map was computed by use of the 300 signed values of E from this set, and the five-membered $\mathrm{P}_{4} \mathrm{~S}$ ring was located from the map. Carbon atoms were then located from three-dimensional difference maps. The structure was refined by full-matrix least-squares methods, initially with isotropic temperature factors and finally with anisotropic temperature factors for all nonhydrogen atoms. The hydrogen atoms could not all be located from a difference map, but were included in calculated positions with isotropic temperature factors ($B \quad 10.0 \AA^{2}$); the parameters for these atoms were not refined. Convergence was reached at $R 0.083$ for 1475 observed reflexions. On the last cycle of refinement no parameter shift was $>0 \cdot 3 \sigma$.
Least-squares refinement was based on the minimization of $\sum w_{(}\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$. Anisotropic thermal parameters are $U_{i j}$ in the expression $f=f_{0} \exp \left[-2 \pi^{2}\left(U_{11} a^{* 2} h^{2}+\right.\right.$ $U_{29} b^{* 2} k^{2}+U_{33} c^{* 2 l^{2}}+2 U_{12} a^{*} b^{*} h k+2 U_{13} a^{*} c^{*} h l+2 U_{23}-$
$\left.\left.b^{*} c^{*} k l\right)\right]$. Scattering factors, f_{0}, were obtained from ref. 4 for all non-hydrogen atoms, and for the hydrogen atoms from ref. 5. Approximately constant average values of $w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ over ranges of $\left|F_{\mathrm{o}}\right|$ were obtained by use of a standard errors weighting scheme of the form $w=$ $1 / \sigma^{2}\left(F_{0}\right)$. Unobserved reflexions were not included in the least-squares refinement.

Final positional and thermal parameters are given in Table 2. Measured and calculated structure factors are listed in Supplementary Publication No. SUP 20890 (15 pp., l microfiche).*

discussion

Bond lengths and angles with estimated standard deviations are given in Table 3, and a general view of the molecule in Figure 1. Equations of mean planes through the molecule are given in Table 4, and dihedral angles in the five-membered $\mathrm{P}_{4} \mathrm{~S}$ ring in Table 5.

[^0]The phosphorus and sulphur atoms form a fivemembered ring, as in (Ib). The $\mathrm{P}_{4} \mathrm{~S}$ ring assumes a

Table 2
Final positional parameters (fractional $\times 10^{4}$) and thermal parameters (anisotropic $U_{i j}, \AA^{2} \times 10^{4}$ for P and S ; $\times 10^{3}$ for C), with standard deviations in parentheses

