Crystal Structure of Polymeric Tris(trimethyltin) Chromate Hydroxide

By (Mrs.) Angela M. Domingos and George M. Sheldrick,* University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW

Crystals of the title compound are orthorhombic, space group Pbca, $a=20 \cdot 85(2), b=11 \cdot 55(2), c=16 \cdot 58(2) \AA$ (at ca. $-30^{\circ} \mathrm{C}$), $Z=8$. The structure was determined at $\mathrm{ca} .-30^{\circ} \mathrm{C}$ from diffractometer data by direct methods and refined by full-matrix least-squares to $R 0.045$ for 488 unique observed reflexions. The structure consists of a complicated network polymer. There are three crystallographically independent and approximately planar trimethyltin groups, and in each case, approximately trigonal bipyramidal co-ordination of the tin atom is completed by two axial oxygen atoms. Each oxygen atom in the chromate group is also bonded to tin, and the hydroxide group bridges two trimethyltin groups and is probably hydrogen bonded to one of the chromate oxygens. The two tin atoms linked by the hydroxide group have similar co-ordination geometries, with short $\mathrm{Sn}-\mathrm{O}(\mathrm{H})[2 \cdot 14(3)$ and $2 \cdot 17(4) \AA$] and long $\mathrm{Sn}-\mathrm{O}(\mathrm{Cr})[2 \cdot 48(5)$ and $2 \cdot 51$ (4) \AA]. The two oxygen atoms responsible for the long $\mathrm{Sn}-\mathrm{O}$ bonds make the shortest two $\mathrm{Cr}-\mathrm{O}$ bond lengths $[1.61(4)$ and $1.56(4) \AA$]. Other bond lengths and angles are: $\mathrm{Sn}-\mathrm{O}, 2 \cdot 16(4)$ and $2 \cdot 29(4)$: $\mathrm{Cr}-\mathrm{O}, 1 \cdot 78(4)$ and $1.70(4)$; mean $\mathrm{Sn}-\mathrm{C}, 2.13 \AA$: mean $\mathrm{C}-\mathrm{Sn}-\mathrm{C}, 119$: mean $\mathrm{O}-\mathrm{Sn}-\mathrm{O}, 176$: mean $\mathrm{Cr}-\mathrm{O}-\mathrm{Sn}, 144$; and $\mathrm{Sn}-\mathrm{O}-\mathrm{Sn}, 136(2)^{\circ}$.

Trimethyltin chromate was first prepared by Clark and Goel, ${ }^{1}$ who suggested a structure having planar trimethyltin groups and chromate groups of T_{d} symmetry on the basis of the i.r. spectrum. Both features are consistent with a polymeric structure in which all four chromate oxygens are co-ordinated to tin, although from the i.r. spectrum, it was not possible to distinguish between an ionic and a co-ordinated structure. For trimethyltin perchlorate ${ }^{2,3}$ and related compounds, the i.r. spectra were consistent with structures in which the co-ordination of tin was trigonal bipyramidal, with axial oxygen atoms and equatorial methyl groups.

[^0]As part of our study of the structures of organotin derivatives we have determined the structure of a crystal which we thought was trimethyltin chromate, but which turned out to be a partial hydrolysis product.

EXPERIMENTAL

Trimethyltin chromate was prepared ${ }^{1}$ by the reaction of trimethyltin chloride with silver chromate in dry methanol. Precipitated silver chloride was immediately filtered off, and solvent removed under vacuum at room temperature. The yellow solid obtained was identified as $\left(\mathrm{Me}_{3} \mathrm{Sn}\right)_{2} \mathrm{CrO}_{4}$ on the basis of its i.r. spectrum and elemental analysis (Found: C, $16 \cdot 1 ; \mathrm{H}, 3.7$. Calc. for $\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{CrSn}_{2}$: C, $16 \cdot 2 ; \mathrm{H}, 4 \cdot 0 \%$). It proved very difficult to obtain crystals suitable for X-ray diffraction. Eventually a few needle-shaped yellow crystals were obtained by adding diethyl ether to an acetone solution and storing at ca.
$-10^{\circ} \mathrm{C}$ for 2 weeks. The crystals were sealed into Lindemann glass capillary tubes. Preliminary X-ray photographs indicated appreciable thermal motion of the atoms and some decomposition of the crystals in the X-ray beam, so the intensity data were collected at $c a .-30^{\circ} \mathrm{C}$.

