# X-Ray Crystal Structure of Acetatohydridotris(triphenylphosphine)ruthenium(II): A Hydrogenation Catalyst with a Strained Octahedral Coordination 

By Andrzej C. Skapski * and Francis A. Stephens, Chemical Crystallography Laboratory, Imperial College, London SW7 2AY


#### Abstract

The crystal structure of the title compound has been determined from three-dimensional $X$-ray data by Patterson and Fourier methods, and refined by least-squares techniques to $R 0.089$ for 4080 visually estimated independent reflections. Crystals are monoclinic, with unit-cell dimensions $a=20 \cdot 68(4), b=9 \cdot 639(20), c=26 \cdot 59(4)$, $\beta=119 \cdot 58(8)$, space group is $P 2_{1} / c$ and $Z=4$. The complex is monomeric and the metal atom has a highly distorted octahedral co-ordination. The three triphenylphosphine ligands are meridional and the hydride hydrogen atom is cis to all three. Ru-P bond distances for the two approximately trans $\mathrm{PPh}_{3}$ groups ( $2 \cdot 363,2 \cdot 351 \AA$ ) are appreciably longer than the third ( $2 \cdot 230 \AA$ ) : $\mathrm{Ru}-\mathrm{H}$ is ca. $1.7 \AA$. The acetate group is bidentate and weakly held, with two rather long Ru-O distances ( $2 \cdot 198$ and $2 \cdot 210 \AA$ ). It subtends an angle of $57 \cdot 6^{\circ}$ at the ruthenium atom.


In view of the industrial importance of homogeneous hydrogenation of alkenes a considerable volume of work has been carried out on these processes and on the possible catalysts involved. One of the more efficient hydrogenation catalysts reported for alk-1-enes has been the title compound, $\mathrm{RuH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\left(\mathrm{PPh}_{3}\right)_{3}{ }^{1}$
We determined the $X$-ray crystal structure of this complex in order to differentiate between possible monoor bi-nuclear models, and to decide whether uni- or bi-dentate acetate groups were involved. We find that the complex is monomeric, with a bidentate acetate group and meridional triphenylphosphine ligands. The metal atom has a highly distorted octahedral co-ordination. Apart from the acetate group, the structure of this complex shows a striking similarity with that ${ }^{2}$ of another hydrogenation catalyst, ${ }^{3,4} \mathrm{Ru}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)_{3}$.

Preliminary details of the title structure have been reported. ${ }^{5}$ Since then further discussions of the reactions of this catalyst in various solutions have appeared. ${ }^{6,7}$

## EXPERIMENTAL

Dark orange needles were crystallised from methanolbenzene. Unit-cell dimensions and space group were determined from preliminary Weissenberg and precession photographs.

Crystal Data. $-\mathrm{C}_{56} \mathrm{H}_{49} \mathrm{O}_{2} \mathrm{P}_{3} \mathrm{Ru}, \quad M=948 \cdot 0$, Monoclinic, $a=20 \cdot 68(4), b=9 \cdot 636(20), c=26 \cdot 59(4) \AA, \beta=119 \cdot 58(8)^{\circ}$, $U=4607 \cdot 4 \AA^{3}, \quad D_{\mathrm{m}}=1 \cdot 39$ (by flotation), $Z=4, \quad D_{\mathrm{c}}=$ $1 \cdot 37, \quad F(000)=1960$. Cu- $K_{\alpha}$ radiation, $\lambda=1.5418 \AA$; $\mu\left(\mathrm{Cu}-K_{\alpha}\right)=42.4 \mathrm{~cm}^{-1}$. Space group $P 2_{1} / c$ from systematic absences: $h 0 l, l=2 n+1 ; 0 k 0, k=2 n+1$.

The needles are elongated about the $b$ axis. A crystal of size ca. $0.41 \times 0.13 \times 0.05 \mathrm{~mm}$ was selected and equi-inclination photographs were taken about [010] to record $h 0-6 l$ reflections ( $2-3$ days exposure for each photograph). An $0 k l$ layer was also recorded for scaling purposes. Intensities were estimated visually from multiple-film exposures and a
${ }^{1}$ D. Rose, J. D. Gilbert, R. P. Richardson, and G. Wilkinson, J. Chem. Soc. (A), 1969, 2610.
${ }_{2}$ A. C. Skapski and P. G. H. Troughton, Chem. Comm., 1968, 1230.
${ }^{3}$ P. S. Hallman, D. Evans, J. A. Osborn, and G. Wilkinson, Chem. Comm., 1967, 305.
${ }_{4}$ P. S. Hallman, B. R. McGarvey, and G. Wilkinson, J. Chem. Soc. $(A)$, 1968, 3143.

5 A. C. Skapski and F. A. Stephens, Chem. Comm., 1969, 1008.
${ }^{6}$ P. Legzdins, R. W. Mitchell, G. L. Rempel, J. D. Ruddick, and G. Wilkinson, $J$. Chem. Soc. $(A), 1970,3322$.
total of 4080 observable independent reflections were measured. Lorentz and polarisation corrections were applied and at a later stage the data were corrected for absorption. This correction was calculated according to the method of Busing and Levy ${ }^{8}$ using an $8 \times 8 \times 8$ grid with crystal pathlengths determined by the vector analysis procedure of Coppens et al. ${ }^{9}$

Solution and Refinement of the Structure.-The structure was solved by Patterson and Fourier methods. The Crystal Structure Calculations System ' $X$-ray ' $63{ }^{\text {' }}{ }^{10}$ and its updated version of July $1970^{11}$ were used for the calculations, which were carried out on the Imperial College IBM 7094 and the University of London CDC 7600 computers.

A three-dimensional Patterson synthesis gave a straightforward solution for the ruthenium atom, and a few cycles of least-squares refinement gave the standard agreement factor $R \quad 0.41$. From subsequent difference-Fourier syntheses all the remaining 61 non-hydrogen atoms were located, and isotropic refinement gave $R 0 \cdot 122$. Addition of the phenyl hydrogen atoms, as a fixed atom contribution with isotropic temperature factors of the parent carbon atoms, reduced $R$ to $0 \cdot 121$. Correction for absorption and refinement as previously gave $R 0 \cdot 113$. When all the nonhydrogen atoms were allowed to refine anisotropically $R$ dropped to its final value of 0.089 . The intermediate $R$ factors quoted are only an approximate guide since for computational reasons the number of cycles had to be limited owing to the large number of parameters and observations involved: in later stages some 560 , and over 4000 respectively.

Towards the end of refinement a weighting scheme of the type suggested by Hughes ${ }^{12}$ was used, where $w=1$ for $F<F^{*}, \sqrt{w}=F^{*} / F$ for $F>F^{*}$, with $F^{*}=52$ being the final value. The application of the weighting scheme had negligible influence of the value of $R$, but the estimated standard deviations decreased on average by ca. $10 \%$. The hydride hydrogen atom could be clearly located in differenceFourier maps as the dominant remaining peak of $c a$. $1.5 \mathrm{e}^{-3}$, although its exact location and its height may be to
${ }^{7}$ R. W. Mitchell, A. Spencer, and G. Wilkinson, J.C.S. Dalton, 1973, 846.
${ }^{8}$ 'W. R. Busing and H. A. Levy, Acta Cryst., 1957, 10, 180.
${ }^{9}$ P. Coppens, L. Leiserowitz, and D. Rabinovich, Acta Cryst., 1965, 18, 1035.
${ }^{10}$ ' $X$-ray ' 63 ' system of programs, J. M. Stewart, University of Maryland Technical Report TR 646.
${ }^{11}$ Ref. 10, version of July 1970, eds. J. M. Stewart, F. A. Kundell, and J. C. Baldwin.
${ }^{12}$ E. W. Hughes, J. Amer. Chem. Soc., 1941, 63, 1737.
some extent affected by the presence of a ripple' of up to $0.7 \mathrm{e}^{-3}$ around the ruthenium atom.