Atom$\mathrm{P}(1)$		x				
		2290(1)		959(3)	$\stackrel{z}{2117(2)}$	
	(2)	2462(1)		30(2)		
	(3)	$2352(1)$		1025(2)	-4	8(2)
	(4)	$2563(1)$		2499 (3)		2(2)
S		2457(1)		2428(3)		7(2)
	C(1)	1539(5)		883(10)		2(9)
	C(2)	1209(6)		1695(10)		5(10)
	(3)	$662(7)$		1568(12)		3(10)
	C(4)	431 (6)		666(16)		5(12)
	C(5)	763(8)		-146(13)		8(13)
	C(6)	1323(7)		-39(11)		4(11)
	C(7)	3188(5)		-107(8)		9 (10)
	C(8)	3480(5)		-191(10)		4(10)
	$\mathrm{C}(9)$	$4034(6)$		-377(9)		$2(11)$
	C(10)	4296(5)		-481(10)		6(15)
	C(11)	4013(7)		-397(13)		0(13)
	C(12)	3466(6)		-226(11)		3 (10)
	C(13)	1612(4)		1078(9)	-4	3(8)
	C(14)	1341(5)		1969(9)	--6	7(9)
	C(15)	777(6)		1973(10)	-7	8(11)
	C(16)	482(5)		1106(11)	-6	9(10)
	C(17)	758(5)		231 (10)		6(9)
	C(18)	1309(5)		217(8)	-4	7(9)
	C(19)	$3299(4)$		$2408(9)$		6(9)
	C(20)	3487(6)		2552(10)	-10	7(9)
	C(21)	4039(6)		2516(12)	-12	6(11)
	C(22)	4399(5)		2376(11)		(14)
	C(23)	4214(6)		2263(11)		7(12)
	(24)	3669(5)		2282(9)		2(9)
Atom	U_{11}	U_{32}	U_{33}	U_{12}	U_{13}	U_{23}
$\mathrm{P}(1)$	661(25)	597(25)	509(22)	-27(19)	-63(18)	-18(20)
$\mathrm{P}(2)$	$561(18)$	428(18)	526(17)	19(17)	- $112(22)$	-22(19)
$\mathrm{P}(3)$	$532(21)$	425 (21)	540(20)	-4(17)	-59(17)	44(18)
$\mathrm{P}(4)$	580(21)	421(19)	647(21)) 56(21)	-106 (18)	37(18)
S	735(21)	531 (21)	744(20)	-62(26)	$12(22)$	$-185(18)$
C(1)	60 (9)	62(10)	45(8)	$-10(8)$	$3(7)$	$-11(8)$
C(2)	68(11)	71 (10)	$68(10)$	6(9)	(8)	$-3(8)$
C(3)	60(11)	103 (14)	73(11)	-(9)	-4(9)	-14(10)
C(4)	73(12)	136(18)	74(12)	-26(12)	-8(9)	-9(12)
C(5)	109(17)	86(13)	99(14)	-38(11)	17(12)	7(12)
C(6)	92(13)	72(11)	91(12)	-12(10)	7(10)	19(10)
C(7)	70 (8)	39(7)	47(7)	$-4(6)$	4(8)	$-1(8)$
C(8)	$39(8)$	70(10)	$81(11)$	7(7)	$-7(7)$	-4(9)
C(9)	77(11)	55(9)	74(11)	$10(8)$	5(9)	$5(8)$
$\mathrm{C}(10)$	63(10)	73(10)	113(14)	18(7)	-28(12)	7(12)
C(11)	71(13)	133(16)	91 (14)	3(11)	-26(11)	17(11)
C(12)	70(11)	88(12)	58(10)	9(9)	-9(8)	6(9)
C(13)	51 (7)	44(8)	40(7)	$-16(7)$	-12(6)	5(7)
C(14)	54(8)	$54(8)$	$52(9)$	6(7)	-10(7)	2(7)
C(15)	79(11)	67(10)	69(10)	4(8)	-18(9)	$1(9)$
C(16)	$54(8)$	81 (11)	$63(9)$	-15(8)	(8)	-4(9)
$\mathrm{C}(17)$	55(9)	$68(11)$	69(11)	$-16(8)$	$-8(7)$	$-2(8)$
$\mathrm{C}(18)$	$49(9)$	43 (9)	73(10)	7(7)	-16 (7)	5(7)
$\mathrm{C}(19)$	67(9)	$42(8)$	62(9)	$-10(8)$	$-5(7)$	-7(8)
$\mathrm{C}(20)$	84(11)	74(11)	56(10)	-18(9)	-13(8)	$13(9)$
C(21)	70(11)	122(15)	80(11)	-4(13)	17(9)	-20(11)
C(22)	63(10)	74(11)	118(14)	-20(9)	18(10)	-24(11)
$\mathrm{C}(23)$	59(10)	90(12)	87(12)	-12(8)	$-7(9)$	-6(9)
C(24)	53(8)	72(10)	70(10)	-17(7)	$-6(8)$	$2(9)$

puckered conformation with S nearly in the mean plane through the ring atoms; deviations of atoms

[^1]from the mean plane are in Table $4(b)$. The conformation of the ring appears to be closer to the half-chair ${ }^{6}$ than to the envelope conformation. ${ }^{6}$ In the related compound $\left[\mathrm{PhP}_{5}{ }^{7}\right.$ the five-membered P_{5} ring is in the

Table 3

Bond lengths (\AA) and angles (deg.), with standard deviations in parentheses (σ for the mean values is the larger of the least-squares value and the root-meansquare deviation from the mean)