Structure Solution and Refinement.-.Attempts to interpret the Patterson function assuming that the crystal was trimethyltin chromate were not entirely successful, so multisolution Σ_{2} refinement was employed instead to locate the heavy atoms. The asymmetric unit of the

Table 1
Analysis of variance
(a) As a function of the parity of the indices

	$g g g$	$u g g$	$g u g$
N	133	59	63
V	1102	1120	1247

$1 u g$
23
1222
$g g l u$
69
1251

ugu	guu
36	71
1651	813

иии
34
922
$-0 \cdot 44$
37
-0.4
(c) As a function of F_{0}
(d) As a function of the equi-inclination layer number

h	0	1	2	3	4	5	6	7
N	54	81	109	64	78	26	38	20
V	1043	1102	1141	884	1049	1207	1729	1048

N is the number of reflexions in the group; V is the root-mean-square deviation ($\times 10^{2}$) of a reflexion of unit weight on a absolute scale of $F\left[V=100\left(M \sum w \Delta^{2} / N \Sigma w\right)^{ \pm}\right.$where M is the total number of reflexions $\}$.

Intensities were determined on a Stoe Stadi- 2 two-circle diffractometer (layers $h 0-8 l$ inclusive), with $\mathrm{Mo}-K_{\alpha}$ radiation and a graphite-crystal monochrometer. A Stoe low-temperature attachment was used to generate a cold nitrogen stream which was directed at the crystal along the oscillation axis direction. Heated mylar screens were used to minimise condensation. Data were collected in an approximately ' constant count' mode; where a prescan indicated that the count could not be achieved within a specified time, the reflexion was ignored. A stationary background- ω scan-stationary background technique was employed, with variable reflexion width, and with the background measurement time proportional to the step measurement time. A total of 1415 reflexions were measured, from 4 octants $h k l, h k l, h k l$, and $\bar{h} k l$, of which 205 were rejected because the net count was $<3 \sigma$ based on counting statistics, because of background imbalance, or because of peak centring errors. Averaging equivalent reflexions led to 488 unique observed reflexions. Although the data were placed on a common scale by use of repeated measurements of standard (zero-layer) reflexions, it was found that refinement of the inter-layer scale factors led to a significant improvement in the final stages of structure refinement. Lorentz, polarisation, and absorption corrections were applied. Unit-cell dimensions were obtained from diffractometer ω and μ angle measurements at $c a .-30^{\circ} \mathrm{C}$.

RESULTS

Crystal Data.- $\mathrm{C}_{9} \mathrm{H}_{28} \mathrm{CrO}_{5} \mathrm{Sn}_{3}, M=\mathbf{6 2 4} \cdot \mathbf{4}$, Orthorhombic, $a=20.85(2), b=11 \cdot 55(2), c=16.58(2) \AA, U=3991 \AA^{3}$, $Z=8, D_{\mathrm{c}}=2.08 . \quad F(000)=2368$. Mo- K_{α} radiation, $\lambda=$ $0.71069 \AA ; \mu\left(\mathrm{Mo}-K_{\alpha}\right)=42.8 \mathrm{~cm}^{-1}$. Space group Pbca from systematic absences: $0 k l$ with k odd, $h 0 l$ with l odd, and $h k 0$ with h odd. All atoms occupy the eight-fold general positions of the set $\pm\left(x, y, z ; \frac{1}{2}+x, \frac{1}{2}-y,-z\right.$; $\left.-x, \frac{1}{2}+y, \frac{1}{2}-z ; \frac{1}{2}-x,-y, \frac{1}{2}+z\right)$. The asymmetric unit consists of one formula unit.
${ }^{4}$ D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.
${ }^{5}$ D. T. Cromer, Acta Cryst., 1965, 18, 17.
resulting E map contained only three strong- and one medium-intensity peaks. Successive difference electrondensity syntheses calculated on the assumption that these were three tin and one chromium atom revealed the remaining atoms and the chemical identity of the crystal.