Table 1
Fractional co-ordinates, with estimated standard

|  | $x$ | $y$ | $z$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{Ru}(1)$ | $0 \cdot 23250(4)$ | 0.03278 (11) | $0 \cdot 24447$ (3) |
| $\mathrm{P}(1)$ | $0 \cdot 27105(15)$ | $0 \cdot 0762(4)$ | $0 \cdot 34276$ (13) |
| $\mathbf{P}(2)$ | $0 \cdot 14841$ (15) | 0.0350 (4) | $0 \cdot 14452(12)$ |
| $P^{\prime}(3)$ | $0 \cdot 33566(14)$ | $0.0998(3)$ | $0 \cdot 24436(12)$ |
| O(1) | $0 \cdot 2397$ (4) | -0.1949(10) | $0 \cdot 2481$ (3) |
| $O(2)$ | $0 \cdot 1459(4)$ | -0.0990(9) | $0 \cdot 2457(4)$ |
| C(1) | $0 \cdot 1779$ (7) | $-0.2100(15)$ | $0 \cdot 2463(5)$ |
| C(2) | $0 \cdot 1486(9)$ | -0.3488(17) | $0 \cdot 2490$ (8) |
| C(1I)* | $0 \cdot 3535(7)$ | $0 \cdot 1785(15)$ | $0 \cdot 3903$ (5) |
| C(12) | $0 \cdot 4094$ (7) | $0 \cdot 1321(18)$ | $0 \cdot 4453(6)$ |
| C(13) | $0 \cdot 4723(8)$ | $0 \cdot 2133(22)$ | $0 \cdot 4776$ (6) |
| C(14) | 0.4793 (9) | $0 \cdot 3379$ (23) | $0 \cdot 4563$ (8) |
| C(15) | $0 \cdot 4267(10)$ | $0 \cdot 3862(18)$ | $0 \cdot 4025$ (8) |
| C(16) | $0 \cdot 3626(7)$ | $0 \cdot 3015(17)$ | $0 \cdot 3702(6)$ |
| C(21) | $0 \cdot 2810(7)$ | $-0 \cdot 0732(17)$ | $0 \cdot 3899$ (5) |
| $\mathrm{C}(22)$ | $0 \cdot 2613$ (8) | $-0.0643(20)$ | $0 \cdot 4338$ (7) |
| C(23) | $0 \cdot 2669(10)$ | $-0 \cdot 1763(28)$ | $0 \cdot 4666$ (7) |
| C(24) | $0 \cdot 2889(11)$ | -0.2996(29) | $0 \cdot 4572(9)$ |
| C(25) | $0 \cdot 3124(9)$ | $-0.3113(21)$ | 0.4141 (9) |
| C(26) | 0.3065(8) | -0.1961(19) | $0 \cdot 3821$ (6) |
| C(31) | 0.1950(7) | $0 \cdot 1663$ (19) | $0 \cdot 3441(5)$ |
| C(32) | 0.1957(9) | $0 \cdot 3088(22)$ | $0 \cdot 3541$ (7) |
| C(33) | $0 \cdot 1328(11)$ | $0 \cdot 3742(20)$ | $0 \cdot 3468$ (7) |
| C(34) | $0 \cdot 0686(10)$ | $0 \cdot 3081(29)$ | $0 \cdot 3311$ (8) |
| C(35) | $0 \cdot 0656(9)$ | $0 \cdot 1648(34)$ | $0 \cdot 3225$ (8) |
| C(36) | $0 \cdot 1289(7)$ | $0 \cdot 0954(19)$ | $0 \cdot 3290$ (6) |
| C(41) | $0 \cdot 0658(6)$ | $0 \cdot 1358(15)$ | $0 \cdot 1284(5)$ |
| C(42) | $0.0504(8)$ | $0 \cdot 1692(19)$ | $0 \cdot 1726$ (6) |
| $\mathrm{C}(43)$ | -0.0107(8) | $0 \cdot 2466$ (21) | $0 \cdot 1617(7)$ |
| C(44) | -0.0618(8) | $0 \cdot 2903(19)$ | $0 \cdot 1055(7)$ |
| $\mathrm{C}(45)$ | $-0.0471(7)$ | $0 \cdot 2563(17)$ | $0.0606(6)$ |
| C(46) | $0.0144(8)$ | $0 \cdot 1814(16)$ | $0.0717(5)$ |
| C(51) | $0 \cdot 1703(6)$ | $0 \cdot 1084(17)$ | $0.0898(5)$ |
| C(52) | 0.1645(8) | $0 \cdot 0292(\mathrm{l} 6)$ | 0.0441 (5) |
| C(53) | $0 \cdot 1821$ (9) | $0 \cdot 0901(23)$ | $0.0038(6)$ |
| C(54) | $0 \cdot 2018(10)$ | $0 \cdot 2256(25)$ | 0.0090 (7) |
| C(55) | $0 \cdot 2086(9)$ | $0 \cdot 3018(20)$ | $0.0562(7)$ |
| C(56) | $0 \cdot 1915(8)$ | $0 \cdot 2427(18)$ | $0 \cdot 0956(6)$ |
| C(61) | $0 \cdot 1074(6)$ | $-0 \cdot 1338(15)$ | $0 \cdot 1130(5)$ |
| C(62) | 0.0334 (7) | -0.1664(17) | $0 \cdot 0906(6)$ |
| C(63) | $0.0101(8)$ | -0.2996(23) | $0.0732(7)$ |
| $\mathrm{C}(64)$ | $0 \cdot 0561(11)$ | $-0.4011(20)$ | $0 \cdot 0768$ (7) |
| $\mathrm{C}(65)$ | $0 \cdot 1309(10)$ | $-0.3698(20)$ | 0.0992 (7) |
| $\mathrm{C}(66)$ | $0 \cdot 1566$ (8) | $-0 \cdot 2373(17)$ | $0 \cdot 1178(6)$ |
| $\mathrm{C}(7 \mathrm{I})$ | $0 \cdot 3483(5)$ | $0 \cdot 0235(13)$ | 0-1852(4) |
| C (72) | $0 \cdot 3653(6)$ | $0 \cdot 1016(15)$ | $0 \cdot 1488(5)$ |
| C(73) | $0 \cdot 3794$ (7) | 0.0297(22) | $0 \cdot 1080$ (6) |
| C(74) | $0 \cdot 3765$ (7) | -0.1084(21) | $0 \cdot 1039(5)$ |
| C (75) | $0 \cdot 3547(7)$ | -0.1829(16) | $0 \cdot 1372$ (6) |
| C(76) | $0 \cdot 3434$ (6) | $-0 \cdot 1169(14)$ | $0 \cdot 1794(5)$ |
| C(81) | $0 \cdot 3602$ (6) | 0.2781 (12) | $0 \cdot 2419(5)$ |
| C(82) | $0 \cdot 4309$ (6) | $0 \cdot 3104(16)$ | $0 \cdot 2482(5)$ |
| C(83) | 0.4515(7) | $0 \cdot 4470$ (18) | $0 \cdot 2493$ (6) |
| $\mathrm{C}(84)$ | 0.4040 (8) | $0.5533(15)$ | $0 \cdot 2448$ (6) |
| C(85) | $0 \cdot 3340$ (8) | $0 \cdot 5199(18)$ | $0 \cdot 2353(6)$ |
| C(86) | $0 \cdot 3126(7)$ | $0 \cdot 3825(16)$ | $0 \cdot 2349(5)$ |
| $\mathrm{C}(91)$ | $0.4199(6)$ | $0 \cdot 0262(17)$ | $0 \cdot 3088(5)$ |
| C(92) | $0 \cdot 4808(6)$ | $0 \cdot 1041$ (15) | $0 \cdot 3474(5)$ |
| $\mathrm{C}(93)$ | 0.5421 (7) | $0 \cdot 0382(20)$ | $0 \cdot 3935$ (6) |
| C(94) | $0.5437(7)$ | $-0.1014(21)$ | $0 \cdot 4011$ (6) |
| C(95) | 0.4817 (8) | -0.1786(15) | $0 \cdot 3640(6)$ |
| C(96) | $0 \cdot 4213(6)$ | -0.1145(18) | $0 \cdot 3178(5)$ |

