Crystal and Molecular Structure of Dimeric Dimethyltin Nitrate Hydroxide [Di- μ-hydroxo-bis(dimethyInitratotin)]

By (Mrs.) Angela M. Domingos and George M. Sheldrick,* University Chemical Laboratory, Lensfield Road, Cambridge CB2 1 EW

Abstract

Crystals of the title compound are triclinic, space group $B \overline{1}, a=6.53(2), b=8 \cdot 73(2), c=11 \cdot 20(3) A, \alpha=$ $86 \cdot 5(3), \beta=89 \cdot 2(4), \gamma=88 \cdot 3(3)^{\circ}, Z=2$. The structure was determined from photographic data by Patterson and Fourier methods and refined by full-matrix least-squares to $R 0.113$ for 844 unique observed reflections. The structure consists of centrosymmetric hydroxo-bridged dimers, with (SnO$)_{2}$ rings, five-co-ordinate tin, and unidentate nitrate ligands. Except for the methyl groups, all the atoms in each dimeric molecule are approximately coplanar.

Dimethyltin dinitrate, ${ }^{1}$ methyltin trinitrate, ${ }^{2}$ and tin tetranitrate ${ }^{3}$ have recently been shown to possess asymmetric bidentate nitrate ligands, and tin coordination numbers of 6,7 , and 8 respectively. On the other hand the nitrate group in trimethyltin nitrate monohydrate ${ }^{4}$ is unidentate, and the approximately trigonal bipyramidal co-ordination of tin involves axial $\mathrm{O}\left(\mathrm{NO}_{2}\right)$ and $\mathrm{O}\left(\mathrm{H}_{2}\right)$ substituents. Di- μ-hydroxo-bis(dimethylnitratotin) was first prepared by Yasuda and Okawara, ${ }^{5}$ who assigned four possible structures on the basis of i.r. spectra and physical properties. All these structures involved six-co-ordinate tin and bridging nitrate and hydroxide groups. In view of the possible structural similarity with the dialkyltin halide alkoxides, $\mathrm{R}_{2} \mathrm{Sn}\left(\mathrm{OR}^{\prime}\right) \mathrm{X}$, we have determined the crystal structure of $\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{OH}) \mathrm{NO}_{3}$. The structure reported here is different from those suggested by Yasuda and Okawara, but is consistent with the alkoxide-bridged dimeric structures suggested by Chapman et al. for the dialkyltin halide alkoxides. ${ }^{6}$

EXPERIMENTAL

The title compound was prepared by the reaction ${ }^{5}$ of dimethyltin oxide with nitric acid, followed by evaporation to dryness. Approximately needle-shaped crystals (from methanol) were sealed into Lindemann glass capillary tubes. Preliminary investigations showed that decomposition became significant after ca. 40 h irradiation in the X-ray beam, so exposure times were minimised. Intensities were estimated visually from equi-inclimation Weissenberg photographs (layers $0-5 k l$) using nickel-filtered $\mathrm{Cu}-K_{\alpha}^{\prime}$ radiation and a total exposure time of 34 h . Intensity data obtained about other oscillation axes were not of good enough quality to use in the structure refinement, so it was necessary to refine the inter-layer scale factors (with the consequence that little physical significance should be attached to the value of U_{11} for S_{11}). Lorentz, polarisation, and absorption corrections were applied. Unit-cell dimensions were obtained by least-
\dagger The Dirichet cell $(a=6.44, b=6.52, c=8.73 \AA, \alpha=86 \cdot 1$, $\beta=87.8, \gamma=60.5^{\circ}$) is obtained from the original cell by the matrix transformation (by rows): $-0.5,0,0.5 ; 0.5,0,0.5 ; 0,1$, 0 . The Delaunay cell $(a=6.44, b=6.53, c=8.73 \AA, \alpha=91.7$, $\beta=92.2, \gamma=119.6^{\circ}$) is obtained by the transformation: $0.5,0$, $-0.5 ;-1,0,0 ; 0,1,0$.
\ddagger See Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issuc (items less than 10 pp . are supplied as full size copies).
${ }^{1}$ J. Hilton, E. K. Nunn, and S. C. Wallwork, J.C.S. Dalton, 1973, 173.
${ }_{2}$ G. S. Brownlee, A. Walker, S. C. Nyburg, and J. T. Szymański, Chem. Comm., 1971, 1073.
squares analysis of $61 \alpha_{1}-\alpha_{2}$ splittings on the $0-5 k l$ and $h 0 l$ Weissenberg photographs. ${ }^{7}$