Table 2
Fractional co-ordinates ($\times 10^{4}$) and isotopic temperature factors $\left(\AA^{2} \times 10^{3}\right)$

No attempt was made to locate the hydrogen atoms. The structure was refined by full-matrix least squares, with a weighting scheme $w=\left(109 \cdot 29+\left|F_{\mathrm{o}}\right|+0.00269 F_{\mathrm{o}}{ }^{2}\right)^{-1}$. Complex neutral-atom scattering factors were employed for all atoms. ${ }^{4,5}$ An attempt to refine an isotropic secondary extinction parameter did not result in a significant improvement, so extinction was ignored. In the final

Table 3
Molecular geometry
(a) Bond lengths (\AA)

$\mathrm{Sn}(1)-\mathrm{O}(3)$	2.16(4)	$\mathrm{Sn}(1)-\mathrm{C}(1)$	$2 \cdot 10$ (6)
$\mathrm{Sn}(1)-\mathrm{O}(4)$	2.29(4)	$\mathrm{Sn}(1)-\mathrm{C}(2)$	$2.08(5)$
$\mathrm{Sn}(2)-\mathrm{O}(2)$	2.48(5)	$\mathrm{Sn}(1)-\mathrm{C}(3)$	2.06 (5)
$\mathrm{Sn}(2)-\mathrm{O}(5)$	2.14(3)	$\mathrm{Sn}(2)-\mathrm{C}(4)$	2.12(6)
$\mathrm{Sn}(3)-\mathrm{O}(5)$	2.17(4)	$\mathrm{Sn}(2)-\mathrm{C}(5)$	2.25(6)
$\mathrm{Sn}(3)-\mathrm{O}(1)$	$2.51(4)$	$\mathrm{Sn}(2)-\mathrm{C}(6)$	$2 \cdot 14(5)$
		$\mathrm{Sn}(3)-\mathrm{C}(7)$	$2 \cdot 25$ (5)
$\mathrm{Cr}-\mathrm{O}(1)$	1.56(4)	$\mathrm{Sn}(3)-\mathrm{C}(8)$	$2 \cdot 10$ (8)
$\mathrm{Cr}-\mathrm{O}(2)$	1.61(4)	$\mathrm{Sn}(3)-\mathrm{C}(9)$	$2 \cdot 11$ (6)
$\mathrm{Cr}-\mathrm{O}(3)$	1.78 (4)		
$\mathrm{Cr}-\mathrm{O}(4)$	$1.70(4)$		
(b) Bond angle			
$C(2)-\operatorname{Sn}(1)-C(1)$	117(2)	$\mathrm{C}(1)-\mathrm{Sn}(1)-\mathrm{O}(3)$	$95(2)$
$\mathrm{C}(3)-\mathrm{Sn}(1)-\mathrm{C}(1)$	124(2)	$\mathrm{C}(2)-\mathrm{Sn}(1)-\mathrm{O}(3)$	$86(2)$
$\mathrm{C}(3)-\mathrm{Sn}(1)-\mathrm{C}(2)$	118(2)	$\mathrm{C}(3)-\mathrm{Sn}(1)-\mathrm{O}(3)$	$97(2)$
