Reactions of Chlorine Trifluoride with Pentafluoroiodobenzene and Related Compounds. Preparation of Pentafluorophenyliodine(v) Tetrafluoride †

By John A. Berry, Gerald Oates, and John M. Winfield,* Chemistry Department, University of Glasgow, Glasgow G12 8QQ

Pentafluoroiodobenzene is oxidised by chlorine trifluoride below room temperature to pentafluorophenyliodine(v) tetrafluoride and $C_6F_4(IF_4)_2$ is one of the products from the oxidation of $1.4 - I_2C_6F_4$ under similar conditions. Bromopentafluorobenzene is not oxidised by CIF₃ but addition of chlorine and fluorine to the ring occurs. Similar behaviour is observed with C₆F₅IF₄ and CIF₃.

SEVERAL perfluoroalkyliodine(v) tetrafluorides have been prepared by oxidation of the corresponding iodides with chlorine trifluoride.^{1,2} The stability with respect to decomposition of the compounds R_FIF_4 depends on the identity of R_F ; for example CF_3IF_4 is very much less stable than $(CF_3)_2 CFIF_4$ and other compounds containing bulky R_F groups.² Pentafluorophenyl derivatives of both metals and non-metals are often far more stable thermally than their perfluoroalkyl analogues,³ therefore the C_6F_5 group should be a good ligand for iodine(v). We describe here the reactions of ClF_3 with C_6F_5I , 1,4- $I_2C_6F_4$, and C_6BrF_5 , which were undertaken to prepare perfluoroaromatic derivatives of iodine(v) and bromine(v).

EXPERIMENTAL

All manipulations and reactions were carried out in vacuo or in a dry inert atmosphere as described previously.^{2a} ¹⁹F N.m.r. spectra (at 56.4 MHz) and vibrational spectra were recorded on JEOL C60-HL, Perkin-Elmer 457, and Spex Ramalog instruments. Chemical shifts are given as δ values, in p.p.m. positive to low field of CCl_3F . C_6F_6 was used as a secondary internal reference. Mass spectra (at 70 eV) were obtained with a G.E.C./A.E.I. MS 12 spectrometer. Samples were inserted directly, probe temperatures were in the range 100–200 °C, and source pressures were $<1 \times$ 10⁻⁶ mmHg. Assignment of peaks due to $C_x F_y^+$ fragments was often aided by the observation of metastable peaks corresponding to the elimination of CF₃, CF₂, or CF. Similar transitions have been noted previously for C_6F_6 and its derivatives.4 Although mass spectrometry did not lead to complete characterisation of the reaction products, it enabled oxidation and addition reactions to be distinguished. Full spectra are reported elsewhere 5 and are summarised in Tables 1-4.

† No reprints available.

¹ C. S. Rondestvedt, jun., J. Amer. Chem. Soc., 1969, 91, 3054. ² G. Oates and J. M. Winfield, (a) J.C.S. Dalton, 1974, 119; (b) J. Fluorine Chem., in the press.

 ClF_3 (Matheson 98%) and the aromatic fluorocarbons (Fluorochem) were used as received. Microanalyses were carried out by A. Bernhardt.

TABLE 1

Mass spectrum of $C_6F_5IF_4$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_ 0 _ 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	= 4 0 = 85
m*	
Metastable transitions Found Calc.	
$C_{0}F_{1}I^{+} \longrightarrow C_{0}F_{1}I^{+} + I = 94.9 = 95.0$	
$C_{6}F_{5}^{+} \longrightarrow C_{5}F_{3}^{+} + CF_{2} = 82.0 = 82.0$	

• Other $C_{\leqslant 6}F_n^+$ fragments which are also present in the spectrum of C_6F_5I (J. Majer, Adv. Fluorine Chem., 1961, 2, 55) are not shown.

