Crystal Structure of μ-[Di-(2-methoxyethyl) ethercadmio]-bis(pentacarb-onylmanganese)(2Cd-Mn) †

By William Clegg and Peter J. Wheatley,* Department of Physical Chemistry, Lensfield Road, Cambridge CB2 1 EP

Crystals of the title compound are monoclinic with $a=10 \cdot 161(10), b=23 \cdot 010(20), c=9 \cdot 718(9) A, \beta=$ $91 \cdot 80(2)^{\circ}, Z=4$, space group $P 2_{1} / n$. The structure was solved by Patterson and Fourier methods from 2191 counter intensities and refined by least-squares to $R 4.31 \%$. The cadmium atom is co-ordinated by the terdentate ether molecule and two pentacarbonylmanganese groups in a very distorted trigonal bipyramidal arrangement. There is considerable distortion of the octahedral manganese co-ordination. The molecule has approximate mirror symmetry.

We have previously reported the crystal structure of $\mu-\left(2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}\right.$-terpyridylcadmium)-bis(pentacarbonylmanganese) $(2 \mathrm{Cd}-\mathrm{Mn})$, (terpy) $\mathrm{Cd}\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]_{2}$, (I), which contains cadmium in a very distorted trigonal bipyramidal co-ordination. ${ }^{1}$ This compound was prepared from cadmium, dimanganese decacarbonyl, and terpyridyl, via the intermediate (diglyme) $\mathrm{Cd}\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]_{2}$ (II) \{diglyme $=$ di-(2-methoxyethyl) ether, (MeO-$\left.\left.\left[\mathrm{CH}_{2}\right]_{2} \cdot\right)_{2} \mathrm{O}\right\} .^{2}$ (II) is the only one of this series of addition complexes to contain an oxygen-donor Lewis base. Indeed such oxygen-donors are much rarer than nitrogen-donor ligands, and there appears to be only one previously reported structure containing a chelating diglyme ligand. ${ }^{3}$ We have determined the structure of (II) for comparison with that of the derivative (I).

EXPERIMENTAL

Crystal Data.- $\mathrm{C}_{16} \mathrm{CdH}_{14} \mathrm{Mn}_{2} \mathrm{O}_{13}, M=636 \cdot 6$, Monoclinic, $a=10 \cdot 161(10), \quad b=23 \cdot 010(20), \quad c=9.718(9) \quad \AA, \quad \beta=$ $91.80(2)^{\circ}, U=2256.3 \AA^{3}, D_{\mathrm{c}}=1.874, Z=4, D_{\mathrm{m}}=1.92$ (by flotation), $F(000)=1248$. Space group $P 2_{1} / n$ (from absences). Mo- K_{α} radiation, $\lambda=0.71069 \AA ; \mu\left(\right.$ Mo- $\left.K_{\alpha}\right)=$ $22.4 \mathrm{~cm}^{-1}$.

A sample of crystals, with a powdery coating due to surface decomposition, was used for determination of cell dimensions, space group, and density. Further material was prepared by the method of ref. 2, and recrystallised by cooling ethanol solutions to $-32{ }^{\circ} \mathrm{C}$ overnight. Crystals were irregular in shape, and there were no preferred cleavage planes. Decomposition took place in air; crystals used for intensity measurements were sealed under dry nitrogen in Lindemann glass capillaries. Unit-cell dimensions were obtained from the ω settings of several carefully centred axial reflexions with crystals mounted about a and b on a Stoe STADI 2 two-circle computer-controlled diffractometer operating on equi-inclination Weissenberg geometry. The space group $P 2_{1} / n$ is equivalent to the standard $P 2_{1} / c$ if different axes are chosen, but this involves an angle β of ca. 130°, which is less convenient.

Intensities were collected in the ω-scan mode with Mo- K_{α} radiation and a graphite monochromator. The diffracted beams were received by a scintillation counter equipped with pulse-height discriminator. A pre-scan of 1 s was