$\mathrm{C}(5)-\mathrm{Sn}(2)-\mathrm{C}(4)$	117(2)	$\mathrm{C}(1)-\mathrm{Sn}(1)-\mathrm{O}(4)$	83(2)
C(6) $-\mathrm{Sn}(2)-\mathrm{C}(4)$	120(2)	$\mathrm{C}(2)-\mathrm{Sn}(1)-\mathrm{O}(4)$	$90(2)$
C(6)-Sn(2)-C(5)	119(2)	$\mathrm{C}(3)-\mathrm{Sn}(1)-\mathrm{O}(4)$	$88(2)$
$\mathrm{C}(8)-\mathrm{Sn}(3)-\mathrm{C}(7)$	122(2)	$\mathrm{C}(4)-\mathrm{Sn}(2)-\mathrm{O}(2)$	83(2)
$\mathrm{C}(9)-\mathrm{Sn}(3)-\mathrm{C}(7)$	116(2)	$\mathrm{C}(4)-\mathrm{Sn}(2)-\mathrm{O}(5)$	$95(2)$
$\mathrm{C}(9)-\mathrm{Sn}(3)-\mathrm{C}(8)$	$119(3)$	$\mathrm{C}(5)-\mathrm{Sn}(2)-\mathrm{O}(2)$	$82(2)$
		$\mathrm{C}(5)-\mathrm{Sn}(2)-\mathrm{O}(5)$	$98(2)$
$\mathrm{O}(2)-\mathrm{Cr}-\mathrm{O}(1)$	112(2)	$\mathrm{C}(6)-\mathrm{Sn}(2)-\mathrm{O}(2)$	$85(2)$
$\bigcirc(3)-\mathrm{Cr}-\mathrm{O}(1)$	106(2)	$\mathrm{C}(6)-\mathrm{Sn}(2)-\mathrm{O}(5)$	$96(2)$
$\bigcirc(3)-\mathrm{Cr}-\mathrm{O}(2)$	106(2)	$\mathrm{C}(7)-\mathrm{Sn}(3)-\mathrm{O}(5)$	$95(2)$
$\mathrm{O}(4)-\mathrm{Cr}-\mathrm{O}(1)$	111(2)	$\mathrm{C}(8)-\mathrm{Sn}(3)-\mathrm{O}(5)$	$95(2)$
$\bigcirc(4)-\mathrm{Cr}-\mathrm{O}(2)$	110 (2)	$\mathrm{C}(9)-\mathrm{Sn}(3)-\mathrm{O}(5)$	96 (2)
$\bigcirc(4)-\mathrm{Cr}-\mathrm{O}(3)$	110(2)	$\mathrm{C}(7)-\mathrm{Sn}(3)-\mathrm{O}(1)$	$81(2)$
		$\mathrm{C}(8)-\mathrm{Sn}(3)-\mathrm{O}(1)$	$90(2)$
$\mathrm{Cr}-\mathrm{O}(1)-\mathrm{Sn}(3)$	$152(2)$	$\mathrm{C}(9)-\mathrm{Sn}(3)-\mathrm{O}(1)$	82(2)
$\mathrm{Cr}-\mathrm{O}(2)-\mathrm{Sn}(2)$	153(2)		
$\mathrm{Cr}-\mathrm{O}(3)-\mathrm{Sn}(1)$	129(2)	$\mathrm{O}(5)-\mathrm{Sn}(2)-\mathrm{O}(2)$	178(1)
$\mathrm{Cr}-\mathrm{O}(4)-\mathrm{Sn}(1)$	142(2)	$\mathrm{O}(3)-\mathrm{Sn}(1)-\mathrm{O}(4)$	175 (1)
		$\mathrm{O}(1)-\mathrm{Sn}(3)-\mathrm{O}(5)$	175(1)