RESULTS

Crystal Data. $-\mathrm{C}_{4} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Sn}_{2}, \quad M=\mathbf{4 5 5 \cdot 6}$, Triclinic, $a=6 \cdot 53(2), \quad b=8.73(2), \quad c=11 \cdot 20(3) \quad \AA, \quad \alpha=86 \cdot 5(3)$, $\beta=89 \cdot 2(4), \quad \gamma=88 \cdot 3(3)^{\circ}, \quad U=637 \cdot 2 \AA^{3}, \quad Z=2, \quad D_{\mathrm{c}}=$ $2 \cdot 37, \quad F(000)=432 . \quad \mathrm{Cu}-K_{\alpha}$ radiation, $\lambda=1.5418 \AA$, $\mu\left(\mathrm{Cu}-K_{\alpha}\right)=327 \mathrm{~cm}^{-1}$. This unit cell (which is B face centred) was chosen in preference to a primitive cell because it gives interaxial angles close to $90^{\circ} . \dagger$ Space group $B 1$ or $B \overline{1}$, the latter confirmed by successful refinement of the structure. All atoms occupy four-fold general positions; the structure determination revealed the presence of dimers, which are required by space-group symmetry to lie across centres of inversion.

Structure Solution and Refinement.-The tin atom coordinates were obtained by interpretation of the Patterson function, and the remaining atoms were located from difference electron-density syntheses. The structure was refined by full-matrix least squares, with an anisotropic temperature factor for tin and isotropic temperature factors for the other atoms. In the final stages of refinement a total of 44 parameters were varied simultaneously, including the Zachariasen secondary extinction coefficient, which refined ${ }^{8}$ to the value $10^{5} Q_{0}{ }^{\gamma}{ }^{*}=66(16) \mathrm{cm}^{-1}$. Complex neutral-atom scattering factors ${ }^{9,10}$ were employed for all atoms. The weighting scheme was $w=1 /(3 \cdot 98+$ $\left.\left|F_{\mathrm{o}}\right|+0.00879\left|F_{\mathrm{o}}\right|^{2}\right)$. The refinement converged at R^{\prime} $0 \cdot 122$ (where $\left.R^{\prime}=\Sigma w^{\frac{1}{2}}\left|F_{\mathrm{o}}-F_{\mathrm{c}}\right| / \Sigma w^{\frac{1}{2}}\left|F_{\mathrm{o}}\right|\right)$, for a total of 844 unique observed reflections; the corresponding unweighted index R was $0 \cdot 113$. The strongest peak in the final difference Fourier was $c a .1 \cdot 8 \mathrm{e}^{\AA}{ }^{-3}$. An analysis of variance is presented in Table 1, and the results of the final least-squares cycle in Table 2. Bond lengths and angles are in Table 3; no corrections have been applied for molecular thermal motion. Shortest non-bonded distances are in Table 4. Observed and calculated structure factors are listed in Supplementary Publication No. SUP 20902 (6 pp., 1 microfiche). \ddagger Figure 1 shows one dimeric molecule, and Figure 2 illustrates the packing of the molecules.
${ }^{3}$ C. D. Garner, D. Sutton, and S. C. Wallwork, J. Chem. Soc. (A), 1967, 1949.
${ }^{4}$ R. E. Drew and F. W. B. Einstein, Acta Cryst., 1972, B28, 345.
${ }^{5} \mathrm{~K}$. Yasuda and R. Okawara, J. Organometallic Chem., 1965, 3, 76.
${ }_{6}$ A. C. Chapman, A. G. Davies, P. G. Harrison, and W. McFarlane, J. Chem. Soc. (C), 1970, 821 .
${ }^{7}$ N. W. Alcock and G. M. Sheldrick, Acta Cryst., 1967, 23, 35.
${ }^{8}$ A. C. Larson, 'Crystallographic Computing,' ed. F. R. Ahmed, Munksgaard, Copenhagen, 1970, pp. 291.
${ }^{9}$ D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.
${ }^{10}$ D. T. Cromer, Acta Cryst., 1965, 18, 17.