[^0]made at the centre of the scan range of each reflexion, and used to set step counting time and attenuation filters in order to achieve an approximate constant count method. ${ }^{4}$ A variable-range parameter enabled the ω-scan range to be adjusted to allow for the greater width of low-order reflexions of upper layers. The intensities of reflexions with $2 \theta<100^{\circ}$ were measured from the layers $0-9 k l$ and $h 0-6 l$. Several standard reflexions were monitored after each layer: crystal decomposition was slight and no corrections were made. Reflexions for which the integrated intensity was $<3 \sigma$ (based on counting statistics) were rejected, and a background imbalance test was also applied. ${ }^{5}$ Because of the irregular shapes of the crystals, and the reasonably small absorption coefficient, no absorption correction was made. 2191 Independent reflexions were assigned non-zero intensity, and placed on the same scale through common reflexions. ${ }^{6}$
A Patterson map was interpreted to give co-ordinates for the three metal atoms, which were used to phase a Fourier synthesis. About half the carbon and oxygen atoms were located; the rest were revealed in a subsequent weighted difference synthesis. ${ }^{7}$ With an overall temperature factor U of $0.04 \AA^{2}, R$ was 22.1%. For the first two cycles of full-matrix least-squares refinement, all atomic co-ordinates and the overall scale factor were allowed to vary, and there were six isotropic temperature factors: one for each metal atom, one for the carbonyl carbon atoms, one for the carbonyl oxygen atoms, and one for the diglyme atoms. R dropped to $8 \cdot 27 \%$. With anisotropic temperature factors for the metal atoms, and individual isotropic otherwise, further refinement gave $R \mathbf{4 . 9 7} \%$. At this stage a differenceFourier synthesis contained peaks at positions correspondiug to most of the hydrogen atoms, but there were many other peaks of comparable size (ca. $0.5 \mathrm{e}^{\AA-3}$), especially in the neighbourhood of the metal atoms and carbonyl groups, The hydrogen atom positions were therefore not refined, but calculated, the CH_{2} hydrogen atoms being placed so that the four $\mathrm{C}-\mathrm{C}-\mathrm{H}$ and $\mathrm{O}-\mathrm{C}-\mathrm{H}$ angles were equal in each case and the $\mathrm{H}-\mathrm{C}-\mathrm{H}$ angle was $109 \cdot 47^{\circ}$; the methyl hydrogen atoms were staggered with respect to the nearest $\mathrm{O}^{-}-\mathrm{Cd}$ bond, and all $\mathrm{C}-\mathrm{H}$ distances were $1 \cdot 0 \AA$. In subsequent refinement cycles, the shifts calculated for each carbon atom were also applied to the hydrogen atoms bonded to it, so that each $\mathrm{C}-\mathrm{H}$ bond maintained a constant direction and length. Three isotropic temperature factors

[^1]were refined for hydrogen: one for each set of three methyl hydrogen atoms, and one for all the methylene hydrogen atoms. The reflexions 021 and 120 , which appeared to be suffering from extinction, were not allowed to contribute further to refinement.

Table 1
(a) Fractional atomic co-ordinates ($\times 10^{4}$) and mean square amplitudes of vibration $\left(\AA^{2} \times 10^{3}\right)$ for the non-hydrogen atoms

Atom	x / a	y / b	z/c	U^{T}
Cd	2077(1)	1443(1)	2235(1)	
$\operatorname{Mn}(1)$	2616 (1)	626(1)	4188(1)	
$\mathrm{Mn}(2)$	2371 (1)	$2608(1)$	2026(1)	
C(1)	3005(9)	139(4)	5571 (9)	$58(2)$
(1)	$3255(7)$	--180(3)	6478 (7)	86(2)
C(2)	1097(9)	301 (4)	3632 (9)	$56(2)$
(1)	$12.2(7)$	$59(3)$	3304(7)	83(2)
C(3)	1695(9)	1134(4)	5186(9)	$59(2)$
$0(3)$	1065 (8)	1450(3)	5844(8)	88(2)
C(4)	4062(1])	$1069(5)$	4358(10)	$69(3)$
O(4)	5031 (9)	1341 (4)	445¢(8)	102(3)
(\%)	3370 (10)	$211(5)$	2882(10)	66 (3)
O(5)	3809(8)	-91(4)	2051 (8)	$94(2)$
C(6)	2623 (11)	3359(5)	1850(11)	$72(3)$
$\bigcirc(6)$	$2828(8)$	3858(4)	$1663(8)$	$97(2)$
C(7)	i 791 (9)	2449(4)	297(9)	$59(2)$
O(7)	1415(7)	2368(3)	-836(8)	$85(2)$
C(8)	$710(10)$	2714(4)	2509(10)	$66(3)$
O(8)	-386(8)	2809(4)	2805(8)	$94(2)$
(\%) 9	$2840(9)$	2516(4)	3813(10)	59(2)
O(9)	3127(7)	2474(3)	4978(7)	$80(2)$
$\mathrm{C}(10)$	4031 (10)	2431(4)	1559(9)	$60(2)$
O(10)	5111(8)	2334(3)	1270 (7)	82(2)
C(11)	- $1372(12)$	1474(5)	2995(12)	91 (3)
O(11)	--476(6)	1376(3)	1956(6)	$68(2)$
C(12)	- 993(11)	1032(5)	873(10)	$76(3)$
C(13)	--131(1])	1045(6)	-289(12)	$92(4)$
$\mathrm{O}(12)$	1184(6)	$925(3)$	93(6)	$62(2)$
$\mathrm{C}(14)$	2004(11)	916(6)	- 1056(11)	89(3)
C(15)	3335 (12)	783(6)	-729(12)	92(4)
O(13)	3844(6)	1122(3)	366(6)	$60(2)$
C(16)	$5221(11)$	1013(5)	582(11)	$80(3)$

(b) Anisotropic vibrational amplitudes $\left(\AA^{2} \times 10^{4}\right)$, in the form $\exp -2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+\cdots+2 h k a^{*} b^{*} U_{12}+\cdots\right)$