* Ring carbon atoms are numbered $\mathrm{C}(m n)$ where $m$ is ring no. and $n$ is the atom no. in the ring; $n$ is such that $\mathrm{C}(m 1)$ is attached to P and other atoms are numbered in succession such that $\mathrm{C}(m 4)$ is para to $\mathrm{C}(m 1)$.

TABLE 2
Anisotropic thermal parameters

|  | $10^{4} U_{11}$ | $10^{4} U_{22}$ | $10^{4} U_{33}$ | $10^{4} U_{12}$ | $10^{4} U_{13}$ | $10^{4} U_{23}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Ru}(\mathbf{1})$ | 253(6) | 354(9) | 323(6) | $-10(4)$ | 164(4) | $-4(4)$ |
|  | $10^{4} U_{11}$ | $10^{3} U_{22}$ | $10^{4} U_{33}$ | $10^{4} U_{12}$ | $10^{4} U_{13}$ | $10^{4} U_{23}$ |
| $\mathrm{P}(1)$ | 320(15) | $49(3)$ | 397(16) | 4(14) | 217(12) | $-19(15)$ |
| $\mathrm{P}(2)$ | $325(14)$ | 42(3) | 376(15) | -2(14) | 194(12) | $-24(15)$ |
| $\mathrm{P}(3)$ | 249(13) | 29(3) | 358(16) | 14(12) | 180(11) | $-9(13)$ |
|  | $10^{3} U_{11}$ | $10^{3} U_{22}$ | $10^{3} U_{33}$ | $10^{3} U_{12}$ | $10^{3} U_{13}$ | $10^{3} U_{23}$ |
| $\mathrm{O}(1)$ | $29(4)$ | $53(7)$ | 42(4) | -8(4) | 10(3) | O(4) |
| $\mathrm{O}(2)$ | 46(4) | 43(7) | 60 (5) | -0(4) | $29(4)$ | $2(4)$ |
| $\mathrm{C}(1)$ | $63(8)$ | 36(11) | $39(6)$ | 1(7) | 17(6) | 5 (6) |
| $\mathrm{C}(2)$ | 79(10) | 30 (13) | 107(13) | $-16(8)$ | $42(9)$ | $12(9)$ |
| C(11) | $52(7)$ | 24(11) | 56(7) | $-3(6)$ | $27(6)$ | $9(6)$ |
| $\mathrm{C}(12)$ | 52(8) | 92(14) | 44(7) | $-5(8)$ | 15(6) | -3(8) |
| C(13) | 53(8) | 98(17) | 57(9) | $-8(9)$ | 22(7) | -10(9) |
| C(14) | 77(11) | 97(18) | 76(11) | $-27(10)$ | 38(9) | $-32(11)$ |
| $\mathrm{C}(15)$ | 103(13) | 49(14) | 98(13) | $-2(10)$ | 70(11) | $-3(10)$ |
| C(16) | 49(7) | 58(13) | 59(8) | $-14(7)$ | 26 (6) | --8(8) |
| $\mathrm{C}(21)$ | 44(6) | 56(13) | 39(6) | $-2(7)$ | $16(5)$ | $11(6)$ |
| $\mathrm{C}(22)$ | 65(9) | 103(17) | 67(9) | $5(9)$ | $38(8)$ | $21(10)$ |
| C(23) | 83(12) | 121(23) | $52(9)$ | - 15 (12) | 27(8) | 26(11) |
| $\mathrm{C}(24)$ | 75(12) | 121(24) | 77(13) | $-33(13)$ | 9 (10) | 37(13) |
| $\mathrm{C}(25)$ | 71 (10) | 70 (17) | 99(14) | $-3(10)$ | 14(10) | $25(12)$ |
| $\mathrm{C}(26)$ | 72(9) | 53(15) | 47(7) | 11 (8) | 26 (7) | 13(8) |
| C(31) | 57(8) | 80(15) | $39(7)$ | 23 (7) | $36(6)$ | 18(7) |
| C(32) | 85(11) | 88(17) | 73(10) | 21 (10) | $63(9)$ | 18(9) |
| C(33) | 115(14) | 82(15) | 90 (12) | 44(11) | 79(11) | 20(10) |
| $\mathrm{C}(34)$ | $72(11)$ | 148(23) | 81 (12) | 44(13) | 53(10) | 16(13) |
| $\mathrm{C}(35)$ | 46(9) | 224(29) | 69 (11) | 14(13) | $32(8)$ | $8(15)$ |
| $\mathrm{C}(36)$ | 45(7) | $109(15)$ | $60(9)$ | 8(8) | 28 (6) | $-9(8)$ |
| $\mathrm{C}(41)$ | $50(7)$ | 53(11) | 40 (6) | $-7(6)$ | $26(5)$ | -4(6) |
| $\mathrm{C}(42)$ | 56(8) | 99(15) | 59(9) | 9 (8) | 33(7) | $2(8)$ |
| $\mathrm{C}(43)$ | $50(8)$ | 138(18) | 74(10) | $40(9)$ | $35(8)$ | $2(10)$ |
| $\mathrm{C}(44)$ | $54(8)$ | 93(15) | 78(11) | $23(9)$ | 26 (8) | $-0(10)$ |
| $\mathrm{C}(45)$ | 47(7) | 63(13) | 67(9) | 10(7) | 11 (7) | 6 (8) |
| $\mathrm{C}(46)$ | $62(8)$ | 66(13) | 51 (8) | 8(7) | $31(7)$ | $3(7)$ |
| $\mathrm{C}(51)$ | $36(6)$ | 38(13) | 46(7) | $13(6)$ | 16(5) | 11 (6) |
| $\mathrm{C}(52)$ | 72(8) | 57(12) | 53(7) | 1 (7) | $44(7)$ | 0(7) |
| C(53) | $88(11)$ | 85(17) | $64(9)$ | 12(10) | $52(9)$ | $15(9)$ |
| $\mathrm{C}(54)$ | 98(13) | 104(20) | 69 (11) | 9(12) | 57(10) | 36(11) |
| $\mathrm{C}(55)$ | $79(11)$ | 90(16) | 66(10) | $-8(10)$ | $32(8)$ | 17(10) |
| $\mathrm{C}(56)$ | $70(9)$ | 40 (13) | 57(8) | $-2(8)$ | 32(7) | $18(7)$ |
| C(61) | $45(6)$ | 42(11) | 46(7) | $-9(6)$ | $19(5)$ | $-4(6)$ |
| C(62) | 53 (7) | 35 (13) | 66(9) | -12(7) | 27(7) | -0(7) |
| C(63) | 56(9) | $70(18)$ | 78(11) | $-31(10)$ | 21(8) | $-9(10)$ |
| C(64) | 83(12) | 49(15) | 82(11) | $-17(10)$ | $32(9)$ | -13(9) |
| $\mathrm{C}(65)$ | 107(13) | 30 (14) | 74(10) | $5(10)$ | 41 (9) | $-10(9)$ |
| $\mathrm{C}(66)$ | 64(9) | $32(13)$ | $60(8)$ | $-3(8)$ | $27(7)$ | $-6(7)$ |
| C(71) | 27(5) | 45(10) | 33 (5) | 7 (5) | 10(4) | 2(5) |
| $\mathrm{C}(72)$ | $35(6)$ | 75(12) | 46(7) | $-2(6)$ | 26 (5) | $-1(6)$ |
| C(73) | $59(8)$ | 73(16) | 53 (8) | -0(8) | 33(6) | 1 (8) |
| $\mathrm{C}(74)$ | 63(8) | 50(14) | 48(7) | $4(8)$ | 27 (6) | $-4(7)$ |
| $\mathrm{C}(75)$ | $56(7)$ | 55(12) | $56(8)$ | $9(7)$ | 31 (6) | -8(7) |
| $\mathrm{C}(76)$ | 48(7) | 41(10) | 45(7) | $8(6)$ | $24(5)$ | 1 (6) |
| C(81) | $46(6)$ | 16(9) | 41 (6) | $9(5)$ | $24(6)$ | $-2(5)$ |
| $\mathrm{C}(82)$ | 42(6) | $39(13)$ | 57(7) | $-5(6)$ | $32(5)$ | $-2(6)$ |
| $\mathrm{C}(83)$ | 50(7) | 41(13) | 69 (8) | -1(8) | $35(6)$ | 6(7) |
| $\mathrm{C}(84)$ | 64(8) | 22(12) | 84(10) | $-9(7)$ | $38(7)$ | $0(8)$ |
| $\mathrm{C}(85)$ | $71(8)$ | $39(13)$ | $61(8)$ | 19(8) | $35(7)$ | 0 (7) |
| $\mathrm{C}(86)$ | 52(7) | 17(12) | 59(8) | $4(6)$ | 26(6) | 6(6) |
| $\mathrm{C}(91)$ | 45(6) | 32(12) | $49(6)$ | 4(6) | 27(5) | $10(7)$ |
| $\mathrm{C}(92)$ | $40(6)$ | 43(11) | $45(7)$ | -4(6) | $14(5)$ | $-5(6)$ |
| $\mathrm{C}(93)$ | $60(8)$ | 38(15) | $61(8)$ | -8(7) | $29(6)$ | $-17(8)$ |
| $\mathrm{C}(94)$ | $56(8)$ | $34(14)$ | 79(10) | -0(7) | 31 (7) | 2(8) |
| $\mathrm{C}(95)$ | $63(8)$ | 23(11) | $71(9)$ | 2(7) | $28(7)$ | 7(7) |
| $\mathrm{C}(96)$ | $44(7)$ | 27(12) | $50(7)$ | 0 (6) | $18(5)$ | $8(6)$ |