TABLE 2

Chlorine-containing fragments in the mass spectrum of the product from $C_6F_5I + ClF_3$ (in excess)

	Relative intensity ²	`		Relative intensity 4	,
m/e ª	(%)	Assignment	m e ª	(%)	Assignment
459	5	$C_{6}Cl_{2}F_{10}I^{+}$	259	63	$C_{s}ClF_{s}^{+}$
443	7	C ₆ ClF ₁ ,I+	209	20	C ₅ ClF ₆ +
424	3	C ₆ ClF ₁₀ I+	171	17	C ₅ ClF ₄ +
402	20	C Cl, F, I+	147	33	C ₃ ClF ₄ +
386	23	C ₆ ClF ₈ I+	85	58	CČlF ₂ +
367	10	C ClF I+			-

^a Corresponds to ³⁵Cl. The expected isotope patterns were observed in each case. ^b m/e 93 assigned to $C_3F_3^+$ is the base peak.

³ S. C. Cohen and A. G. Massey, Adv. Fluorine Chem., 1970, **6**, 83.

⁴ F. G. Drakesmith and M. R. Jones, Vacuum, 1969, 19, 31; L. D. Smithson, A. K. Bhattacharya, and C. Tamborski, Org. Mass Spectrometry, 1970, 4, 1.
 ⁵ G. Oates, Ph.D. Thesis, University of Glasgow, 1973.

Reactions of Chlorine Trifluoride.-With C₆F₅I. (a) A mixture of ClF₃ (11·4 mmol) and C₆F₅I (7·3 mmol) in $n-C_6F_{14}$ (3 ml), allowed to warm from -78 to -15 °C over 16 h, gave a white solid, m.p. 72-74 °C, and a green volatile liquid

TABLE 3

Mass spectrum of the product from $C_6F_4I_2 + ClF_3^{a}$

m/e % in parentheses	Assignment	
554(0.6), 535(1), 516(1), 497(4), 478(10),	$C_6F_nI_2^+$	n = 12 - 4
$459(4), 440(4), 421(3), 403(53)^{b}$	C E I+	
$294(47)$, $275(22)$ \flat $256(2)$ \flat	$C_6 \Gamma_n \Gamma^+$	n = 10 - 3
203(5), 184(3), 165(9), 146(11), 127(49)	IF_{n}^{+}	n = 4 - 0
224(5), 205(14), 186(45), 167(43), 148(100),	$C_6F_{n}^+$	n = 8-3
129 (14) *		¥

	110	
Metastable transitions	Found	Calc.
$C_6F_4(IF_4)_2^+ \longrightarrow C_6F_5IF_4^+ + IF_3$	247.0	247.0
$C_6F_5^+ \longrightarrow C_5F_4^+ + CF$	110.5	110.4
$C_6F_5I^+ \longrightarrow C_6F_5^+ + I$	94.9	95.0
$C_6F_5^+ \longrightarrow C_5F_3^+ + CF_2$	82.0	81.9
$C_6F_6^+ \longrightarrow C_5F_3^+ + CF_3$	73.8	$73 \cdot 6$

^a Peaks assigned to $C_{\leq 6}F_x^+$ and $C_{\leq 6}F_y^{I+}$ fragments are not shown. Present in the spectrum of $C_6F_4I_2$.

TABLE 4

Mass spectrum of the product from C_6BrF_5 and ClF_3 ^a

m/e^{b} % in parentheses "	Assignment
338(1)	C_6BrClF_8+d
322(1), 303(1), 284(18), 265(5)	$C_6 Br F_n + n = 9 - 6$
259(2)	$C_6 ClF_8^+$
243(2), 224(3), 205(66), 186(42)	$C_6 F_n^+ n = 9 - 6$
209(1), 171(1), 147(1)	$C_5ClF_6^+$, $C_5ClF_4^+$, $C_3ClF_4^-$
85(7)	CCl_2F^+
	m*
Metastable transitions	Found Calc.
$C_6F_7^+ \longrightarrow C_5F_6^+ + CF$	147.5 147.6
$C_6F_7^+ \longrightarrow C_5F_5^+ + CF_2$	117.3 117.1
$C_6F_4^+ \longrightarrow C_5F_3^+ + F$	100.8 100.7
$C_6F_6^+ \longrightarrow C_5F_3^+ + CF_2$	73.8 73.8