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Cd	$453(4)$	$350(3)$	$394(3)$	$-4(3)$	$-15(2)$	$-25(3)$
$\mathrm{Mn}(1)$	$462(7)$	$365(7)$	$4288(7)$	$-2(6)$	$11(5)$	$21(6)$
$\mathrm{Mn}(2)$	$549(9)$	$361(7)$	$\mathbf{4 6 1 (7)}$	$-20(6)$	$-33(6)$	$-7(6)$

(c) Calculated fractional co-ordinates ($\times 10^{4}$) and isotropic vibrational amplitudes ($\AA^{2} \times 10^{3}$) for the hydrogen atoms
$\left.\begin{array}{lrrrr}\text { Atom } & x / a & y / b & z / c & U \\ \text { H(11a) } & -2712 & 1675 & 2603 \\ \text { H(11b) } & -1634 & 1093 & 3397 \\ \text { H(11c) } & -950 & 1721 & 3731 \\ \text { H(12a) } & -1885 & 1181 & 584 \\ \text { H(12b) } & -1072 & 621 & 1199 \\ \text { H(13a) } & -179 & 1441 & -713 \\ \text { H(13b) } & -442 & 749 & -980 \\ \text { H(14a) } & 1974 & 1308 & -1499 \\ \text { H(14b) } & 1650 & 619 & -1720 \\ \text { H(15a) } & 3871 & 852 & -1559 \\ \text { H(15b) } & 3397 & 364 & -460 \\ \text { H(16a) } & 5696 & 1111 & -274 \\ \text { H(16b) } & 5361 & 594 & 810 \\ \text { H(16c) } & 5569 & 1259 & 1360\end{array}\right\}$

Up to this point, the weighting scheme used was $w^{-1}==$ $a+\left|F_{\mathrm{o}}\right|+b\left|F_{\mathrm{o}}\right|^{2}$, with $a=2 F_{\text {min. }}$ and $b=2 / F_{\text {max }} \cdot{ }^{8}$ Weights based on counting statistics were now introduced, so that $w=W /\left(a+\left|F_{0}\right|+\dot{b}\left|F_{0}\right|^{2}\right)$, with a and b set at 15.17 and 0.005 respectively, on the basis on an analysis of

* See Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issue.
the variance in ranges of $F_{0} / F_{\text {max. }}$. W is the sum of the counting statistics weight for all equivalent reflexions which were averaged in the data reduction to obtain the observed structure factor F_{0}. With this scheme, the analysis of the variance was more even than with the previous weighting scheme. The final R was $4 \cdot 31 \%$, and the largest shift-to- σ ratio in the last cycle was 0.022 . 147 Parameters were refined in all. Complex neutral scattering factors were used. ${ }^{9}$

RESULTS AND DISCUSSION

The results are summarised in Tables l-4. Final atomic co-ordinates and temperature factors are given in

Table 2

$\mathrm{Cd}-\mathrm{Mn}(1)$	$2 \cdot 714(2)$	$\mathrm{Cd}-\mathrm{O}(11)$	$2.603(7)$
$\mathrm{Cd}-\mathrm{Mn}(2)$	2.707(2)	$\mathrm{Cd}-\mathrm{O}(12)$	2.541 (7)
		$\mathrm{Cd}-\mathrm{O}(13)$	$2 \cdot 696(7)$
$\mathrm{Mn}(1)-\mathrm{C}(1)$	1.785(11)	$\mathrm{Mn}(2)-\mathrm{C}(6)$	$1.755(12)$
$\mathrm{Mn}(1)-\mathrm{C}(2)$	1.783(11)	$\mathrm{Mn}(2)-\mathrm{C}(7)$	$1.801(11)$
$\mathrm{Mn}(1)-\mathrm{C}(3)$	$1.798(11)$	$\mathrm{Mn}(2)-\mathrm{C}(8)$	1.781(11)
$\mathrm{Mn}(1)-\mathrm{C}(4)$	$1.789(12)$	$\mathrm{Mn}(2)-\mathrm{C}(9)$	1.799(11)
$\mathrm{Mn}(1)-\mathrm{C}(5)$	1.781(11)	$\mathrm{Mn}(2)-\mathrm{C}(10)$	$1 \cdot 806(11)$
$\mathrm{C}(1)-\mathrm{O}(1)$	1-169(11)	$\mathrm{C}(6)-\mathrm{O}(6)$	1-182(13)
$\mathrm{C}(2)-\mathrm{O}(2)$	1-172(11)	$\mathrm{C}(7)-\mathrm{O}(7)$	$1 \cdot 169(11)$
$\mathrm{C}(3)-\mathrm{O}(3)$	1-173(11)	$\mathrm{C}(8)-\mathrm{O}(8)$	$1 \cdot 179(12)$
$\mathrm{C}(4)-\mathrm{O}(4)$	1-168(12)	$\mathrm{C}(9)-\mathrm{O}(9)$	$1 \cdot 164(11)$
$\mathrm{C}(5)-\mathrm{O}(5)$	$1 \cdot 165(11)$	$\mathrm{C}(10)-\mathrm{O}(10)$	1.163(11)
$\mathrm{C}(11)-\mathrm{O}(11)$	1-398(13)	$\mathrm{C}(16)-\mathrm{O}(13)$	1-429(13)
$\mathrm{O}(11)-\mathrm{C}(12)$	1-407(12)	$\mathrm{O}(13)-\mathrm{C}(15)$	1-406(13)
$\mathrm{C}(12)-\mathrm{C}(13)$	$1 \cdot 451$ (16)	$\mathrm{C}(15)-\mathrm{C}(14)$	1-412(16)
$\mathrm{C}(13)-\mathrm{O}(12)$	1-402(13)	$\mathrm{C}(14)-\mathrm{O}(12)$	1-413(12)