tion for the effects of the real and the imaginary parts of anomalous dispersion correction for ruthenium were made according to ref. 15. Table 1 lists the fractional co-
${ }^{13}$ D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.
${ }^{14}$ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.
${ }^{15}$ D. T. Cromer, Acta Cryst., 1965, 18, 17.

Table 3
Fractional co-ordinates of the hydrogen atoms. Except for $\mathrm{H}(1)$, these are numbered according to the carbon atom to which they are attached

|  | $x$ | $y$ | $z$ |
| :---: | :---: | :---: | :---: |
| H(1) | $0 \cdot 230$ | $0 \cdot 207$ | 0.245 |
| $\mathrm{H}(12)$ | $0 \cdot 403$ | 0.035 | $0 \cdot 462$ |
| $\mathrm{H}(13)$ | $0 \cdot 515$ | $0 \cdot 177$ | 0.519 |
| $\mathrm{H}(14)$ | $0 \cdot 527$ | $0 \cdot 401$ | $0 \cdot 482$ |
| $\mathrm{H}(15)$ | $0 \cdot 434$ | $0 \cdot 482$ | $0 \cdot 386$ |
| $\mathrm{H}(16)$ | $0 \cdot 320$ | $0 \cdot 338$ | $0 \cdot 328$ |
| $\mathrm{H}(22)$ | $0 \cdot 241$ | $0 \cdot 032$ | $0 \cdot 441$ |
| $\mathrm{H}(23)$ | $0 \cdot 254$ | $-0 \cdot 167$ | 0.501 |
| $\mathrm{H}(24)$ | $0 \cdot 290$ | $-0.389$ | 0.481 |
| $\mathrm{H}(25)$ | $0 \cdot 333$ | -0.408 | $0 \cdot 407$ |
| $\mathrm{H}(26)$ | $0 \cdot 323$ | -0.202 | $0 \cdot 350$ |
| $\mathrm{H}(32)$ | $0 \cdot 246$ | $0 \cdot 368$ | $0 \cdot 368$ |
| H(33) | $0 \cdot 134$ | $0 \cdot 484$ | $0 \cdot 354$ |
| $\mathrm{H}(34)$ | $0 \cdot 020$ | $0 \cdot 363$ | $0 \cdot 325$ |
| $\mathrm{H}(35)$ | $0 \cdot 015$ | $0 \cdot 107$ | 0.311 |
| $\mathrm{H}(36)$ | $0 \cdot 127$ | $-0.015$ | $0 \cdot 323$ |
| $\mathrm{H}(42)$ | 0.087 | $0 \cdot 133$ | $0 \cdot 216$ |
| $\mathrm{H}(43)$ | $-0.020$ | $0 \cdot 274$ | $0 \cdot 197$ |
| H(44) | $-0.111$ | $0 \cdot 348$ | $0 \cdot 097$ |
| $\mathrm{H}(45)$ | -0.085 | $0 \cdot 289$ | $0 \cdot 017$ |
| $\mathrm{H}(46)$ | $0 \cdot 024$ | $0 \cdot 157$ | 0.036 |
| $\mathrm{H}(52)$ | $0 \cdot 147$ | -0.077 | $0 \cdot 039$ |
| $\mathrm{H}(53)$ | $0 \cdot 180$ | 0.029 | -0.031 |
| H(54) | $0 \cdot 212$ | $0 \cdot 274$ | $-0.023$ |
| $\mathrm{H}(55)$ | $0 \cdot 227$ | 0.408 | $0 \cdot 062$ |
| $\mathrm{H}(56)$ | $0 \cdot 196$ | $0 \cdot 303$ | $0 \cdot 131$ |
| $\mathrm{H}(62)$ | -0.006 | $-0.087$ | 0.087 |
| $\mathrm{H}(63)$ | -0.048 | $-0.324$ | 0.056 |
| $\mathrm{H}(64)$ | 0.036 | -0.505 | $0 \cdot 062$ |
| $\mathrm{H}(65)$ | $0 \cdot 169$ | $-0.450$ | $0 \cdot 102$ |
| $\mathrm{H}(66)$ | $0 \cdot 215$ | -0.214 | $0 \cdot 136$ |
| $\mathrm{H}(72)$ | $0 \cdot 368$ | $0 \cdot 213$ | $0 \cdot 152$ |
| $\mathrm{H}(73)$ | $0 \cdot 393$ | $0 \cdot 089$ | $0 \cdot 080$ |
| $\mathrm{H}(74)$ | $0 \cdot 391$ | -0.160 | 0.075 |
| $\mathrm{H}(75)$ | $0 \cdot 346$ | -0.292 | $0 \cdot 130$ |
| $\mathrm{H}(76)$ | $0 \cdot 330$ | $-0.178$ | $0 \cdot 207$ |
| $\mathrm{H}(82)$ | $0 \cdot 468$ | $0 \cdot 228$ | $0 \cdot 252$ |
| $\mathrm{H}(83)$ | 0.505 | 0.471 | $0 \cdot 254$ |
| $\mathrm{H}(84)$ | $0 \cdot 421$ | $0 \cdot 660$ | $0 \cdot 248$ |
| $\mathrm{H}(85)$ | 0.296 | $0 \cdot 603$ | $0 \cdot 228$ |
| $\mathrm{H}(86)$ | $0 \cdot 258$ | 0.360 | $0 \cdot 229$ |
| $\mathrm{H}(92)$ | $0 \cdot 481$ | $0 \cdot 215$ | $0 \cdot 342$ |
| $\mathrm{H}(93)$ | $0 \cdot 589$ | 0.099 | $0 \cdot 423$ |
| H(94) | $0 \cdot 592$ | -0.151 | $0 \cdot 435$ |
| $\mathrm{H}(95)$ | $0 \cdot 480$ | $-0.288$ | $0 \cdot 371$ |
| $\mathrm{H}(96)$ | $0 \cdot 374$ | $-0 \cdot 177$ | $0 \cdot 288$ |