" Fragments observed in the spectrum of C_6BrF_5 (J. Majer, Adv. Fluorine Chem., 1961, 2, 55) and corresponding to $C_{<5}F_n^+$ are not shown. ^b Corresponds to ⁷⁹Br and ³⁵Cl. The expected isotope patterns are observed in each case. ${}^{e}m/e$ 69 assigned to CF₃⁺ as the base peak. d Metastable peaks tentatively assigned to loss of CBrF₂ from this fragment.

containing Cl₂, unchanged ClF₃, and n-C₆F₁₄. The solid was identified from its analysis (Found: C, 20.6; F, 45.2; I, 33.8. C_6F_9I requires C, 19.45; F, 46.2; I, 34.3%) and mass (Table 1), ¹⁹F n.m.r., and vibrational spectra as pentafluorophenyliodine(v) tetrafluoride; $\delta_{\mathbf{F}}$ (C₆F₆) -6.4 (t, ${}^{3}J_{\rm F-I-C-F}$ 26 Hz) and -128.0, -143.3, and -158.5 (complex multiplets, 2:1:2, ortho-, para-, and meta-F, assigned by analogy with C_6F_5I and other C_6F_5X compounds ⁶). Its vibrational spectrum (solid) showed the presence of a $C_{6}F_{5}$ group ⁷ and in the region 600-400 cm⁻¹ was similar to that of CF_3IF_4 : ^{2a} i.r. (2000–400 cm⁻¹) ν_{max} 1638m, 1520sh, 1503s, 1495sh, 1350w, 1300w, 1268w, 1153w, 1127sh, 1099s, 1059w, 1004s, 987s, 807sh, 800m, 722m, 626m, 588s, 562s, 545sh, and 528s cm⁻¹; Raman v_{max} (relative peak height) 626(5), 587(18), 576(10), 558(13), 550(13), 538(12), 482(10),443(7), 405(2), 385(5), 310(5), 285(5), 260(4), 223(1), 195(11), 170(2), 90(10), and 80(11) cm⁻¹.

⁶ M. G. Hogben and W. A. G. Graham, J. Amer. Chem. Soc., 1969, **91**, 283.

7 D. A. Long and D. Steele, Spectrochim. Acta, 1963, 19, 1955.

(b) ClF_3 (7.6 mmol) and C_6F_5I (3.85 mmol) in $n-C_6F_{14}$, allowed to warm from -78 to 20 °C over 16 h, gave a colourless, viscous liquid on removal of the volatile material. Its mass spectrum consisted of peaks assigned to chlorinecontaining fragments (Table 2) and peaks identical with those found in the spectrum of $C_6F_5IF_4$; i.r. (2000-625 cm⁻¹) v_{max}, 1780vw, 1660s, 1300s, 1290w, 1200-1230vs,br, 1140-1160vs,br, 1110vs, 1060m, 1045m, 1030m, 990m, 970s, 950s, 915w, 865w, 855w, 760w, 725m, 700w, 680m, and 650 cm⁻¹.

With $C_6F_5IF_4$. ClF_3 (5.3 mmol) and $C_6F_5IF_4$ (1.3 mmol) in n-C₆F₁₄, allowed to warm from -78 to 20 °C over 16 h, gave a colourless, viscous liquid on removal of the volatile material; $\delta_{\rm F}$ 11·4 (d, J 90 Hz, IF₅), -5.5 br ($W_{\rm I}$ 140 Hz), and seven complex multiplets of low intensity between -80 and -156. Its i.r. and mass spectra were very similar to those described above [reaction (b)] but additionally several metastable peaks corresponding to loss of CF₂, CF₃, or F from $C_6 F_n^+$ (n = 9—4) fragments were identified in its mass spectrum.