Table 1, bond lengths and angles in Tables 2 and 3, and shortest non-bonded contacts in Table 4. In all these Tables estimated standard deviations are given in parentheses. Observed and calculated structure factors are listed in Supplementary Publication No. SUP 20889 ($15 \mathrm{pp} ., 1$ microfiche).* Reflexions not contributing to the refinement are marked with an asterisk. The labelling of the atoms is shown in Figure 1. The direction of view is inclined at 15° to the normal of the $\mathrm{Mn}-\mathrm{Cd}-\mathrm{Mn}$ plane ($c f$. Figure 1 of ref. 1). Each hydrogen or carbonyl oxygen atom has the same number as the carbon atom to which it is bonded.

The co-ordination of the cadmium is best described as a very distorted trigonal bipyramid, and a comparison with the structure of $(\mathrm{I})^{1}$ shows how similar are the environments of cadmium in the two compounds. The two axial bonds $\mathrm{Cd}-\mathrm{O}(11)$ and $\mathrm{Cd}-\mathrm{O}(13)$ enclose an angle of $126 \cdot 6^{\circ}$. This angle would be substantially larger if the diglyme ligand were planar (excluding the hydrogen atoms) instead of puckered, but this would also markedly increase repulsive intramolecular interactions between hydrogen atoms on adjacent carbon

[^2]Table 3
Bond angles (${ }^{\circ}$)