ordinates of the non-hydrogen atoms with their estimated standard deviations. $\dagger$ Table 2 contains the coefficients in the expression for the anisotropic Debye-Waller factor $\exp \left[-2 \pi^{2}\left(U_{11} a^{* 2} h^{2}+U_{22} b^{* 2} k^{2}+U_{33} c^{* 2} l^{2}+2 U_{12} a^{*} b^{*} h k+\right.\right.$ $\left.\left.2 U_{13} a^{*} c^{*} h l+2 U_{23} b^{*} c^{*} k l\right)\right]$, while the unrefined co-ordinates of the hydrogen atoms are given in Table 3. Observed and calculated structure amplitudes are listed in Supplementary Publication No. SUP 20879 ( $8 \mathrm{pp} ., 1$ microfiche). ${ }_{+}^{+}$

## DESCRIPTION OF THE STRUCTURE AND DISCUSSION

Figure 1 shows the molecular structure of the monomeric complex. The central metal atom has a distorted octahedral co-ordination geometry in which the three triphenylphosphine groups are meridional with the hydride hydrogen atom cis to all three, and the acetate
$\dagger$ In the final stages of refinement the least-squares program CRYLSQ ${ }^{11}$ was used employing large partial matrices. The standard deviations thus obtained are more realistic than those from a simple block-diagonal program such as BLOKLS, ${ }^{10}$ but may still be a slight underestimate of the true deviations.
$\ddagger$ For details see Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issue. (Items less than 10 pp . are sent as full size copies.)
group is bidentate. $\S$ The immediate environment of the ruthenium atom is shown in Figure 2. The more important bond lengths and bond angles are quoted in Tables 4 and 5 respectively.


Figure 1 The molecular structure


Figure 2 Co-ordination about the ruthenium atom
Table 4
Selected bond lengths ( $\AA$ ), with estimated standard deviations in parentheses

| $\mathrm{Ru}(1)-\mathrm{P}(1)$ |  | 3(5) | $\mathrm{Ru}(1)-\mathrm{O}(1)$ |  | $2 \cdot 198(13)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Ru}(1)-\mathrm{P}(2)$ |  | 1(5) | $\mathrm{Ru}(1)-\mathrm{O}(2)$ |  | $2 \cdot 210$ (10) |
| $\mathrm{Ru}(1)-\mathrm{P}(3)$ |  | (4) | $\mathrm{Ru}(1)-\mathrm{H}(1)$ |  | 1.68 |
| $\mathrm{C}(1)-\mathrm{O}(1)$ |  | $\begin{aligned} & 63(18) \\ & (1)-\mathrm{C}(2) \end{aligned}$ | $\begin{gathered} \mathrm{C}(1)-\mathrm{O}(2) \\ 1 \cdot 485(24) \end{gathered}$ |  | $1 \cdot 255(18)$ |
| $\mathrm{P}(1)-\mathrm{C}(11)$ |  | 9(12) | $\mathrm{P}(2)-\mathrm{C}(61)$ |  | 1-844(15) |
| $\mathrm{P}(1)-\mathrm{C}(21)$ |  | 53(17) | $\mathrm{P}(3)-\mathrm{C}(71)$ |  | $1.870(14)$ |
| $\mathrm{P}(1)-\mathrm{C}(31)$ |  | 11(17) | $\mathrm{P}(3)-\mathrm{C}(81)$ |  | $1.802(14)$ |
| $\mathrm{P}(2)-\mathrm{C}(41)$ |  | 17(14) | $\mathrm{P}(3)-\mathrm{C}(91)$ |  | $1 \cdot 879(11)$ |
| $\mathrm{P}(2)-\mathrm{C}(51)$ |  | (16) |  |  |  |
|  |  | Mean P-C | C 1-841 |  |  |
| Mean phenyl $\mathrm{C}-\mathrm{C}$ |  |  |  |  |  |
| Ring |  |  | Ring |  |  |
| $\mathrm{C}(1 n)$ |  | 1.389 | $\mathrm{C}(6 n)$ | 1.372 |  |
| $\mathrm{C}(2 n)$ |  | $1 \cdot 381$ | $\mathrm{C}(7 n)$ | $1 \cdot 385$ |  |
| $\mathrm{C}(3 n)$ |  | $1 \cdot 384$ | $\mathrm{C}(8 n)$ | 1.385 |  |
| $\mathrm{C}(4 n)$ |  | 1-393 | $\mathrm{C}(9 n)$ | 1.384 |  |
| $\mathrm{C}(5 n)$ |  | 1.382 | Overall mean | 1.384 |  |

§ Note added in proof: In a recent publication (I. S. Kolomnikov, A. I. Gusev, G. G. Aleksandrov, T. S. Lobeeva, Yu. T. Struchkov, and M. E. Vol'pin, J. Organometallic Chem., 1973, 59,349 ) preliminary details are reported of the structure of the formato-analogue, $\mathrm{RuH}\left(\mathrm{CO}_{2} \mathrm{H}\right)\left(\mathrm{PPh}_{3}\right)_{3}$. The co-ordination geometry is essentially similar to that in the acetato-complex, although the hydride hydrogen atom was not located.