cycles of refinement a total of 101 parameters were varied independently, with anisotropic temperature factors for the tin and chromium atoms, and isotropic temperature factors for the remaining atoms. Since it was also necessary to refine the 8 inter-layer scale factors, the values of U_{22} are not reliable. The final value of R^{\prime} was 0.048 (where $\left.\left.R^{\prime}=\Sigma w^{\frac{1}{2}}\left|F_{\mathrm{o}}\right|-F_{\mathrm{c}}\left|/ \Sigma w^{\frac{1}{2}}\right| F_{0} \right\rvert\,\right)$, with a corresponding unweighted index R of 0.045 . All peaks in the final difference electron-density synthesis were <0.4 e \AA^{-3}, compared with an electron-density maximum of $5 \cdot 9 \mathrm{e}^{-3}$ for the weakest carbon atom. An analysis of variance is presented in Table 1; atomic co-ordinates and anisotropic temperature factors from the final least-squares cycle are in Table 2; the resulting bond lengths and angles are in Table 3. Shortest non-bonded distances are in Table 4. Observed and calculated structure factors are listed in Supplementary Publication No. SUP 20903 (4 pp., l microfiche).*

DISCUSSION

The three crystallographically independent and approximately planar trimethyltin groups are linked by the chromate and hydroxide groups to form a complicated network polymer. There are $-\mathrm{Me}_{3} \mathrm{Sn}(1)-\mathrm{O}(3)-$ $\mathrm{CrO}_{2}-\mathrm{O}(4)-\mathrm{Me}_{3} \mathrm{Sn}\left(1^{\prime}\right)-\mathrm{O}\left(3^{\prime}\right)-\mathrm{Cr}^{\prime} \mathrm{O}_{2}-\mathrm{O}\left(4^{\prime}\right)-$ chains in the

Figure 1 Projection of part of the structure perpendicular to Z, showing the chains in the Y axis direction
Y axis direction (Figure 1), and $-\mathrm{O}(1)-\mathrm{CrO}_{2}-\mathrm{O}(2)-$ $\mathrm{Me}_{3} \mathrm{Sn}(2)-\mathrm{O}(5) \mathrm{H}-\mathrm{Me}_{3} \mathrm{Sn}(3)-\mathrm{O}\left(1^{\prime}\right)-\mathrm{Cr}^{\prime} \mathrm{O}_{2}-\mathrm{O}\left(2^{\prime}\right)-\quad$ chains along the Z axis (Figure 2). Each oxygen atom in the chromate moiety is also bonded to a tin atom, and the hydroxide group bridges two trimethyltin groups. The co-ordination of each tin atom is approximately trigonal bipyramidal, with three equatorial methyl groups and two axial oxygen atoms. The two tin atoms linked by the hydroxide group have similar co-ordination geometries, with short $\mathrm{Sn}-\mathrm{O}(\mathrm{H})[2 \cdot 14(3)$ and $2 \cdot 17(4) \AA]$ and long $\mathrm{Sn}-\mathrm{O}(\mathrm{Cr})[2 \cdot 48(5)$ and $2 \cdot 51(4) \AA]$. In each case the three methyl carbon atoms are bent away from the shorter $\mathrm{Sn}-\mathrm{O}$ bond [mean $\mathrm{C}^{-} \mathrm{Sn}(2,3)^{-}$ $\mathrm{O}(\mathrm{H}) 96(1)$, mean $\left.\mathrm{C}-\mathrm{Sn}(2,3)-\mathrm{O}(\mathrm{Cr}) 84(2)^{\circ}\right]$, so that the co-ordination geometry may be considered to be intermediate between trigonal bipyramidal $\left(\mathrm{OC}_{3} \mathrm{O}\right)$ and

* See Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issue (items less than 10 pp . are supplied as full size copies).

Figure 2 Projection of part of the structure perpendicular to Y, showing the chains in the Z axis direction
tetrahedral $\left(\mathrm{OC}_{3}\right)$, the long $\mathrm{Sn}-\mathrm{O}$ bond being omitted from the tetrahedron. A similar intermediate tin co-ordination number arises in trimethyltin isothiocyanate $\left(\mathrm{NC}_{3}\right.$ or $\left.\mathrm{NC}_{3} \mathrm{~S}\right){ }^{6}$ The co-ordination of the remaining tin atom is less distorted from trigonal bipyramidal, though here again the carbon atoms of the methyl groups tend to be bent away from the shorter $\mathrm{Sn}^{-\mathrm{O}}$ bond $[\mathrm{Sn}(1)-\mathrm{O}(3) \quad 2 \cdot 16(4), \mathrm{Sn}(1)-\mathrm{O}(4)$ $2 \cdot 29(4) \AA$; mean $\mathrm{C}-\mathrm{Sn}(1)-\mathrm{O}(3) 93(3)^{\circ}$, mean $\mathrm{C}-\mathrm{Sn}(1)^{-}$ $\left.\mathrm{O}(4) 87(3)^{\circ}\right]$. There is a complete inverse correlation between $\mathrm{Cr}-\mathrm{O}$ and $\mathrm{Sn}-\mathrm{O}$ bond lengths to the same oxygen atom, the shortest $\mathrm{Cr}-\mathrm{O}$ distance corresponding to the longest $\mathrm{Sn}-\mathrm{O}$ distance. The mean $\mathrm{Sn}-\mathrm{O}-\mathrm{Cr}$
${ }^{6}$ R. A. Forder and G. M. Sheldrick, J. Organometallic Chem., 1970, 21, 115.
${ }^{7}$ J. B. Hall and D. Britton, Acta Cryst., 1972, B28, 2133.
angle is 144°, but there are considerable variations, with the smallest angle corresponding to the longest $\mathrm{Cr}-\mathrm{O}$ bond. The mean $\mathrm{Sn}-\mathrm{C}$ distance has the unexceptionable value of $2 \cdot 13(4) \AA$; the mean $\mathrm{O}-\mathrm{Sn}-\mathrm{O}$ angle is $176(1)$ and the mean $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angle is $119(2)^{\circ}$.