(a) Distances			
$\mathrm{P}(1)$-S	2.114(5)	$\mathrm{C}(6)-\mathrm{C}(1)$	$1 \cdot 380$ (16)
$\mathrm{P}^{(4)-\mathrm{S}}$ Nean P-S	2.118(4)	$\mathrm{C}(7)-\mathrm{C}(8)$	1-403(15)
	2-116(5)	$\mathrm{C}(8)-\mathrm{C}(9)$	1-392(16)
		$\mathrm{C}(9)-\mathrm{C}(10)$	1-363(18)
$\mathrm{P}(1)-\mathrm{P}(2)$	2-188(5)	$\mathrm{C}(10)-\mathrm{C}(11)$	1-392(19)
$\mathrm{P}(2)-\mathrm{P}(3)$	$2 \cdot 193$ (4)	$\mathrm{C}(11)-\mathrm{C}(12)$	1-373(17)
$\mathrm{P}(3)-\mathrm{P}(4)$	$2 \cdot 190$ (5)	$\mathrm{C}(12)-\mathrm{C}(7)$	$1 \cdot 370$ (15)
Mean P-P	2-190(5)	$\mathrm{C}(13)-\mathrm{C}(14)$	1.400 (14)
		$\mathrm{C}(14)-\mathrm{C}(15)$	$1 \cdot 400$ (15)
$\mathrm{P}(1)-\mathrm{C}(1)$	$1.857(12)$	$\mathrm{C}(15)-\mathrm{C}(16)$	1-384(16)
$\mathrm{P}(2)-\mathrm{C}(7)$	1.803(11)	$\mathrm{C}(16)-\mathrm{C}(17)$	1.381(15)
$\mathrm{P}(3)-\mathrm{C}(13)$	1.829(11)	$\mathrm{C}(17)-\mathrm{C}(18)$	1-371(14)
$\mathrm{P}(4)-\mathrm{C}(19)$	1.836(11)	$\mathrm{C}(18)-\mathrm{C}(13)$	1-389(14)
Mean P-C	1.831 (22)	$\mathrm{C}(19)-\mathrm{C}(20)$	$1 \cdot 397(15)$
		$\mathrm{C}(20)-\mathrm{C}(21)$	1-389(16)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.373(15)	$\mathrm{C}(21)-\mathrm{C}(22)$	1-372(18)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1 \cdot 366$ (18)	$\mathrm{C}(22)-\mathrm{C}(23)$	1.372(17)
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.363(19)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.376(15)$
$\mathrm{C}(4)-\mathrm{C}(5)$	1.380 (19)	$\mathrm{C}(24)-\mathrm{C}(19)$	1.387(14)
$\mathrm{C}(5)-\mathrm{C}(6)$	$1 \cdot 390$ (18)	Mean C-C	1.382(16)
(b) Angles			
$\mathrm{P}(1)-\mathrm{S}-\mathrm{P}(4)$	110.4(2)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	120.7(12)
		$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	118.8(13)
$\mathrm{S}-\mathrm{P}(1)-\mathrm{P}(2)$	105.9(2)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$122 \cdot 4(15)$
$\mathrm{P}(1)-\mathrm{P}(2)-\mathrm{P}(3)$	$104 \cdot 2(2)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	118.6(16)
$\mathrm{P}(2)-\mathrm{P}(3)-\mathrm{P}(4)$	105•1(2)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	120.4(16)
$\mathrm{P}(3)-\mathrm{P}(4)-\mathrm{S}$	105.6(2)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	119•1(14)
Mean endocyclic P	$105 \cdot 2$	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(12)$	$117.5(11)$
		$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	119.7(12)
$\mathrm{S}-\mathrm{P}(\mathbf{1}) \mathrm{C}(1)$	103.7(5)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	120.9(14)
$\mathrm{P}(2)-\mathrm{P}(1)-\mathrm{C}(1)$	97.9(4)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	120-4(13)
$\mathrm{P}(1)-\mathrm{P}(2)-\mathrm{C}(7)$	$103 \cdot 2(4)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$117.9(14)$
$\mathrm{P}(3)-\mathrm{P}(2)-\mathrm{C}(7)$	$102 \cdot 1$ (4)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$	123.6(13)
$\mathrm{P}(2)-\mathrm{P}(3)-\mathrm{C}(13)$	99.6(4)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)$	$118.4(10)$
$\mathrm{P}(4)-\mathrm{P}(3)-\mathrm{C}(13)$	$102 \cdot 2(4)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$119 \cdot 8(11)$
$\mathrm{P}(3)-\mathrm{P}(4)-\mathrm{C}(19)$	97.8(4)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	120.7(12)
$\mathrm{S}-\mathrm{P}(4)-\mathrm{C}(19)$	103.5(4)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$118.7(11)$
		$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$121 \cdot 2(11)$
$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	123.5(11)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	$121 \cdot 0(11)$
$\mathrm{P}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	$115 \cdot 5(12)$	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(24)$	119•4(11)
$\mathrm{P}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	$119.6(10)$	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	120.0(11)
$\mathrm{P}(2)-\mathrm{C}(7)-\mathrm{C}(12)$	122.5(11)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$119 \cdot 9(13)$
$\mathrm{P}(3)-\mathrm{C}(13)-\mathrm{C}(14)$	121.1(9)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	119.9(12)
$\mathrm{P}(3)-\mathrm{C}(13)-\mathrm{C}(18)$	120.3(9)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$121 \cdot 4(13)$
$\mathrm{P}(4)-\mathrm{C}(19)-\mathrm{C}(24)$	125-1(10)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(19)$	$119 \cdot 4(12)$
$\mathrm{P}(4)-\mathrm{C}(19)-\mathrm{C}(20)$	115.3(10)	Mean $\mathrm{C}-\mathrm{C}-\mathrm{C}$	$120 \cdot 0(14)$