Table 1

Analysis of variance
(a) As a function of the parity of the indices

	$g g g$	$g u g$	$u g u$	uuut	All
N	204	202	224	214	$\mathbf{8 4 4}$
V	340	357	$\mathbf{3 5 7}$	$\mathbf{3 3 2}$	$\mathbf{3 4 7}$

(b) As a function of $\sin \theta$

Sin	$0.00-0.40-0.51-0.59-0.64-0.71-0.75-0.81-0.87-0.93-0$									
N	89	89	80	81	94	73	87	92	86	73
V	473	381	394	430	352	280	275	296	213	273

(c) As a function of F_{0}

	00-0.18-0.22-0.26-0.29-0.33-0.38-0.43-0.49-0.58-1									
N	89	84	99	75	77	96	72	99	73	80
V	264	264	281	321	337	314	356	418	451	426

(d) As a function of Weissenberg layer

h	0	1	2	3	4	5
N	110	168	160	159	136	111
V	335	383	326	331	384	301

N is the number of reflections in the group; V is the root mean square deviation $\left(\times 10^{2}\right)$ of a reflection of unit weight on absolute scale of F.

Table 2
Fractional co-ordinates ($\times 10^{4}$) and isotropic temperature factors $\left(\AA^{2} \times 10^{3}\right)$

	x / a	y / b	z / c	U
Sn	6623(2)	3232(2)	8001(1)	*
N	2556(37)	1694(28)	8441(20)	80(5)
O(1)	$3110(31)$	3059(21)	8068(15)	73(4)
$\mathrm{O}(2)$	3966(35)	695(26)	8706(20)	$100(6)$
$\mathrm{O}(3)$	772 (33)	1443 (25)	8565(17)	$88(5)$
$\mathrm{O}(4)$	9326(29)	4596(22)	7610(16)	84(5)
$\mathrm{C}(1)$	6994(48)	3079 (35)	9886(26)	84(7)
C(2)	$6907(57)$	1826(44)	6512(33)	114(11)

* Anisotropic temperature factors $\left(\AA^{2} \times 10^{3}\right)$, in the form $\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}+U_{33} l^{2} c^{* 2}+2 \dot{U}_{23} k l b^{*} c^{*}+\right.\right.$ $\left.\left.2 U_{31} l h c^{*} a^{*}+2 U_{12} h k a^{*} b^{*}\right)\right]$.

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Sn	$82(4)$	$46(1)$	$78(1)$	$1(1)$	$-1(1)$	$-6(1)$

Table 3
Molecular geometry
(a) Bond lengths (\AA)

$\mathrm{Sn}-\mathrm{C}(1)$	$2 \cdot 12(4)$
$\mathrm{Sn}-\mathrm{C}(2)$	$2 \cdot 13(4)$
$\mathrm{Sn}-\mathrm{O}(1)$	$2 \cdot 30(3)$
$\mathrm{Sn}-\mathrm{O}(4)$	$2 \cdot 18(3)$
$\mathrm{Sn}-\mathrm{O}\left(\mathbf{4}^{\prime}\right)$	$2 \cdot 06(3)$

(b) Bond angles (${ }^{\circ}$)

$\mathrm{O}(1)-\mathrm{Sn}-\mathrm{O}(4)$	$149 \cdot 3(1 \cdot 5)$	$\mathrm{Sn}-\mathrm{O}(1)-\mathrm{N}$,	$111 \cdot 5(1 \cdot 7)$
$\mathrm{O}(1)-\mathrm{Sn}-\mathrm{O}\left(4^{\prime}\right)$	$77 \cdot 9(1 \cdot 5)$	$\mathrm{Sn}-\mathrm{O}(4)-\mathrm{Sn}^{\prime}$	$108 \cdot 6(1 \cdot 1)$
$\mathrm{O}(4)-\mathrm{Sn}-\mathrm{O}\left(4^{\prime}\right)$	$71 \cdot 4(1 \cdot 4)$		
$\mathrm{O}(1)-\mathrm{Sn}-\mathrm{C}(1)$	$95 \cdot 4(1 \cdot 0)$	$\mathrm{O}(2)-\mathrm{N}-\mathrm{O}(1)$	$117 \cdot 7(2 \cdot 7)$
$\mathrm{O}(1)-\mathrm{Sn}-\mathrm{C}(2)$	$92 \cdot 6(1 \cdot 3)$	$\mathrm{O}(3)-\mathrm{N}-\mathrm{O}(1)$	$119 \cdot 3(2 \cdot 5)$
$\mathrm{C}(1)-\mathrm{Sn}-\mathrm{O}\left(4^{\prime}\right)$	$111 \cdot 5(1 \cdot 1)$	$\mathrm{O}(3)-\mathrm{N}-\mathrm{O}(2)$	$123 \cdot 0(2 \cdot 8)$
$\mathrm{C}(2)-\mathrm{Sn}-\mathrm{O}\left(4^{\prime}\right)$	$108 \cdot 6(1 \cdot 2)$		
$\mathrm{C}(1)-\mathrm{Sn}-\mathrm{O}(4)$	$95 \cdot 5(1 \cdot 1)$		
$\mathrm{C}(2)-\mathrm{Sn}-\mathrm{O}(4)$	$97 \cdot 3(1 \cdot 4)$		
$\mathrm{C}(2)-\mathrm{Sn}-\mathrm{C}(1)$	$139 \cdot 9(1 \cdot 4)$		