Two of the $\mathrm{Ru}-\mathrm{P}$ distances $[\mathrm{Ru}-\mathrm{P}(1) 2 \cdot 363$ and $\mathrm{Ru}-\mathrm{P}(2)$ $2 \cdot 351 \AA]$, are appreciably longer than the third $[\mathrm{Ru}-\mathrm{P}(3)$ $2 \cdot 230 \AA$ ]. The two $\mathrm{PPh}_{3}$ groups associated with the longer $\mathrm{Ru}-\mathrm{P}$ bonds are approximately trans to each other ( $\mathrm{P}-\mathrm{Ru}-\mathrm{P}$ ca. $155^{\circ}$ ). A similar triplet of $\mathrm{PPh}_{3}$ groups is found in two five-co-ordinate complexes: in $\mathrm{RuHCl}\left(\mathrm{PPh}_{3}\right)_{3}$ there is one short $\mathrm{Ru}-\mathrm{P}$ distance of $2 \cdot 202 \AA$ and two longer ones of $2 \cdot 330$ and $2 \cdot 364 \AA,^{2}$ while

Table 5
Selected bond angles $\left({ }^{\circ}\right)$, with estimated standard deviations in parentheses

| (1) $-\mathrm{P}(3)$ | 98.59(13) | $\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{P}(3)$ | (5) |
| :---: | :---: | :---: | :---: |
| $\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$ | 85.3(3) | $\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{O}(2)$ | 82.7(2) |
| $\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)$ | 98.6(2) | $\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{O}(1)$ | 93-4(2) |
| $\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$ | 57.6(4) | $\mathrm{P}(3)-\mathrm{Ru}(1)-\mathrm{O}(1)$ | 104.2(3) |
| $\mathrm{P}(\mathrm{l})-\mathrm{Ru}(\mathrm{l})-\mathrm{H}(\mathrm{I})$ | 79 | $\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{H}(1)$ | 89 |
| $\mathrm{P}(3)-\mathrm{Ru}(1)-\mathrm{H}(1)$ | 75 | $\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{H}(1)$ | 123 |
| $\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{H}(1)$ | 177 | $\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{P}(3)$ | $161 \cdot 8(3)$ |
|  | $\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$ | 154.89(14) |  |
| $\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(11)$ | ) $123 \cdot 4(6)$ | $\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(21)$ | 101-3(6) |
| $\mathrm{u}(1)-\mathrm{P}(1)-\mathrm{C}(21)$ | ) $118 \cdot 4(5)$ | $\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(31)$ | 104.5(7) |
| $\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(31)$ | ) $106.5(4)$ | $\mathrm{C}(21)-\mathrm{P}(1)-\mathrm{C}(31)$ | 99.6(8) |
| $\mathrm{Ru}(1)-\mathrm{P}(2)-\mathrm{C}(41)$ | ) $111.0(4)$ | $\mathrm{C}(41)-\mathrm{P}(2)-\mathrm{C}(51)$ | $100 \cdot 4(7)$ |
| $\mathrm{Ru}(1)-\mathrm{P}(2)-\mathrm{C}(51)$ | ) $124 \cdot 0(4)$ | $\mathrm{C}(41)-\mathrm{P}(2)-\mathrm{C}(61)$ | 101-2(6) |
| $\mathrm{u}(1)-\mathrm{P}(2)-\mathrm{C}(61)$ | ) $114.8(4)$ | $\mathrm{C}(51)-\mathrm{P}(2)-\mathrm{C}(61)$ | 102-2(7) |
| $\mathrm{Ru}(1)-\mathrm{P}(3)-\mathrm{C}(71)$ | ) $114.8(4)$ | $\mathrm{C}(71)-\mathrm{P}(3)-\mathrm{C}(81)$ | $100.7(6)$ |
| $\mathrm{Ru}(1)-\mathrm{P}(3)-\mathrm{C}(81)$ | ) $124.2(5)$ | $\mathrm{C}(71)-\mathrm{P}(3)-\mathrm{C}(91)$ | $99.7(6)$ |
| $\mathrm{u}(1)-\mathrm{P}(3)-\mathrm{C}(91)$ | ) $110 \cdot 3(5)$ | $\mathrm{C}(81)-\mathrm{P}(3)-\mathrm{C}(91)$ | $104 \cdot 0$ (6) |
| Mean $\mathrm{Ru}-\mathrm{P}-\mathrm{C}$ | 116.4 | Mean C-P-C | 01.5 |
| $\mathrm{Ru}(1)-\mathrm{O}(1)-\mathrm{C}(1)$ | $93 \cdot 9(8)$ | $\mathrm{Ru}(1)$ | 93.6(9) |
|  | $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{O}(2)$ | 114.9 (1.3) |  |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | 122.1(1.4) | $\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$ | 122.9(1-5) |

in the precursor of both the hydrido-complexes $\mathrm{RuCl}_{2}-$ $\left(\mathrm{PPh}_{3}\right)_{3}$ the distances are $2 \cdot 230$, and $2 \cdot 374$ and $2 \cdot 412 \AA$ respectively. ${ }^{16, *}$
Since the title complex is six-co-ordinate, this close resemblance merits further consideration. The first and most obvious reason for the difference in the $\mathrm{Ru}-\mathrm{P}$ lengths is the existence of a mutual trans-influence between the approximately opposed $\mathrm{PPh}_{3}$ groups. However, the difference between the shorter $\mathrm{Ru}^{-\mathrm{P}}$ distance and the mean of the other two ( $0 \cdot 127 \AA$ ), is appreciably longer than would be expected. A comparison can be made with another $d^{6}$ complex mer- $\mathrm{RhCl}_{3}\left(\mathrm{PPhEt}_{2}\right)_{3}{ }^{17}$ where the difference between mean $\mathrm{Rh}-\mathrm{P}$ (trans to P ) and $\mathrm{Rh}-\mathrm{P}($ trans to Cl$)$ is $0.074 \AA$. Furthermore, there the trans $-\mathrm{PPh}_{3}$ groups are more nearly opposed, with $\mathrm{P}-\mathrm{Rh}-\mathrm{P} 168^{\circ}$, than in the title complex, and hence one would expect a stronger trans-influence. In $\mathrm{Ru}^{\text {II }}$ complexes where $\mathrm{PPh}_{3}$ groups are cis, $\mathrm{Ru}-\mathrm{P}$ distances $c a$. $2.32 \AA$ are found, cf. means of $2.318 \AA$ in $\mathrm{Rh}_{3} \mathrm{Cl}_{6}$ -

[^0]$\left(\mathrm{PPhEt}_{2}\right)_{9},{ }^{18}$ and $2 \cdot 326 \AA$ in $\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{pyS})_{2}{ }^{19}$ Therefore, apart from trans-influence a further factor must be invoked to explain the short $\mathrm{Ru}-\mathrm{P}(\mathbf{3})$ distance.