Table 4
Mean planes through the molecule
(a) Equations of planes in the form $l X+m Y+n Z=p$, where X, Y, Z are orthogonal co-ordinates (\AA) with respect to a, b, c

Plane	Atoms	l	m	n	p
$(1):$	$\mathrm{P}(1)-(4), \mathrm{S}$	-0.9947	0.0860	-0.0557	$-5 \cdot 8616$
$(2):$	$\mathrm{C}(1)-(6)$	-0.0343	-0.1668	-0.9854	-3.0782
$(3):$	$\mathrm{C}(7)-(12)$	-0.1796	-0.9836	-0.0193	-1.2903
$(4):$	$\mathrm{C}(13)-(18)$	0.0949	-0.1489	-0.9843	0.8105
$(5):$	$\mathrm{C}(19)-(24)$	-0.0467	-0.9888	-0.1416	-3.5997

(b) Distances (\AA) of atoms from the mean planes (σ in parentheses; d / σ in square brackets)
Plane (1): $\mathrm{P}(1) 0.189(3) \quad[59.0], \mathrm{P}(2)-0.244(3)$ [82.5], $\mathrm{P}(3)$ $0.237(3)[79.8], \mathrm{P}(4)-0.152(3)[51 \cdot 2], \mathrm{S}-0.016(4)[4 \cdot 7]$
Plane (2): $\mathrm{C}(1) 0.010(12)[0.8], \mathrm{C}(2)-0.003(13) \quad[0.3], \mathrm{C}(3)$ $-0.005(14)[0.3], \mathrm{C}(4) 0.004(16) \quad[0.3], \mathrm{C}(5) \quad 0.010(17) \quad[0.6]$, $C(6)-0.017(15)[1.1]$
Plane (3): $\mathrm{C}(7)-0.004(10) \quad[0.4], \mathrm{C}(8) \quad 0.001(13) \quad[0.1], \mathrm{C}(9)$ $0.002(12)[0.1], \mathrm{C}(10) 0.000(13)[0.0], \mathrm{C}(11)-0.008(17)[0.5]$, $\mathrm{C}(12) 0.008(14)[0.6]$
Plane (4): $\mathrm{C}(13) \quad 0.002(10) \quad[0.2], \mathrm{C}(14) 0.002(12) \quad[0.2], \mathrm{C}(15)$ $0.002(14)[0.1], \mathrm{C}(16)-0.011(13)[0.8], \mathrm{C}(17) 0.016(13)[1.2]$, $\mathrm{C}(18)-0.010(12)[0.8]$
Plane (5): $\mathrm{C}(19) 0.014(12)[1 \cdot 2], \mathrm{C}(20)-0.016(13)[1 \cdot 2], \mathrm{C}(21)$ $0.007(16)[0.4], \mathrm{C}(22) 0.007(15)[0.4], \mathrm{C}(23)-0.004(14)[0.2]$, $\mathrm{C}(24)-0.007(12)[0.6]$
(c) Angles (deg.) between the planes

