Characterisation of the Synthetic Zeolite (Na, Me₄N)-V

By Richard M. Barrer * and (Mme) Réjane Beaumont, Physical Chemistry Laboratories, Chemistry Department, Imperial College, London SW7 2AY

Zeolite (Na, Me $_4$ N)-V, of unknown structure, has been characterised in various ways. ~ Comparison of the compositions of all known preparations shows it to be aluminous, with Si/AI = ca. 1. Although its synthesis is promoted by tetramethylammonium hydroxide, Me₄N+ ions enter the final cubic structure in minimal amounts. Unit cells and *d*-spacings of known preparations are compared. The zeolite is not open in structure. Ion-exchange iso-therms were determined for the pairs Na ᆃ Li, Na ᆃ Cs, 2Na ᆃ Ca, 2Na ᆃ Sr, and 2Na ᆃ Ba.

Among purely synthetic zeolites of presently unknown structure one may include the closely related phases variously referred to as zeolite $N,^1$ zeolite Z-21,² and zeolite (Na, Me_4N) -V,³ where Me_4N denotes tetramethylammonium. It is of interest to characterise this species more closely.

EXPERIMENTAL

Zeolite (Na, Me₄N)-V was synthesised with metakaolinite as the source of silica and alumina. The reaction mixture of metakaolinite $(Al_2O_3, 2SiO_2)$ (4 g), tetramethylammonium hydroxide (25%; 78 g), sodium hydroxide (2.15 g),

TABLE 1

Oxide compositions

Ref.	Na ₂ O	(Me ₄ N) ₂ O	Al_2O_3	SiO_2	H ₂ O
This work	0.975	0.018	1	1.99	3.12
1	0.83	0.03 - 0.04	1	1.89 - 2.07	2.86 - 2.71
2	0.99	_	1	1.89 - 2.20	1.89 - 2.20
3	0.88	0.1	1	$2 \cdot 0$	3

and water (30.8 g) gave molar ratios H_2O : Al_2O_3 , $2SiO_2 =$ 278; H_2O : (Me₄NOH + H_2O) = 20; and Me₄NOH: (Me₄-NOH + NaOH = 0.8. The aqueous phase was *ca.* 2.8M in total alkali. The mixture was stirred for six days at 65-70 °C and the crystalline product was washed and dried, and stored at relative humidity (R.H.) 56%.

Thermogravimetric and differential thermal analyses

¹ U.S.P. 3,414,602, 1968.

² U.S.P. 3,567,372, 1971.

(t.g.a. and d.t.a.) showed 16.5% endothermic water loss followed by 2.5% exothermic weight loss at *ca*. 500 °C, attributed to oxidative removal of Me_4N . The oxide compositions of the new preparation and of earlier preparations are in Table 1.

RESULTS AND DISCUSSION

There is in all cases an aluminous framework in which there must, according to Lowenstein's rule,⁴ be ordering of Al and Si. Although the crystallisation of the zeolite is favoured by the presence of Me₄NOH very little or even none of this base is incorporated during growth. The zeolite recrystallised at ca. 900 °C to a mixture of nepheline and carnegeite, but if heated only to 600 °C it remained stable and when cooled regained all its zeolitic water. As observed earlier³ the outgassed parent zeolite did not sorb oxygen at 78 K nor did its Ca-enriched form. It is therefore not likely to be an open structure with 17 Å cavities as suggested in ref. 2.

Samples of the zeolite were prepared which were enriched by ion exchange in each of the ions NH_4^+ , Li⁺, Cs⁺, Ca²⁺, Sr²⁺, and Ba²⁺, and the water contents were determined after conditioning at 56% R.H. The results (Figure 1) indicate that the water contents ³ R. M. Barrer and D. E. Mainwaring, J.C.S. Dalton, 1972, 2534. ⁴ W. Lowenstein, Amer. Mineralogist, 1954, **39**, 92.

decrease with increasing cation size and that univalent ions lie on a different curve from bivalent ones. This