It has been suggested ${ }^{20-24}$ that in some circumstances a bidentate group may be considered as occupying one co-ordination site about a metal atom. Such a concept clearly has its limitations; nevertheless an assumption that the title complex has a pseudo-five-co-ordinate geometry makes more understandable the differentiation of $\mathrm{Ru}-\mathrm{P}$ bond lengths, and the similarity with $\mathrm{Ru}(\mathrm{H}) \mathrm{Cl}-$ $\left(\mathrm{PPh}_{3}\right)_{3}$ and $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$. The bidentate acetate group, owing to its small 'bite', subtends an angle of only $57 \cdot 6^{\circ}$ at the ruthenium atom. In both the title complex and in $\mathrm{Ru}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)_{3}$, the $\mathrm{RuH}\left(\mathrm{PPh}_{3}\right)_{3}$ portion is almost identical. If one now takes $\mathrm{C}(1)$ as representing the centre of the acetate group then the angle $\mathrm{P}(3)-\mathrm{Ru}-\mathrm{C}(1)$ is $c a .128^{\circ}$ compared to the equivalent angle $\mathrm{P}-\mathrm{Ru}-\mathrm{Cl}$ of $121.5^{\circ}$ in $\mathrm{RuHCl}\left(\mathrm{PPh}_{3}\right)_{3}{ }^{2}$.

Both the $\mathrm{Ru}-\mathrm{O}(\mathrm{AcO})$ distances (2.198 and $2 \cdot 210 \AA$ ) are long, suggesting that this group is only loosely held. This agrees with the finding ${ }^{1}$ that in solution it is easily replaced by CO. The two distances are not significantly different [because of the method of data collection the $y$ co-ordinates are least accurately determined in the structure; this affects especially $\mathrm{Ru}-\mathrm{O}(1)$ which lies in the $b$ direction]. It is difficult to find a strictly comparable $\mathrm{Ru}-\mathrm{O}$ distance, but in $\left[\mathrm{Ru}_{3} \mathrm{O}\left(\mathrm{CO}_{2} \mathrm{Me}_{6}\left(\mathrm{PPh}_{3}\right)_{3}\right]^{25}\right.$ the mean $\mathrm{Ru}-\mathrm{O}(\mu-\mathrm{AcO})$ distance is $2.06 \AA$, and in $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{RuCl}_{4}(\mathrm{NO})(\mathrm{OH})\right]{ }^{26}$ the $\mathrm{Ru}-\mathrm{O}$ distance is $2.03 \AA$. The bond lengths we find are some $0.2 \AA$ longer than the sum of Pauling's covalent radii ( $1.99 \AA$ ). ${ }^{27}$

Although the position of the hydride hydrogen atom has been determined with only limited accuracy the $\mathrm{Ru}-\mathrm{H}$ distance found agrees very well with that ${ }^{2}$ of $1.68 \AA$ in $\mathrm{RuHCl}\left(\mathrm{PPh}_{3}\right)_{3}$ and of $1.67 \AA$ in $\mathrm{Ru}-\mathrm{H}-$ (naphthyl)(dmpe), [dmpe $=1,2$-bis(dimethylphosphino)ethane]. ${ }^{28,29}$ The mean P-C distance ( $1.841 \AA$ ) can be compared to the means in $\mathrm{RuHCl}\left(\mathrm{PPh}_{3}\right)_{3}(1.841)$ and in $\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{pyS})_{2}(1 \cdot 845 \AA) \cdot{ }^{19} \quad \mathrm{P}-\mathrm{C}(\mathrm{Ph})$ distances are appreciably shorter when the fourth bond is to an organic entity rather than to a transition metal, viz. a mean of $1.790 \AA$ in the benzyltriphenylphosphonium ion. ${ }^{30}$ Also in this context departures from perfect $s p^{3}$ geometry at the phosphorus atom are much more marked in metal complexes, especially where these bulky ligands are crowded. This leads to an appreciable spread in tetrahedral angles, but the mean values

[^1]of $116.4^{\circ}$ for $\mathrm{Ru}-\mathrm{P}-\mathrm{C}$ and of $101.5^{\circ}$ for $\mathrm{C}-\mathrm{P}-\mathrm{C}$ may be considered as typical for this class of compound.

The molecular structure shows approximate $m$ symmetry, where the ' mirror plane' can be taken as that containing $\mathrm{Ru}, \mathrm{P}(3)$, the acetate group, and the hydride hydrogen atom. Phenyl ring $\mathrm{C}(8 n)$ lies almost on this plane, while $\mathrm{P}(\mathbf{1})$ is approximately mirror-related to
example of such a behaviour exists in $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3},{ }^{16}$ where an $\alpha$-hydrogen blocks the sixth co-ordination site in this five-co-ordinate complex. There the hydrogen atom is as close as $2.59 \AA$ from ruthenium, and La Placa and Ibers were able to show that the marked distortion at the phosphorus atom, where $\mathrm{P}-\mathrm{C}(1)-\mathrm{C}(4)$ angle is $169.5^{\circ}$, was consistent with repulsion of the $\alpha$-hydrogen

Table 6
Planarity of groups of atoms in the molecule and distances $(\AA)$ from least-squares planes. Equations of the planes are expressed as $P x+Q y+R z=\mathrm{S}$ in direct space

| $P$ | Q | $R$ | $S$ | Deviation ( $\AA$ ) of atoms from plane |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Defining plane | Not defining plane |
| $-0 \cdot 22$ | $0 \cdot 32$ | $23 \cdot 25$ | $5 \cdot 64$ | $\mathrm{Ru}(1) 0.001, \mathrm{P}(3)-0.003, \mathrm{O}(1) 0.012$, | $\overbrace{\text { P(1) }} \quad 2 \cdot 292$ |
|  |  |  |  | $\mathrm{O}(2) 0.008, \mathrm{C}(1)-0.022, \mathrm{C}(2) 0.004$ | $\mathrm{P}(2)-2 \cdot 303$ |
|  |  |  |  |  | $\mathrm{H}(1) \quad 0.07$ |
| $16 \cdot 09$ | $4 \cdot 45$ | $20 \cdot 05$ | $2 \cdot 93$ | $\begin{aligned} & \mathrm{C}(11) 0.003, \mathrm{C}(12)-0.001, \mathrm{C}(13)-0.006 \\ & \mathrm{C}(14) 0.010, \mathrm{C}(15)-0.008, \mathrm{C}(16) 0.001 \end{aligned}$ | $\mathrm{P}(1)-0.079$ |
| $14 \cdot 44$ | $2 \cdot 43$ | $6 \cdot 33$ | $6 \cdot 36$ | $\begin{aligned} & \mathrm{C}(21)-0.013, \mathrm{C}(22) 0.001, \mathrm{C}(23) 0.018 \\ & \mathrm{C}(24)-0.024, \mathrm{C}(25) 0.013, \mathrm{C}(26) 0.006 \end{aligned}$ | $\mathrm{P}(\mathrm{I})-0.092$ |
| - $4 \cdot 33$ | $-1.55$ | 25.05 | $7 \cdot 53$ | $\mathrm{C}(31)-0.014, \mathrm{C}(32) 0.012, \mathrm{C}(33) 0.001$ | $\mathrm{P}(1)-0.237$ |
| $10 \cdot 47$ | $8 \cdot 16$ | $-2.86$ | $1 \cdot 42$ | $\mathrm{C}(41) 0.004, \mathrm{C}(42)-0.011, \mathrm{C}(43) 0.011$ | $\mathrm{P}(2) \quad 0.010$ |
|  |  |  |  | $\mathrm{C}(44)-0.006, \mathrm{C}(45) 0.000, \mathrm{C}(46) 0.001$ |  |
| $16 \cdot 18$ | -2.68 | $2 \cdot 62$ | $2 \cdot 70$ | $\begin{aligned} & C(51)-0.002, \mathrm{C}(52)-0.003, \mathrm{C}(53) 0.013 \\ & \mathrm{C}(54)-0.017, \mathrm{C}(55) 0.012, \mathrm{C}(56)-0.003 \end{aligned}$ | $\mathrm{P}(2)-0.019$ |
| $-6.82$ | $-2 \cdot 16$ | $25 \cdot 53$ | $2 \cdot 45$ | $\mathrm{C}(61)-0.004, \mathrm{C}(62)-0.001, \mathrm{C}(63) 0.002$, | $\mathrm{P}(2) \quad 0 \cdot 154$ |
|  |  |  |  | $\mathrm{C}(64) 0.001, \mathrm{C}(65)-0.006, \mathrm{C}(66) 0.007$ |  |
| $15 \cdot 02$ | $-0.76$ | $6 \cdot 25$ | $6 \cdot 36$ | $\begin{aligned} & C(71) 0.014, C(72)-0.017, C(73)-0.005 \\ & C(74) 0.030, C(75)-0.032, C(76) 0.010 \end{aligned}$ | $\mathrm{P}(3) \quad 0 \cdot 136$ |
| $-2 \cdot 71$ | $0 \cdot 21$ | $24 \cdot 64$ | $5 \cdot 02$ | $\mathrm{C}(81) 0.019, \mathrm{C}(82)-0.012, \mathrm{C}(83)-0.012$, | $\mathrm{P}(3) \quad 0 \cdot 109$ |
|  |  |  |  | $\mathrm{C}(84) 0.029, \mathrm{C}(85)-0.022, \mathrm{C}(86)-0.002$ |  |
| $-16.59$ | 1-31 | $23 \cdot 96$ | $0 \cdot 48$ | $\mathrm{C}(91)-0.009, \mathrm{C}(92) 0.007, \mathrm{C}(93) 0.007$, | $P(3)-0.059$ |
|  |  |  |  | $\mathrm{C}(94)-0.019, \mathrm{C}(95) 0.017, \mathrm{C}(96)-0.003$ |  |