Table 4
Non-bonded distances $<3 \cdot 8 \AA$
(a) Within the asymmetric unit

$\mathrm{Sn} \cdots \mathrm{N}$	$3 \cdot 03$	$\mathrm{O}(1) \cdots \mathrm{C}(1)$	$3 \cdot 28$
$\mathrm{Sn} \cdots \mathrm{O}(2)$	$2 \cdot 92$	$\mathrm{O}(1) \cdots \mathrm{C}(2)$	$3 \cdot 21$
		$\mathrm{O}(2) \cdots \mathrm{O}(3)$	$2 \cdot 17$
$\mathrm{~N} \cdots \mathrm{C}(1)$	$3 \cdot 61$	$\mathrm{O}(2) \cdots \mathrm{C}(1)$	$3 \cdot 26$
$\mathrm{~N} \cdots \mathrm{C}(2)$	$3 \cdot 55$	$\mathrm{O}(2) \cdots \mathrm{C}(2)$	$3 \cdot 22$
		$\mathrm{O}(4) \cdots \mathrm{C}(1)$	$3 \cdot 19$
$\mathrm{O}(1) \cdots \mathrm{O}(2)$	$2 \cdot 20$	$\mathrm{O}(4) \cdots \mathrm{C}(2)$	$3 \cdot 24$
$\mathrm{O}(1) \cdots \mathrm{O}(3)$	$2 \cdot 15$		

Table 4 (Continued)
(b) Others

$\mathrm{N}^{\mathrm{I}} \cdot \cdots \mathrm{O}(4)$	$3 \cdot 34$	$\mathrm{O}\left(2^{\mathrm{III}}\right) \cdots \mathrm{O}(2)$	$3 \cdot 62$
$\mathrm{O}\left(1{ }^{1}\right) \cdots \mathrm{O}(4)$	$2 \cdot 81$	$\mathrm{O}\left(2^{\text {IIII }}\right) \cdots \mathrm{O}(3)$	$3 \cdot 24$
$\mathrm{O}\left(3^{\mathbf{1}}\right) \cdots \cdot \mathrm{Sn}^{\text {n }}$	$3 \cdot 14$	$\mathrm{O}\left(3^{\text {III }}\right) \cdots \mathrm{C}(2)$	$3 \cdot 40$
$\mathrm{O}\left(3^{\text {I }}\right) \cdots \mathrm{O}(4)$	$3 \cdot 02$	$\mathrm{O}\left(2^{\mathbf{I V}}\right) \cdots \mathrm{C}(2)$	$3 \cdot 44$
$\mathrm{O}\left(3{ }^{1}\right) \cdots \mathrm{C}(1)$	$3 \cdot 20$	$\mathrm{N}^{\mathrm{v}} \cdots \mathrm{C}(2)$	$3 \cdot 47$
$\mathrm{O}\left(3^{\mathbf{I}}\right) \cdots \mathrm{C}(2)$	$3 \cdot 43$	$\mathrm{O}\left(2^{\mathbf{v}}\right) \cdots \mathrm{C}(2)$	$3 \cdot 58$
SnII . . Sn	$3 \cdot 44$	$O\left(3^{\mathbf{v}}\right) \cdots \mathrm{C}(2)$	$3 \cdot 43$
$\mathrm{O}\left(\mathbf{1}^{\text {II }}\right) \cdots \mathrm{O}(4)$	$2 \cdot 75$	$\mathrm{O}\left(\mathbf{4}^{\mathbf{v}}\right) \cdots \mathrm{C}(1)$	$3 \cdot 78$
$\mathrm{O}\left(\mathbf{4}^{\text {II }}\right) \cdots \mathrm{O}(4)$	$2 \cdot 48$	$\mathrm{C}\left(\mathrm{l}^{\text {vI }}\right) \cdots \mathrm{O}(\mathrm{l})$	$3 \cdot 65$
$\mathrm{O}\left(\mathbf{4 I I}^{\text {I }}\right.$) $\cdot \cdots \mathrm{C}(\mathbf{1})$	$3 \cdot 46$	$\mathrm{C}\left(\mathrm{l}^{\mathrm{VI}}\right) \cdot \cdots \mathrm{O}(4)$	$3 \cdot 78$
$\mathrm{O}\left(\mathbf{4}^{\text {II }}\right) \cdots \mathrm{C}(2)$	$3 \cdot 40$	O(1 $\left.\mathrm{V}^{\text {III }}\right) \cdots \mathrm{O}$ (1)	$3 \cdot 62$
NIII . . N	$3 \cdot 74$	$\mathrm{O}\left(2^{\text {IX }}\right) \cdots \cdot \mathrm{O}(2)$	$3 \cdot 36$
N ${ }^{\text {III }} \cdot \cdots \mathrm{O}(2)$	$3 \cdot 45$	$\mathrm{O}\left(2^{\text {fx }}\right) \cdots \mathrm{C}(\mathrm{l})$	$3 \cdot 63$
N ${ }^{\text {III }} \cdots \mathrm{O}(3)$	$3 \cdot 77$		