FIGURE 1 Variation with radius of the exchange ion of the number, N, of water molecules per Al₂O₃

behaviour has been found in other zeolites.^{5,6} d-Spacings and relative intensities of lines in the powder patterns

and in Ba-V some lines present in the other phases were not observed. All these forms were however well crystalline. Only the NH_4 -enriched V showed deterioration of crystallinity which became considerable and increased the more the extent of replacement of Na⁺ by NH_4^+ exceeded 50%.

d-Spacings reported for zeolites $N,^1 Z-21,^2$ and $(Na, Me_4N)-V^3$ are compared with each other and with those of the new preparation in Table 2. The close similarity of all the phases is apparent. The powder patterns index to the cubic unit cells are shown in Table 3. Zeolite N was described as face-centred cubic ¹ and, on the basis of a hypothetical structure, Z-21 was referred to as a diamond-type cubic crystal.²

Exchange isotherms were measured for Na⁺ \longrightarrow Li⁺ at room temperature and for Na⁺ \longrightarrow Cs⁺, 2Na \longrightarrow Ca²⁺; 2Na⁺ \longrightarrow Sr²⁺ and 2Na⁺ \longrightarrow Ba²⁺ at 80 °C (Figures 2 and 3). The solutions were all 0·1N and each point was allowed respectively 1, 3, 1, 3, and 3 days for equilibration, taking the exchange systems

TABLE 2Some d-spacings of the new zeolite

		Some u	spacings of			(Na, I	Me ₄ N)-V	
Indices	Z-21 ²		Zeolite N ¹		Ref. 3		This work	
hkl	$d/{ m \AA}$	Int.	$d/{ m \AA}$	Int.	$d/\mathrm{\AA}$	Int.	$d/\mathbf{\AA}$	Int.
111	21.12	50	21.65	41	21.54	m	21.39	s
220	12.98	75	13.17	68	13.09	ms	13.05	s
311	11.07	70	11.19	73	11.19	ms	11.10	s
400	9.18	35	9.29	50	9.27^{-}	m	9.24^{-1}	s
331	8.42	10					8.42,	w
422	7.50	3					7.50	w
333	7.06	10	7.138	14	7.10_{1}	w	7·08 _₅	m
440	6.51	100	6.569	100	6.54,	vs	6.51	vs
531	6.23	50	6.268	36			6.23_{1}	m
620	5.82	20	5.864	23	5.84_{6}	w	5.82^{-}_{1}	m
533	5.60	10	5.655	16	5.64_4	w	5.62^{-}_{1}	m
444	5.30	5			5.33^{-}_{-}	mw	5.31_{6}	w
711, 551	5.15	15			5.15_{3}	w	5.15_{8}	m
731, 553	4.79	15	4.826	27	4.79	mw	4.79_{7}	s
733	4.50	10	4.522	14	$4 \cdot 51_4$	w	4.497	\mathbf{m}
660, 822	4.34	20	4.358	20	4.34_{9}	w	4.339	m
751, 555	4.24	3			4.26_{7}	mw	4.258	w
840	4.12	15			4.12_{8}	w	4.117	$\mathbf{m}\mathbf{w}$
911, 753	4.04	70	4.056	89	4.04_{6}	s	4.039	vs
664	3.92	10		—	3.94_{5}	w	3.927	w
931	—				_		$3 \cdot 862$	w
844	3.76	45	3.776	57	3.765	ms	3.757	s
771, 933, 755	3.70	75	3.718	80	3.709	s	3.698	vs
1020, 862	3.61	5					3.610	vw
951, 773	3.55	10	3.574	23	3.567	w	3.557	w
1031, 952, 765					3.519	w		
953	3.43	10	3.482	20	3.437	w	$3 \cdot 420$	m
1042	3.36	15	3.377	20	3.367	w	3.361	m
1111, 775	$3 \cdot 31$	1	3.347	41			$3 \cdot 320$	vw
880		<u> </u>					3.259	vw
1122, 1052, 881, 874							$3 \cdot 249$	vw
1131, 971, 955	3.21	15			3.227	m	3.212	s
1060, 866	3.12	2			3.163	w	3.126	w
1133, 973	$3 \cdot 12$	30	3.139	41	3.131	m	3.121	s
1151, 777	3.03	15	3.051	20	3.046	w	3.036	m
1222, 1064	$2 \cdot 98$	45	2.991	61	2.993	\mathbf{ms}	2.986	S
1153, 975	2.95	~ 0	-				2.955	vw
1240	2.90	2			2.917	w	2.908	w
1242, 1080, 886	2.88	5			2.884	w	2.874	$\mathbf{m}\mathbf{w}$
1311, 1171, 1155, 993	2.82	15	2.827	25	2.828	mw	2.814	\mathbf{m}