$\mathrm{Mn}(1)-\mathrm{Cd}-\mathrm{Mn}(2)$	135.9(1)	$\mathrm{O}(11)-\mathrm{Cd}-\mathrm{Mn}(1)$	102.1(2)
$\mathrm{O}(12)-\mathrm{Cd}-\mathrm{Mn}(1)$	107.9(2)	$\mathrm{O}(11)-\mathrm{Cd}-\mathrm{Mn}(2)$	99•4(2)
$\mathrm{O}(12)-\mathrm{Cd}-\mathrm{Mn}(2)$	116.1(2)	$\mathrm{O}(13)-\mathrm{Cd}-\mathrm{Mn}(1)$	$99 \cdot 1(2)$
$\mathrm{O}(11)-\mathrm{Cd}-\mathrm{O}(12)$	63.8(3)	$\mathrm{O}(13)-\mathrm{Cd}-\mathrm{Mn}(2)$	98.2(2)
$\mathrm{O}(12)-\mathrm{Cd}-\mathrm{O}(13)$	63•1(3)	$\mathrm{O}(11)-\mathrm{Cd}-\mathrm{O}(13)$	126.6(3)
$\mathrm{Cd}-\mathrm{Mn}(1)-\mathrm{C}(1)$	175.1(4)	$\mathrm{Cd}-\mathrm{Mn}(2)-\mathrm{C}(6)$	177.5(5)
$\mathrm{Cd}-\mathrm{Mn}(1)-\mathrm{C}(2)$	85.7(4)	$\mathrm{Cd}-\mathrm{Mn}(2)-\mathrm{C}(7)$	80.5(4)
$\mathrm{Cd}-\mathrm{Mn}(1)-\mathrm{C}(3)$	$80 \cdot 3(4)$	$\mathrm{Cd}-\mathrm{Mn}(2)-\mathrm{C}(8)$	$90 \cdot 5$ (4)
$\mathrm{Cd}-\mathrm{Mn}(1)-\mathrm{C}(4)$	79.5(4)	$\mathrm{Cd}-\mathrm{Mn}(2)-\mathrm{C}(9)$	$80 \cdot 6$ (4)
$\mathrm{Cd}-\mathrm{Mn}(1)-\mathrm{C}(5)$	87•4(4)	$\mathrm{Cd}-\mathrm{Mn}(2)-\mathrm{C}(10)$	$84 \cdot 3$ (4)
$\mathrm{C}(1)-\mathrm{Mn}(1)-\mathrm{C}(2)$	$97.7(5)$	$\mathrm{C}(6)-\mathrm{Mn}(2)-\mathrm{C}(7)$	98.9 (5)
$\mathrm{C}(1)-\mathrm{Mn}(1)-\mathrm{C}(3)$	$96 \cdot 2(5)$	$\mathrm{C}(6)-\mathrm{Mn}(2)-\mathrm{C}(8)$	91.9(6)
$\mathrm{C}(1)-\mathrm{Mn}(1)-\mathrm{C}(4)$	97•3(5)	$\mathrm{C}(6)-\mathrm{Mn}(2)-\mathrm{C}(9)$	100.1(6)
$\mathrm{C}(1)-\mathrm{Mn}(1)-\mathrm{C}(5)$	$96 \cdot 3(5)$	$\mathrm{C}(6)-\mathrm{Mn}(2)-\mathrm{C}(10)$	93.3(6)
$\mathrm{C}(2)-\mathrm{Mn}(1)-\mathrm{C}(3)$	88.6 (5)	$\mathrm{C}(7)-\mathrm{Mn}(2)-\mathrm{C}(8)$	89•4(5)
$\mathrm{C}(3)-\mathrm{Mn}(1)-\mathrm{C}(4)$	$91 \cdot 2(5)$	$\mathrm{C}(8)-\mathrm{Mn}(2)-\mathrm{C}(9)$	$89 \cdot 2(5)$
$\mathrm{C}(4)-\mathrm{Mn}(1)-\mathrm{C}(5)$	90.1(6)	$\mathrm{C}(9)-\mathrm{Mn}(2)-\mathrm{C}(10)$	$89 \cdot 7(5)$
$\mathrm{C}(5)-\mathrm{Mn}(1)-\mathrm{C}(2)$	$86.9(5)$	$\mathrm{C}(10)-\mathrm{Mn}(2)-\mathrm{C}(7)$	$90 \cdot 0$ (5)
$\mathrm{C}(2)-\mathrm{Mn}(1)-\mathrm{C}(4)$	165.0(5)	$\mathrm{C}(7)-\mathrm{Mn}(2)-\mathrm{C}(9)$	161.1(5)
$\mathrm{C}(3)-\mathrm{Man}(1)-\mathrm{C}(5)$	167.2(5)	$\mathrm{C}(8)-\mathrm{Mn}(2)-\mathrm{C}(10)$	174.8(6)
$\mathrm{Mn}(1)-\mathrm{C}(1)-\mathrm{O}(1)$	179.7(8)	$\mathrm{Mn}(2)-\mathrm{C}(6)-\mathrm{O}(6)$	176.2(11)
$\mathrm{Mn}(1)-\mathrm{C}(2)-\mathrm{O}(2)$	176.2(10)	$\mathrm{Mn}(2)-\mathrm{C}(7)-\mathrm{O}(7)$	177.5(10)
$\mathrm{Mn}(1)-\mathrm{C}(3)-\mathrm{O}(3)$	$177 \cdot 8(9)$	$\mathrm{Mn}(2)-\mathrm{C}(8)-\mathrm{O}(8)$	177.0(10)
$\mathrm{Mn}(1)-\mathrm{C}(4)-\mathrm{O}(4)$	177.7(10)	$\mathrm{Mn}(2)-\mathrm{C}(9)-\mathrm{O}(9)$	177.9(10)
$\mathrm{Mn}(1)-\mathrm{C}(5)-\mathrm{O}(5)$	175-4(10)	$\mathrm{Mn}(2)-\mathrm{C}(10)-\mathrm{O}(10)$	177.9(10)
$\mathrm{C}(11)-\mathrm{O}(11)-\mathrm{C}(12)$	113.3(9)	$\mathrm{C}(16)-\mathrm{O}(13)-\mathrm{C}(15)$	11044(9)
$\mathrm{O}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	110.5(10)	$\mathrm{O}(13)-\mathrm{C}(15)-\mathrm{C}(14)$	$112 \cdot 1(10)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{O}(12)$	112.5(10)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{O}(12)$	114.2(11)
$\mathrm{C}(13)-\mathrm{O}(12)-\mathrm{C}(14)$	111.9(9)		
$\mathrm{Cd}-\mathrm{O}(11)-\mathrm{C}(11)$	125.7(7)	$\mathrm{Cd}-\mathrm{O}(13)-\mathrm{C}(16)$	128.2(7)
$\mathrm{Cd}-\mathrm{O}(11)-\mathrm{C}(12)$	117.3(7)	$\mathrm{Cd}-\mathrm{O}(13)-\mathrm{C}(15)$	115.2(7)
$\mathrm{Cd}-\mathrm{O}(12)-\mathrm{C}(13)$	115.9(7)	$\mathrm{Cd}-\mathrm{O}(12)-\mathrm{C}(14)$	116.7(7)