Figure 3 A stereoscopic view showing the packing of the molecules
$\mathrm{P}(2)$, as are the following pairs of phenyl rings: $\mathrm{C}(7 n)$ and $\mathrm{C}(9 n), \mathrm{C}(1 n)$ and $\mathrm{C}(5 n)$, and $\mathrm{C}(2 n)$ and $\mathrm{C}(6 n)$ (Table 6). The remaining pair of rings, $\mathrm{C}(3 n)$ and $\mathrm{C}(4 n)$, however, drastically break this pseudo-symmetry. A possible reason for this is that ring $\mathrm{C}(4 n)$ swivels out of position such that its $\alpha$-hydrogen blocks the most open gap in the ruthenium co-ordination, that between $\mathrm{O}(2)$ and $\mathrm{H}(\mathrm{l})$. This is by far the nearest non-bonded hydrogen atom and is ca. $2 \cdot 88 \AA$ from the metal atom. The classic
atoms. In our structure, where the $\alpha$-hydrogen is further away, we find no such distortion for this ring, in that the phosphorus atom is within $0.01 \AA$ of the leastsquares plane. That it is ring $\mathrm{C}(4 n)$ rather than $\mathrm{C}(3 n)$ which is 'out of position' can be inferred from the fact that while $\mathrm{C}(3 n)$ could not be rotated to mirror $\mathrm{C}(4 n)$, since this would produce a clash between them, there is no reason due to intramolecular packing why $\mathrm{C}(4 n)$ could not mirror $\mathrm{C}(3 n)$. Clearly, an $\mathrm{Ru} \cdots \mathrm{H}(42)$
distance of ca. $2 \cdot 88 \AA$ cannot in any sense be considered as constituting a bond, however, it may be that a weak long-range attraction is responsible for this orientation of $C(4 n)$.

Figure 3 shows a stereoscopic view of the arrangement of the molecules in the unit cell. ${ }^{31}$ Intermolecular distances are not particularly noteworthy, the shortest is $3 \cdot 48 \AA$ and involves an oxygen atom of the acetate group.

The hydrogenation catalysis behaviour of the title complex in benzene ${ }^{6}$ and acidified methanol solution ${ }^{7}$ has been found to be different. In the latter the first stage involves a loss of both the acetate group and the hydride hydrogen to give a cation of the type [Ru$\left.\left(\mathrm{PPh}_{3}\right)_{3} \imath \mathrm{MeOH}\right]^{2+}$, followed by the loss of a triphenyl-
phosphine group in the presence of alkene under hydrogen. In the former case the acetate group and the hydride hydrogen remain, and a triphenylphosphine group is lost in the first step. In both cases the specificity of this complex for alk-1-enes is thought to be due to steric hindrance of the bulky triphenylphosphine groups limiting the approach of alkenes other than of the terminal variety.

We thank Dr. J. D. Gilbert and Professor G. Wilkinson for providing the crystals and for discussions.
[3/1516 Received, 19th July, 1973]
${ }^{31}$ C. K. Johnson, ORTEP thermal ellipsoid plotting program, Oak Ridge National Laboratory, 1965, Report ORNL 3794.


[^0]:    * Although these two five-co-ordinate complexes have been described as distorted trigonal-bipyramidal and distorted squarepyramidal respectively, in fact the distortions in each case are such that the geometries are as close to each other as to the idealised polyhedron.
    ${ }^{16}$ S. J. La Placa and J. A. Ibers, Inorg. Chem., 1965, 4, 778.
    ${ }_{18} 17$ A. C. Skapski and F. A. Stephens, J.C.S. Dalton, 1973, 1789.
    ${ }_{18}$ K. A. Raspin, J. Chem. Soc. (A), 1969, 461.
    ${ }^{19}$ S. R. Fletcher and A. C. Skapski, J.C.S. Dalton, 1972, 635.
    ${ }_{20}$ F. A. Cotton, D. M. L. Goodgame, and R. H. Soderberg, Inorg. Chem., 1963, 2, 1162.
    ${ }^{21}$ J. G. Bergman and F. A. Cotton, Inorg. Chem., 1966, 5, 1208.
    ${ }^{22}$ C. D. Garner and S. C. Wallwork, J. Chem. Soc. (A), 1966, 1496.

[^1]:    ${ }^{23}$ J. C. Taylor, M. H. Mueller, and R. L. Hitterman, Acta Cryst., 1966, 20, 842.
    ${ }_{24}$ D. Britton and J. D. Dunitz, Acta Cryst., 1965, 19, 815.
    ${ }^{25}$ F. A. Cotton, J. G. Norman, jun., A. Spencer, and G. Wilkinson, Chem. Comm., 1971, 967 .
    ${ }_{26}$ N. A. Parpiyev and M. A. Poray-Koshits, Krystalografiya, 1959, 4, 30.
    ${ }^{27}$ L. Pauling, The Nature of the Chenical Bond, Brd edn., Cornell University Press, Ithaca, New York, 1960, pp. 224 and 249.
    ${ }^{28}$ S. D. Ibekwe, B. T. Kilbourn, U. A. Raeburn, and D. R. Russell, Chem. Comm., 1969, 433.
    ${ }_{29}$ U. A. Gregory, S. D. Ibekwe, B. T. Kilbourn, and D. R. Russell, J. Chem. Soc. (A), 1971, 1118.
    ${ }^{30}$ A. C. Skapski and F. A. Stephens, J. Cryst. Mol. Struct., 1974, in the press.