of the Na-, Li-, and Ca-forms were very similar. With Sr-V certain line intensities changed rather markedly ⁵ R. M. Barrer, J. A. Davies, and L. V. C. Rees, *J. Inorg. Nuclear Chem.*, 1969, **31**, 219. in the order given above. Points in the reverse direction suggest reversibility at least in some instances (Figure 2, ⁶ R. M. Barrer and B. M. Munday, J. Chem. Soc. (A), 1971, 2905, 2909, 2914.

TABLE 3

Cubic cell edge, a, for the zeolite

	$a/{ m \AA}$	Ref.
Zeolite N	37.219	1
Zeolite Z-21	36.7	2
Zeolite (Na, Me ₄ N)-V	36·9 ₇	3
Zeolite (Na, Me ₄ N)-V	36.812	This work
(Li ^{ex} , Na, Me ₄ N)-V	36.392	This work
(Ba ^{ex} , Na, Me ₄ N)-V	36.8	This work
(Caex, Na, Me ₄ N)-V	36.8	This work

curves a and b and Figure 3, curves b and c). Exchange did not exceed *ca.* 35% with Na⁺ \Longrightarrow Cs⁺ and *ca.* 70% for 2Na⁺ \Longrightarrow Ba²⁺. It seems likely from the

FIGURE 2 Exchange isotherms of Na⁺ Li⁺ (curve a) and 2Na⁺ Ca²⁺ (curve b). A_8 and A_z in Figures 2 and 3 are equivalent cation fractions in solution and in the zeolite respectively. In curve a the A refer to Li⁺ and in curve b to Ca²⁺. In a, $\bigcirc = Na^+ - Li^+$ and $\bigcirc = Li^+ - Na^+$; in b $+ = 2Na^+ - Ca^{2+}$ and $\square = Ca^{2+} - 2Na^+$

isotherms that homoionic Li-, Ca-, and Sr-forms of zeolite V can be prepared (except for the small Me_4N content). Accordingly Kielland quotients were evaluated for these cases and used in the usual way⁵ to

determine the thermodynamic equilibrium constants K_a and standard free energies ΔG° of exchange (Table 4).

FIGURE 3 Exchange isotherms of Na⁺ Cs⁺ (curve a), 2Na⁺ Ba²⁺ (curve b), and 2Na⁺ Sr²⁺ (curve c). The *A* refer to Cs⁺ in a, Ba²⁺ in b, and Sr²⁺ in c. In b $\triangle =$ 2Na⁺ Ba²⁺ and $\Diamond =$ Ba²⁺ 2Na⁺; in c += 2Na⁺ Sr²⁺ and $\square =$ Sr²⁺ 2Na⁺

The thermodynamic affinity sequence is Ca' > Sr > Na > Li. For small loadings the zeolite is selective for Ca^{2+} , Sr^{2+} , and Ba^{2+} over Na^+ or Li^+ (Figures 2 and 3).

	TABLE 4	
	ΔG^{\oplus} and $K_{\mathbf{a}}$	
Exchange	$K_{\mathbf{a}}$	$\Delta G \oplus \mathbf{k} \mathbf{J} equiv^{-1}$
Na+ ──► Li+	0.14	4.95
2Na ⁺ ≻ Ca ²⁺	17.3	-4.18
2Na+≻ Sr ²⁺	4.58	-2.50

A structure determination of this zeolite will be of interest because of the very large unit cell. Crystals big enough for single-crystal X-ray diffraction have however not yet been grown.

[3/1812 Received, 31st August, 1973]