It is interesting to compare the structure with that of $\mathrm{Me}_{3} \mathrm{SnNCO}, \mathrm{Me}_{3} \mathrm{SnOH},{ }^{7}$ which is a partial hydrolysis product of trimethyltin isocyanate. The $-\mathrm{Me}_{3} \mathrm{Sn}-\mathrm{O}(\mathrm{H})-$ $\mathrm{Me}_{3} \mathrm{Sn}-$ units in the two structures have almost identical dimensions (isocyanate given first): mean $\mathrm{Sn}^{-} \mathrm{O} 2 \cdot 15(5)$, $2 \cdot 16(3) \AA ; \mathrm{Sn}^{-}-\mathrm{O}-\mathrm{Sn} 138(3), 136(2)$; mean $\mathrm{C}-\mathrm{Sn}-\mathrm{O}(\mathrm{H})$ $95(2), 96(1)^{\circ}$. In both structures there is probably a hydrogen bond involving the $\mathrm{O}(\mathrm{H})$ group and another oxygen atom $\left[2 \cdot 84(8)\right.$ in the isocyanate; $\mathrm{O}(3) \cdots \mathrm{O}\left(5^{\prime}\right)$ $2 \cdot 80(4) \AA$ in the chromate].

The two pairs of $\mathrm{Cr}-\mathrm{O}$ distances straddle the values found for ionic chromates \{e.g. mean $\mathrm{Cr}-\mathrm{O} 1 \cdot 658(4) \AA$ in $\left.\left[\mathrm{NH}_{4}\right]_{2} \mathrm{CrO}_{4}\right\}^{8}$, but are close to those for the two pairs of $\mathrm{Cr}-\mathrm{O}$ distances in $\left(\mathrm{Ph}_{3} \mathrm{Si}_{2} \mathrm{CrO}_{4}\right.$ [mean 1.54(2) and $1.74(4) \AA]^{9}$ The $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ angles do not differ significantly from the tetrahedral value. The structure reported here for the chromate hydroxide is consistent with the suggested structure for trimethyltin chromate, ${ }^{1}$ in which there is trigonal bipyramidal $\left(\mathrm{OC}_{3} \mathrm{O}\right)$ coordination of tin and all four chromate oxygen atoms are bonded to tin.

Calculations were performed by use of the Cambriclge University IBM $370 / 165$ computer and programs by G. M. S., and the structural diagrams were produced by use of the program PLUTO by Dr. S. Motherwell. We thank the S.R.C. for providing the diffractometer.
[3/1860 Received, 7th September, 1973]
${ }^{8}$ J. S. Stephens and D. W. J. Cruickshank, Acta Cryst., 1970, B26, 437.
${ }^{9}$ B. Stensland and P. Kierkegaard, Acta Chem. Scand., 1970, 24, 211.

[^0]: ${ }^{1}$ H. C. Clark and R. G. Goel, Inorg. Chem., 1965, 4. 1428.
 ${ }^{2}$ R. Okawara, B. J. Hathaway, and D. E. Webster, Proc. Chem. Soc., 1963, 13.
 ${ }^{3}$ H. C. Clark and R. J. O'Brien, Inorg. Chem., 1963, 2, 740.