Table 4
Shortest non-bonded distances (\AA) of various types

Type		
Intramolecular	Atoms	Distance
$\mathrm{H} \cdot \cdots \mathrm{H}$ (same C atom)	All of this type	$1 \cdot 663$
H \cdot H	$\mathrm{H}(14 \mathrm{a}) \cdot \cdots \mathrm{H}(15 \mathrm{a})$	$2 \cdot 196$
$\mathrm{O}(\mathrm{CO}) \cdots \cdot \mathrm{H}$	$\mathrm{O}(10) \cdot \cdots \mathrm{H}(16 \mathrm{c})$	$2 \cdot 517$
$\mathrm{O}(\mathrm{CO}) \cdots \mathrm{O}(\mathrm{CO})$	$\mathrm{O}(3) \cdots \mathrm{O}(9)$	$3 \cdot 279$
	$\mathrm{O}(4) \cdots \mathrm{O}(9)$	3-295
$\mathrm{C}(\mathrm{CO}) \cdots \mathrm{C}(\mathrm{CO})$	$\mathrm{C}(2) \cdots \mathrm{C}(5)$	$2 \cdot 451$
	$\mathrm{C}(2) \cdots \mathrm{C}(3)$	$2 \cdot 502$
$\mathrm{O}(\mathrm{CO}) \cdots \mathrm{C}$ (diglyme)	$\mathrm{O}(8) \cdots \mathrm{C}(11)$	$3 \cdot 238$
$\mathrm{O}(\mathrm{CO}) \cdots \mathrm{O}$ (diglyme)	$\mathrm{O}(10) \cdots \mathrm{O}(13)$	3-183
$\mathrm{C}(\mathrm{CO}) \cdots \mathrm{O}$ (diglyme)	$\mathrm{C}(10) \cdots \mathrm{O}(13)$	$3 \cdot 230$
$\mathrm{C}(\mathrm{CO}) \cdots \mathrm{C}($ diglyme $)$	$\mathrm{C}(5) \cdots \mathrm{C}(16)$	$3 \cdot 493$
$\mathrm{Cd} \cdot \cdots \mathrm{C}(\mathrm{CO})$	Cd. . C (4)	2.967
$\mathrm{Cd} \cdot \cdots \mathrm{O}(\mathrm{CO})$	$\mathrm{Cd} \cdot \cdots \mathrm{O}(4)$	$3 \cdot 650$
Intermolecular		
$\mathrm{H} \cdot \cdots \mathrm{H}$	$\mathrm{H}(\mathbf{1 5 b}) \cdots \mathrm{H}\left(16 \mathrm{~b}^{\mathbf{T}}\right)$	2.567
$\mathrm{O}(\mathrm{CO}) \cdots \mathrm{H}$	$\mathrm{O}(1) \cdots \mathrm{H}\left(1 \mathrm{lb}^{\text {II }}\right)$	$2 \cdot 673$
$\mathrm{O}(\mathrm{CO}) \cdots \mathrm{O}(\mathrm{CO})$	$\mathrm{O}(3) \cdots \mathrm{O}\left(10^{\text {III }}\right)$	$2 \cdot 993$
	$\mathrm{O}(7) \cdots \mathrm{O}\left(10^{\text {IV }}\right)$	3-147
	$\mathrm{O}(8) \cdots \mathrm{O}\left(9^{\mathbf{r v}}\right)$	3-161
$\mathrm{O}(\mathrm{CO}) \cdot \cdots \mathrm{C}($ diglyme $)$	$\mathrm{O}(5) \cdots \mathrm{C}\left(16^{\mathrm{r}}\right)$	$3 \cdot 489$

The Roman numeral superscripts refer to transformation of co-ordinates of the second atom as follows:

$$
\begin{array}{ll}
\text { I } 1-x,-y,-z & \text { II }-x,-y, 1-z \\
\text { III }-\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z & \text { IV }-\frac{1}{2}+x, \frac{1}{2}-y,-\frac{1}{2}+z
\end{array}
$$

${ }^{10}$ F. W. B. Einstein and B. R. Penfold, Acta Cryst., 1966, 20, 924.
atoms. The actual shape adopted by the ligand produces a staggered conformation about the $\mathrm{C}(12)-\mathrm{C}(13)$ and $\mathrm{C}(14)-\mathrm{C}(15)$ bonds. One very important difference between the structures of (I) and (II) on the one hand, and dichloro(terpyridyl)zinc (also described as distorted trigonal bipyramidal ${ }^{10}$) on the other is the large difference between the two $\mathrm{N}(2)-\mathrm{Zn}-\mathrm{Cl}$ angles in (terpy) ZnCl_{2}. This has also been noted in (terpy) $\mathrm{CoCl}_{2},{ }^{11}$ and (paphy)$\mathrm{CoCl}_{2}{ }^{\mathbf{1 2}}$ (paphy = pyridine-2-carbaldehyde-2-pyridylhydrazone, a terdentate ligand not greatly dissimilar from terpyridyl), and, chiefly as a result of this, Gerloch ${ }^{\mathbf{1 2}}$ and Goldschmied and Stephenson ${ }^{11}$ have

Figure 1 View of one molecule showing the labelling of the atoms
interpreted the structures of these three compounds as closer to square pyramidal than trigonal bipyramidal. It appears, however, from the bond lengths and angles, that distorted trigonal bipyramidal is the better description of the co-ordination of cadmium in (I) and (II), but it should be noted that the two ideal extremes are not very different in energy or even in geometry.

Within the diglyme ligand, all $\mathrm{C}-\mathrm{O}$ distances are essentially equal, and the mean $(1 \cdot 409 \AA)$ is a little smaller than the standard value for saturated alcohols and ethers $(1 \cdot 426 \AA) . .^{13}$ The two $\mathrm{C}-\mathrm{C}$ distances are considerably shorter than the normal value ($1 \cdot 54 \AA$). This shortening is probably not real, but the result of libration, ${ }^{14}$ for which no corrections have been made.