With 1,4-I₂C₆F₄I₂. ClF₃ (7.85 mmol), C₆F₄I₂ (2.3 mmol), and $n-C_6F_{14}$ (3 ml) were allowed to warm from -60 to -20 °C over 16 h. At all times a solid was observed in the mixture but the liquid slowly became green. The solid isolated was insoluble in IF_5 , C_6F_6 , and MeCN (Found: C, 14.1; F, 36.6; I, 49.35. $C_6F_{10}I_2$ requires C, 14.0; F, 36.8; I, 49.2%). Above 580 cm⁻¹ its i.r. spectrum was very similar to that of $C_6F_4I_2$. Below this the spectrum (ν_{max} , 571s, 562sh, 525sh, 506s, 476s, 429m, and 418w cm⁻¹) suggested that IF_n groups were present, consistent with the mass spectrum (Table 3). No n.m.r. spectrum was obtained owing to the solid's insolubility.

With C₆BrF₅. A mixture of ClF₃ (8.2 mmol) and C₆BrF₅ (6.0 mmol) in n-C₆F₁₄ (3 ml), allowed to warm from -78 to -36 °C over 16 h, gave a colourless liquid after removal of ClF_3 and $n-C_6F_{14}$. Its ¹⁹F n.m.r. spectrum showed that C_6BrF_5 was the major component but 12 weak multiplets between $\delta - 98$ and -159 were also observed. Several ions containing chlorine were identified in its mass spectrum (Table 4).

RESULTS AND DISCUSSION

The oxidation of C_6F_5I by ClF_3 proceeds smoothly and, providing that the temperature of the mixture is kept below ca. -10 °C and the molar ratio of ClF₃ to C₆F₅I does not greatly exceed 4:3, substantially pure $C_6F_5IF_4$ is obtained. The compound is a white, moisturesensitive solid whose thermal stability is similar to that of $(CF_3)_2 CFIF_4$. It is more stable than either $C_6 F_5 IF_2$, which has been reported to decompose above $-5 \,^{\circ}\text{C},^{8}$ or $C_6H_5IF_4$, which apparently loses HF readily.⁹ The spectroscopic properties of $C_6F_5IF_4$ are related to those of R_FIF₄ compounds, in particular its ¹⁹F n.m.r. spectrum in C_6F_6 or IF_5 indicates either that the C_6F_5 group occupies the apical position in a square pyramidal molecule, or that a fast intramolecular exchange process occurs.

Unlike the mass spectra of the perfluoroalkyl derivatives, that of $C_6F_5IF_4$ (Table 1) contains a peak attribut-

⁸ M. Schmeisser, K. Dahmen, and P. Sartori, Chem. Ber., 1970, 103, 307.
L. M. Yagupol'skii, V. V. Lyalin, V. V. Orda, and L. A.

Alekseeva, Zhur. obshchei Khim., 1968, 38, 2813.

able to the molecular ion, and peaks at m/e 351, 332, and 313 may reasonably be assigned to $C_6F_5IF_n^+$ (n = 3-1). It is suggested that the peaks assigned to $C_6F_8^+$, $C_6F_7^+$, and $C_6F_6^+$ result from fluorine migrations involving the elimination of IF, IF₂, or IF₃ fragments. Such processes are the reverse of those found in $C_6F_5PF_2$, and many C_6F_5 derivatives of Group V, Group IV, and transition elements, where migration of fluorine to the central atom is observed,¹⁰ but are consistent with the expected order of bond energies C-F > I-F.