Roman numeral superscripts refer to the following equivalent positions:

$$
\begin{array}{ll}
\text { I } 1+x, y, z & \text { V } \frac{1}{2}+x, y, z-\frac{1}{2} \\
\text { II } \frac{3}{2}-x, 1-y, \frac{3}{2}-z & \text { VI } x-\frac{1}{2}, y, z-\frac{1}{3} \\
\text { III } \frac{1}{2}-x,-y, \frac{3}{2}-z & \text { VII } \frac{1}{2}-x, 1-y, \frac{3}{2}-z \\
\text { IV } \frac{3}{2}-x,-y, \frac{3}{2}-z & \text { IX } 1-x,-y, 2-z
\end{array}
$$

Figure 1 View of one dimeric molecule

discussion

The structure consists of $\left[\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{OH})\left(\mathrm{NO}_{3}\right)\right]_{2}$ molecules, with $(\mathrm{SnO})_{2}$ rings, five-co-ordinate tin, and unidentate nitrate ligands. The $\mathrm{Sn}-\mathrm{ONO}_{2}$ bond [2.30(3) \AA] is appreciably longer than the $\mathrm{Sn}-\mathrm{O}$ bonds involving the bridging hydroxide groups $[2 \cdot 18(3)$ and $2 \cdot 06(3) \AA]$, possibly indicating some ionic character. The coordination of the tin atom can be described as very distorted trigonal bipyramidal, with the methyl groups

Figure 2 The structure in projection down the Y axis with the asymmetric unit labelled. Probable hydrogen bonds are indicated by dashed lines
and shorter $\mathrm{Sn}-\mathrm{O}(\mathrm{H})$ bond equatorial. As in the other methyltin nitrates ${ }^{\mathbf{1 - 4}}$ the longest $\mathrm{N}-\mathrm{O}$ bond is to the
oxygen atom bonded to tin. No attempt was made to locate the hydrogen atoms from the diffraction data, but the short intermolecular distance $\mathrm{O}(1) \cdots \mathrm{O}\left(4^{\prime}\right)$ $2.81 \AA$ may well involve an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, in which case the molecules are joined by pairs of hydrogen bonds to form infinite chains along the X axis, which is the crystal needle axis. All the atoms in one dimeric molecule, except the methyl groups, lie approximately in the plane defined by: $0 \cdot 106 x+$ $2.948 y+10.753 z=9.619 \AA$, where x, y, and z are fractional co-ordinates; the mean deviation is $0.014 \AA$. The probable hydrogen bonds also lie approximately in this plane.

Although the structure found is unlike any of those suggested by Yasuda and Okawara, ${ }^{5}$ it does not appear to be inconsistent with the i.r. spectrum reported by them (and confirmed by us); there is a possible ambiguity in the assignment of the $\mathrm{Sn}-\mathrm{C}$ stretching modes, and the insolubility in non-polar solvents may be the result of intermolecular hydrogen bonding rather than nitrate bridging.

Calculations were performed by use of the Cambridge University IBM 370/165 computer and programs by G. M. S.
[3/1859 Received, 7th September, 1973]