[^3]Of the three $\mathrm{Cd}-\mathrm{O}$ bonds, the central one is the shortest. This is in contrast to the $\mathrm{K}-\mathrm{O}$ distances in [diglymeK] $\left[\mathrm{Ce}\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)_{2}\right]^{3}$, where the central bond is $0.051 \AA$ longer than the other two, which are equal by crystallographic symmetry; however, it resembles the situation in terpyridyl complexes. ${ }^{\mathbf{1 , 1 0 , 1 1 , 1 5}}$ It seems that this shortening of the central bond is a consequence of the distorted trigonal bipyramidal or square pyramidal co-ordinations, as has been suggested for (terpy) $\mathrm{ZnCl}_{2} .{ }^{\mathbf{1 0}}$ Manipulation of molecular models shows that any attempt to increase the axial-axial angle must reduce the length of the central bond. So there is a conflict between the requirements of the cadmium co-ordination on the one hand, and the bonding and non-bonding interactions within the ligand on the other. ${ }^{1}$ The $\mathrm{Cd}-\mathrm{O}(11)$ and $\mathrm{Cd}-\mathrm{O}(13)$ bond lengths are significantly different, and this can probably be ascribed to packing forces: $\mathrm{O}(13)$ is involved in two of the shortest nonbonded intramolecular contacts (see Table 4), while the nearest neighbours to $\mathrm{O}(11)$ outside the diglyme ligand are to $C(2)(3 \cdot 340)$ and $C(8)(3 \cdot 344 \AA)$.

The $\mathrm{Cd}-\mathrm{Mn}$ bond lengths (not significantly different) in (II) are somewhat shorter than in (I). ${ }^{1}$ The Cd-O bond lengths are all longer than the $\mathrm{Cd}-\mathrm{N}$ lengths. This suggests weaker $\mathrm{Cd}-\mathrm{O}$ than $\mathrm{Cd}-\mathrm{N}$ bonds, and is in keeping with the observation that terpyridyl displaces diglyme from (I), ${ }^{2}$ with the greater air-sensitivity of the diglyme complex, and with the rarity of oxygen-donor ligands in general.

The co-ordination of the two manganese atoms is greatly distorted from ideal octahedral, but the pattern is not a simple alternating one as in (I). Similar gross distortions are noted in the complexes of $\mathrm{Cd}\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]_{2}$ with the bidentate ligands $2,2^{\prime}$-bipyridyl and $1,10-$ phenanthroline, ${ }^{\mathbf{1 6}}$ and smaller distortions, almost invariably involving a displacement of the equatorial carbonyl groups away from the axial, have been observed in a large number of manganese carbonyl derivatives $\mathrm{XMn}(\mathrm{CO})_{5},{ }^{17}$ and also in carbonyl complexes of other transition metals. ${ }^{18}$ That the effect is not due solely to

[^4]intermolecular (crystal packing) forces is demonstrated by gas-phase electron diffraction studies, ${ }^{19}$ and its consistent nature suggests an intramolecular electronic

Figure 2 The packing illustrated by a projection down the a axis
cause. Evidence for this has been found in interpretation of molecular orbital and force constant calculations, ${ }^{20}$ and of mass spectral fragmentation

19 A. G. Robiette, G. M. Sheldrick, R. N. F. Simpson, B. J. Aylett, and J. A. Campbell, J. Organometallic Chem., 1968, 14, 279 ; N. I. Gapotchenko, N. V. Alekseev, N. E. Kolobova, K. N Anisimov, I. A. Ronova, and A. A. Johansson, ibid., 1972, 35, 319 ; N. I. Gapotchenko, N. V. Alekseev, A. B. Antonova, K. N. Anisimov, N. E. Kolobova, I. A. Ronova, and Yu. T. Struchkov, ibid., 1970, 23, 525; A. G. Robiette, G. M. Sheldrick, and R. N. F. Simpson, J. Mol. Structure, 1969, 4, 221; A. Almenningen, G. G. Jacobsen, and H. M. Siep, Acta Chem. Scand., 1969, 23, 685.

20 D. A. Brown, W. J. Chambers, N. J. Fitzpatrick, and Sister R. M. Rawlinson, J. Chem. Soc. (A), 1971, 720; A. D. Berry, E. R. Corey, A. P. Hagen, A. G. MacDiamid, F. E. Saalfeld, and B. B. Wayland, J. Amer. Chem. Soc., 1970, 92, 1940 ; R. F. Fenske and R. L. de Kock, Inorg. Chem., 1970, 9, 1053 ; M. B. Hall and R. F. Fenske, ibid., 1972, 11, 1619.
patterns. ${ }^{21}$ Considering the evidence as a whole, it seems that the fundamental cause of the distortion of the manganese co-ordination is a direct $\mathrm{X}-\mathrm{C}(\mathrm{eq})$ interaction. The simple ' umbrella ' pattern expected is then modified by inter- and intra-molecular forces of the van der Waals type. Consequently, the distortions are most severe [with widely varying $\mathrm{X}-\mathrm{Mn}-\mathrm{C}(\mathrm{eq})$ angles in the same structure] for those compounds with the least-simple X groups, such as (I) and (II).