The isolation of $C_6F_5IF_4$ is dependent on the reaction temperature and stoicheiometry, as further reaction, indicated by the appearance of a viscous liquid, can occur. Thus both the reaction of C_6F_5I with a large excess of ClF_3 and the reaction of $C_6F_5IF_4$ with ClF_3 yield viscous liquids which appear to be mixtures. Fragments containing one or two chlorine atoms are identified in their mass spectra (Table 2), their i.r. spectra suggest the presence of a cyclic olefinic group,¹¹ and additional bands are observed in the region 1000--900 cm⁻¹. Some C-I bond scission also occurs. The formation of IV-Cl bonds under these conditions is unlikely,¹² and although the mass spectra do not establish the identities of the compounds formed, they suggest that $C_6Cl_2F_7IF_4$ and $C_6ClF_8IF_4$ may be present.

 ClF_3 oxidises 1,4-I₂C₆F₄ under similar conditions but the oxidation is not complete, probably owing to the insolubility of the iodide and product in the reaction medium. A similar situation exists in the oxidation of SF₅(CF₂)₂I where a mixture of SF₅(CF₂)₂IF₂ and $SF_5(CF_2)_2IF_4$ is obtained.^{2b} There is no evidence for

¹⁰ E.g. J. M. Miller, J. Chem. Soc. (A), 1967, 828; Canad. J. Chem., 1969, **47**, 1613; A. T. Rake and J. M. Miller, J. Chem. Soc. (A), 1970, 1881; M. I. Bruce and M. A. Thomas, Org. Mass Spectrometry, 1968, 1, 835. ¹¹ J. K. Brown and K. J. Morgan, Adv. Fluorine Chem., 1965,

4, 253.
 ¹² K. O. Christe, *Inorg. Chem.*, 1972, 11, 1215; J. Shamir and M. Lustig, *ibid.*, 1973, 12, 1108.

chlorine-containing products and the solid's composition is $C_6F_{10}I_2$. Its mass spectrum (Table 3) indicates the presence of $C_6F_4(IF_4)_2$ and we suggest that the solid is a mixture of this and $C_6F_4(IF_2)_2$ or $C_6F_4I_2$.

Although both Br₂ and I₂ react with ClF₃ giving BrF₃ and IF₅ respectively,¹³ neither C₆BrF₅ nor n-C₃F₇Br is oxidised by ClF_3 under the conditions used. The different behaviour from the compounds $R_{\rm F}I$ is probably a reflection of the greater thermodynamic stability of iodine fluorides.¹⁴ Reaction does occur between C₆BrF₅ and ClF₃, however, to give a mixture of products resulting from the addition of fluorine and chlorine to the aromatic ring. The origin of many of the fragments observed in the mixture's mass spectrum (Table 4) cannot be stated with certainty, but the spectrum is consistent with the presence of the cyclohexenes C_8BrClF_8 and C_6BrF_9 .

 XeF_2 is known to add two fluorines to C_6F_6 and other perfluoroaromatic compounds,15 and related behaviour by a Br₂-BrF₃ mixture, or in some cases by BrF₃ alone, has been briefly reported.¹⁶ For example a Br₂-BrF₃ mixture reacts with C₆F₅Br to give 1-bromoheptafluorocyclohexa-1,4-diene and $C_6Br_2F_8$ isomers, $C_6Br_3F_9$ isomers being formed with an excess of reagent. The addition reactions observed in the present work are similar to these and may be initiated either by ClF_3 alone or by ClF_3 and Cl_2 , the latter being present either as a reaction product or in small quantities as an impurity in CIF₃.

We thank the S.R.C. and the S.E.D. for maintenance awards to G. O. and J. A. B., respectively.

[3/1901 Received, 14th September, 1973]

- ¹³ R. N. Haszeldine, J. Chem. Soc., 1950, 3037.
 ¹⁴ L. Stein, Halogen Chem., 1967, 1, 133.
 ¹⁵ D. R. MacKenzie and J. Fajer, J. Amer. Chem. Soc., 1970, 92, 4994.
- ¹⁶ T. W. Bastock, M. E. Harley, A. E. Pedler, and J. C. Tat-low, Abstracts, 4th European Symposium on Fluorine Chemistry, Ljubljana, 1972, II-10.