$(1)-(2)$	$85 \cdot 72$	$(2)-(4)$	$7 \cdot 48$
$(1)-(3)$	$84 \cdot 54$	$(2)-(5)$	$72 \cdot 18$
$(1)-(4)$	$93 \cdot 01$	$(3)-(4)$	$81 \cdot 47$
$(1)-(5)$	$91 \cdot 76$	$(3)-(5)$	$10 \cdot 37$
$(2)-(3)$	$79 \cdot 10$	$(4)-(5)$	$73 \cdot 61$

Table 5
Dihedral angles (deg.) in the $\mathrm{P}_{4} \mathrm{~S}$ ring

$\mathrm{P}(1)-\mathrm{P}(2)-\mathrm{P}(3)-\mathrm{P}(4)$	-29.9	$\mathrm{P}(4)-\mathrm{S}-\mathrm{P}(1)-\mathrm{P}(2)$	$-11 \cdot 7$
$\mathrm{P}(2)-\mathrm{P}(3)-\mathrm{P}(4)-\mathrm{S}$	$23 \cdot 0$	$\mathrm{~S}-\mathrm{P}(1)-\mathrm{P}(2)-\mathrm{P}(3)$	$25 \cdot 6$
$\mathrm{P}(3)-\mathrm{P}(4)-\mathrm{S}-\mathrm{P}(1)$	$-7 \cdot 1$		

Figure 1 General view of the molecule
the five-membered ring (for $[\mathrm{PhP}]_{5}$ these angles are: $-60 \cdot 6,36 \cdot 5,-2 \cdot 2,-33 \cdot 3$, and $58 \cdot 1^{\circ}$).
The phenyl rings are all nearly perpendicular to the mean plane through the five-membered $\mathrm{P}_{4} \mathrm{~S}$ ring (Table 4). The angles between planes also show that pairs of phenyl rings on the same side of the $\mathrm{P}_{4} \mathrm{~S}$ ring are close to being mutually parallel, being roughly perpendicular to the other pair. This orientation (of the phenyl rings) is not possible in $[\mathrm{PhP}]_{5}$ because of the additional phenyl ring. The phenyl rings are
${ }^{6}$ C. Romers, C. Altona, H. R. Buys, and E. Havinga, in 'Topics in Stereochemistry,' eds. E. L. Eliel and N. L. Allinger, Wiley-Interscience, New York, 1969, vol. 4, p. 39.
${ }^{7}$ J. J. Daly, J. Chem. Soc., 1964, 6147.

[^2]envelope conformation, with four phosphorus atoms nearly in a plane and the fifth $1 \cdot 26 \AA$ from the plane. There is, however, a closer approach to planarity of the five-membered ring in $[\mathrm{PhP}]_{4} \mathrm{~S}$, as seen in the smaller deviations of the atoms from the mean plane through all five ring atoms [for $[\mathrm{PhP}]_{5}$ these deviations \dagger are: $\mathrm{P}(2)-0.061, \mathrm{P}(3) 0.483, \mathrm{P}(4)-0.617, \mathrm{P}(5) 0.382$, and $\mathrm{P}(1)-0.188 \AA]$ and in the smaller dihedral angles in
all statistically planar, the largest deviation of a carbon atom from the mean plane through the ring being $0.017(15) \AA$.