There is no crystallographic requirement for any molecular symmetry in (II), but there is approximate mirror symmetry $\left(C_{s}\right)$ about the equatorial plane
$[\mathrm{O}(12), \mathrm{Mn}(1), \mathrm{Mn}(2)]$. The crystal packing is shown in projection down the a axis in Figure 2.

We thank Drs. M. J. Mays and A. T. T. Hsieh for crystals, Drs. G. M. Sheldrick, P. J. Roberts, and W. D. S. Motherwell for the use of their computer programmes, the University Computer Laboratory for their facilities, and the S.R.C. for the provision of equipment and for a maintenance grant (to W. C.).
[3/1729 Received, 15th August, 1973]
${ }^{21}$ F. E. Saalfeld, M. V. McDowell, and A. G. MacDiarmid, J. Amer. Chem. Soc., 1970, 92, 2324.

[^0]: \dagger Reprints not available.
 ${ }^{1}$ W. Clegg and P. J. Wheatley, J.C.S. Dalton, 1973, 90.
 ${ }^{2}$ A. T. T. Hsieh and M. J. Mays, J. Chem. Soc. (A), 1971, 729.
 ${ }^{3}$ K. O. Hodgson and K. N. Raymond, Inorg. Chem:, 1972, 11, 3030.
 ${ }_{4}$ R. C. G. Killean, Acta Cryst., 1967, 28, pp. 54, 1109.

[^1]: ${ }^{5}$ H. C. Freeman, J. M. Guss, C. E. Nockolds, R. Page, and A. Webster, Acta Cryst., 1970, A26, 149.
 ${ }^{6}$ A. D. Rae and A. B. Blake, Acta Cryst., 1966, 20, 586.
 ${ }^{7}$ G. H. Stout and L. H. Jensen, ' X-Ray Structure Determination: A Practical Guide,' MacMillan, New York and London, 1968, p. 360.

[^2]: ${ }^{8}$ D. W. J. Cruickshank, in ' Computing Methods in Crystallography,' ed. J. S. Rollett, Pergamon, Oxford, 1965, p. 114.
 ${ }^{9}$ D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104 ; D. T. Cromer, Acta Cryst., 1965, 18, 17.

[^3]: 11 E. Goldschmied and N. C. Stephenson, Acta Cryst., 1970, B26, 1867
 ${ }^{12}$ M. Gerloch, J. Chem. Soc. (A), 1966, 1317.
 ${ }^{13}$ Chem. Soc. Special Publ., No. 18, 1965.
 14 D. W. J. Cruickshank, Acta Cryst., 1956, 9, 757; 1961, 14, 896.

[^4]: ${ }^{15}$ G. M. Intille, C. E. Pfluger, and W. A. Baker, J. Cryst. Mol. Struct., 1973, 3, 47.
 ${ }^{18} \mathrm{~W}$. Clegg and P. J. Wheatley, to be published.
 17 S. J. LaPlaca, W. C. Hamilton, and J. A. Ibers, Inorg. Chem., 1964, 3, 1491 ; S. J. LaPlaca, W. C. Hamilton, J. A. Ibers, and A. Davidson, ibid., 1969, 8, 1928; M. R. Churchill and R. Bau, ibid., 1967, 6, 2086; L. F. Dahl and R. E. Rundle, Acta Cryst., 1963, 16, 419; P. A. Agron, R. D. Elison, and H. A. Levy, ibid., 1967, 23, 1079; H. P. Weber and R. F. Bryan, ibid., 1967, 22, 822; P. T Greene and R. F. Bryan, J. Chem. Soc. (A), 1971, 1559; F. W. B. Einstein, H. Luth, and J. Trotter, ibid., 1967, 89; M. J. Bennett and R. Mason, ibid., 1968, 75; R. F. Bryan, ibid., p. 696; W. Clegg and P. J. Wheatley, ibid., 1971, 3572; P. J. Hansen and R. A. Jacobson, J. Organometallic Chem., 1966, 6, 389; B. K. Nicholson, J. Simpson, and W. T. Robinson, ibid., 1973, 47, 403; J. H. Tsai, J. J. Flynn, and F. B. Boer, Chem. Comm., 1967, 702. ${ }^{18}$ G. M. Sheldrick and R. N. F. Simpson, J. Chem. Soc. (A), 1968, 1005; T. L. Blundell and H. M. Powell, ibid., 1971, 1685; B. Lee, J. M. Burlitch, and J. L. Hoard, J. Amer. Chem. Soc., 1967, 89, 6362; L. B. Handy, J. K. Ruff, and L. F. Dahl, ibid., 1970, 92, 7312; R. F. Bryan and A. R. Manning, Chem. Comm., 1968, 1316; R. F. Bryan and H. P. Weber, Acta Cryst., 1966, 21, A, 138; W. T. Robinson and J. A. Ibers, Inorg. Chem., 1967, 6, 1208; K. Emerson, P. R. Ireland, and W. T. Robinson, ibid., 1970, 9, 436; M. F. Barley and L. F. Dahl, ibid., 1965, 4. 1140 .