The $\mathrm{P}-\mathrm{P}$ bonds are all equal, mean $2 \cdot 190(5) \AA$. The endocyclic angle at phosphorus ranges from $104 \cdot 2(2)$ to $105.9(2)^{\circ}$, mean 105.2°. In $[\mathrm{PhP}]_{5}$ the $\mathrm{P}-\mathrm{P}$ bond length $[2 \cdot 217(6) \AA]$ is $0.027 \AA(c a .5 \sigma)$ longer, and the endocyclic angles at phosphorus range from $94 \cdot 1$ (2) to $107 \cdot 2(2)^{\circ}$, mean $100 \cdot 0^{\circ}$. The wider range of endocyclic angles and greater depature from planarity indicate greater strain in the five-membered ring in $[\mathrm{PhP}]_{5}$. The larger and more regular endocyclic angles at phosphorus in $[\mathrm{PhP}]_{4} \mathrm{~S}$, presumably a result of reduced steric repulsion of the phenyl groups, allow better overlap of phosphorus σ bonding orbitals and explain the slightly shorter $\mathrm{P}-\mathrm{P}$ bond length. The length is in agreement with twice the covalent radius of phosphorus ($2 \cdot 20 \AA$) indicating that the $\mathrm{P}-\mathrm{P}$ bonds are single bonds.

The $\mathrm{P}-\mathrm{S}$ bonds are equal, mean $2 \cdot 116(5) \AA$. This length is smaller than the sum of the covalent radii

The $\mathrm{P}-\mathrm{C}$ bond lengths range from $1.803(11)$ to $1.857(12)$ \AA, mean $1.831(22) \AA$. Although there are some rather large differences among the observed lengths, the mean is in good agreement with the values for $\mathrm{Ph}_{3} \mathrm{P}^{11} 1 \cdot 828(5)$ and $[\mathrm{PhP}]_{5} 1 \cdot 843(14) \AA$.

The $\mathrm{C}-\mathrm{C}$ bond lengths range from $1 \cdot 363(19)$ to $1 \cdot 403(15)$ \AA, mean $1 \cdot 382(16) ~ \AA$, which is close to the standard value ${ }^{12}(1.395 \AA)$. The $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles range from $117 \cdot 5(11)$ to $123 \cdot 6(13)^{\circ}$, mean $120 \cdot 0(14)^{\circ}$.

The $\mathrm{P}-\mathrm{P}-\mathrm{C}$ and $\mathrm{S}-\mathrm{P}-\mathrm{C}$ angles range from $97 \cdot 8(4)$ to $103 \cdot 7(5)^{\circ}$, mean $101 \cdot 3^{\circ}$. The largest deviations from the mean occur at $\mathrm{P}(1)$ and $\mathrm{P}(4)$, the $\mathrm{S}-\mathrm{P}-\mathrm{C}$ angle at both atoms being larger than the $\mathrm{P}-\mathrm{P}-\mathrm{C}$ angle. A large spread in the $\mathrm{P}-\mathrm{P}-\mathrm{C}$ angles has also been observed in $[\mathrm{PhP}]_{5}$, the value ranging from $96 \cdot 4(4)$ to $109 \cdot 8(4)^{\circ}$, mean 102.0°.

The $\mathrm{P}-\mathrm{C}-\mathrm{C}$ angles also show a large spread, ranging from $115 \cdot 3(10)$ to $125 \cdot 1(10)^{\circ}$, mean $120 \cdot 4^{\circ}$. The largest deviations from the mean occur at $C(1)$ and $C(19)$, the angle closest to the sulphur atom being larger at both atoms. A large spread in the $\mathrm{P}-\mathrm{C}-\mathrm{C}$ angles has also

Figure 2 Stereoview of the unit-cell contents
($2 \cdot 14 \AA$), but close to the sum of the covalent radii after correction for the difference in electronegativity, one estimate being $2 \cdot 10_{6}$ (ref. 8) and another $2 \cdot 12 \AA .{ }^{9}$ The $\mathrm{P}-\mathrm{S}$ bonds are thus single bonds. The length can be compared with the $\mathrm{P}-\mathrm{S}$ (bridge) bond lengths found in other phosphorus sulphides, typical values being in the range 2.079 to $2 \cdot 114 \AA .{ }^{10}$ An exact comparison is difficult since the $\mathrm{P}-\mathrm{S}$ (bridge) bond length seems to be sensitive to the angle at sulphur and phosphorus, to the oxidation state of phosphorus, and also to the other groups attached to phosphorus.

The angle at sulphur, $110 \cdot 4(2)^{\circ}$, is $5 \cdot 2^{\circ}$ larger than the average endocyclic angle at phosphorus. The $\mathrm{P}-\mathrm{S}-\mathrm{P}$ angle in other phosphorus sulphides typically ranges from 99 to $110^{\circ},{ }^{10}$ unless the ring or cage is unusually strained. The value in the present compound is thus not unusually large, but it is not fully understood why it is so much larger than the endocyclic angle at phosphorus. Perhaps it is a result of steric effects due to the particular orientation of the phenyl rings, which in turn could be due to more favourable crystal-packing considerations.

8 V. Schomaker and D. P. Stevenson, J. Amer. Chem. Soc., 1941, 63, 27.
${ }^{9}$ M. L. Huggins, J. Amer. Chem. Soc., 1953, 75, 4126.
${ }^{10}$ D. E. Rogers and G. Nickless, in 'Inorganic Sulphur Chemistry,’ ed. G. Nickless, Elsevier, Amsterdam, 1968, ch. 9.
been observed in $[\mathrm{PhP}]_{5}[114.5(10)-125 \cdot 5(10)$, mean $\left.120 \cdot 2^{\circ}\right]$ and in $\mathrm{Ph}_{3} \mathrm{P}\left[115 \cdot 8(4)-124 \cdot 9(4)\right.$, mean $\left.120 \cdot 0^{\circ}\right]$.

The arrangement of the molecules in the unit cell is shown in Figure 2. The molecules are held together by normal van der Waals forces. The shortest intermolecular distances of each type are C... C 3.56 , $\mathrm{P} \cdot \mathrm{P} 3.55$, and $\mathrm{P} \cdots \mathrm{S} 3.70 \AA$. There are no intermolecular $\mathrm{P} \cdots \mathrm{C}$ or $\mathrm{S} \cdots \mathrm{C}$ contacts $<3 \cdot 8 \AA$. The $\mathrm{P} \cdots \mathrm{P}$ distance of $3.55 \AA$ is considerably shorter ($0 \cdot 25$ \AA) than the sum of Pauling's ${ }^{13}$ van der Waals radii, but such shortening is not unusual, e.g. in $\beta-\mathrm{P}_{4} \mathrm{~S}_{3} \mathrm{I}_{2}{ }^{14}$ P...S $3 \cdot 34(1) \AA(0.4 \AA$ less than the sum of the van der Waals radii) is found. Therefore no special significance is given to this short distance.

We thank Professor N. L. Paddock and M. R. LeGeyt for the crystals and discussion, the National Research Council of Canada for financial support and for a scholarship (to H. P. C.), and the University of British Columbia Computing Centre for assistance.
[3/1607 Received, 30th July, 1973]

[^3]
[^0]: * See notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issue.
 ${ }^{3}$ R. E. Long, Ph.D. Thesis, University of California at Los Angeles, 1965

[^1]: 4 'International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.

 5 R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.

[^2]: \dagger The unweighted mean plane through all ring atoms in the P_{5} ring in $[\mathrm{PhP}]_{5}$ was calculated by use of the atomic co-ordinates and unit-cell parameters given in ref. 7. The equation for the plane is: $0.6335 X-0.7737 Y+0.0080 Z=-0.8891$, where X, Y, Z are orthogonal co-ordinates with respect to a, b, c^{*}.

[^3]: ${ }_{11}$ J. J. Daly, J. Chem. Soc., 1964, 3799.
 12 Chem. Soc. Special Publ., No. 18, 1965.
 ${ }^{13}$ L. Pauling, 'The Nature of the Chemical Bond,' 3rd edn., Cornell University Press, Ithaca, New York.

 14 G. W. Hunt and A. W. Cordes, Inorg. Chem., 1971, 10, 1935.

