Vibrational Spectra and Nuclear Magnetic Resonance Parameters of some Platinum(v) Complexes [PtX₄L₂] and [PtX₅L]⁻ (X = Cl, Br, or I; L = NMe₃, PMe_3 , $AsMe_3$, or SMe_2)

By Peter L. Goggin,* Robin J. Goodfellow,* Steve R. Haddock, John R. Knight, Francis J. S. Reed, and Brian F. Taylor, Department of Inorganic Chemistry, The University, Bristol BS8 1TS

 $trans-[PtX_4L_2] (L = PMe_3, AsMe_3, or SMe_2; X = Cl or Br) and, except X = Br for SMe_2, cis-complexes have been isolated, together with the salts Pr^a_4N[PtX_5L], Pr^a_4N[PtI_5PMe_3], Pr^a_4N[PtCl_5NMe_3], and [PtCl_3(PMe_3)_3]BF_4.$ The vibrational spectra of the complexes have been studied. ¹H N.m.r. measurements have been made for these and other halide derivatives which were prepared in situ but were unstable to isolation in a pure form. Values of $J_{\rm ptp}$ and $\delta_{\rm p}$ have been measured by heteronuclear INDOR and, in addition, those of related platinum(1) and palladium(II) compounds are reported. Approximate values of J_{PtN} have been obtained from ${}^{1}H({}^{195}Pt)$ INDOR in three cases. The spectroscopic parameters are discussed and it is concluded that variations in them are consistent with significant π -contribution to Pt-P bonding, at least in platinum(II) complexes.

WHEN discussing the significance of π -bonding in the platinum-phosphorus bond, Venanzi¹ has emphasised the usefulness of comparisons between Pt^{II} and Pt^{IV} systems since the relevant platinum d orbitals are much less available in Pt^{IV} than Pt^{II}. We have examined vibrational and n.m.r. spectra of some Pt^{IV} analogues of Pt^{II} complexes of PMe₃, AsMe₃, NMe₃, and SMe₂ which we studied previously.2-5 Many square-planar platinum(11) complexes are relatively easily oxidised to the platinum(IV) complex by addition of Cl_2 , Br_2 , or I₂. In this way the salts $Pr_4^n[PtX_5L]$ (where L is a neutral ligand and X a halide) have been obtained as well as the more familiar complexes $[PtX_4L_2]$. The iodides seemed to be of low stability which made isolation difficult and the only iodide obtained as a purified solid was Prⁿ₄N[PtI₅PMe₃]. Of the trimethylamine complexes, only Prⁿ₄N[PtCl₅NMe₃] proved to be stable to isolation as a pure compound and our investigations of $[PtX_4(NMe_3)_2]$ complexes have been confined to n.m.r. studies on the complexes in solution prepared in situ.

RESULTS

Vibrational Spectra.-The observed Raman and i.r. bands are collected in Tables 1 (Prn₄N[PtX₅L]), 2 (trans- $[PtX_4L_2]$, 3 (cis- $[PtX_4L_2]$), and 4 (mer- $[PtX_3(PMe_3)_3]BF_4$). The vibrations of the neutral ligands when bound to platinum(11) have been discussed in detail before.2,4,5

Stretching vibrations: (a) $[PtX_5L]^-$. If the neutral ligand is regarded as a single point, then the symmetry of these anions is C_{4v} with stretching vibrations of species $A_1(\text{Pt-L}), A_1(\text{Pt-X}), A_1(\text{PtX}_4), B_1(\text{PtX}_4)$, and $E(\text{PtX}_4)$ all of which are Raman- and i.r.-active except B_1 which is Raman-active only. If the incompatibility between the four-fold symmetry of the PtX_5 group and the symmetry of the ligand is taken into account, the overall symmetry cannot be higher than C_s . However, for the related

¹ L. M. Venanzi, Chem. in Britain, 1968, 162.

^a D. A. Duddell, P. L. Goggin, R. J. Goodfellow, M. G. Norton, and J. G. Smith, *J. Chem. Soc.* (A), 1970, 545.
^a D. A. Duddell, J. G. Evans, P. L. Goggin, R. J. Goodfellow, A. J. Rest, and J. G. Smith, *J. Chem. Soc.* (A), 1969, 2134.
⁴ P. L. Goggin, R. J. Goodfellow, and F. J. S. Reed, *J.C.S.*

Dalton, 1972, 1298.
 ⁵ P. L. Goggin, R. J. Goodfellow, S. R. Haddock, F. J. S.

Reed, J. G. Smith, and K. M. Thomas, J.C.S. Dalton, 1972, 1904.

situation of $[PtX_{3}L]^{-}$, we found no definite indication that the skeletal vibrations were sensitive to any lowering of symmetry (from C_{2v}).² We have assumed C_{4v} symmetry in the following discussion and the deviations observed commonly concern only skeletal deformations or internal ligand modes and then only in solid-state spectra where they could be due to the crystal environment. Below 800 cm⁻¹ there are also some vibrations associated with the tetrapropylammonium cation; these are generally weak compared with vibrations of the anion and occur at 752ms, 721w, 614vw, 516wm, 370vw, and 340vw cm⁻¹ in the i.r. spectrum of solid Prn₄NI and 781m,p, 762vw,sh, 518vw,dp, 375m,p, 334m,dp, and 311s,p cm⁻¹ in the Raman spectrum of aqueous $Pr_{4}^{n}NCl$.

Comparison of the ions [PtCl₅PMe₃]⁻ and [PtBr₅PMe₃]⁻ indicates the platinum-chlorine stretching modes as 337 and 275 cm⁻¹ (i.r.) and 336, 316, and 274 cm⁻¹ (Raman). The high intensity and strongly polarised nature of the Raman band at 336 cm⁻¹ agree with its assignment as the symmetric-stretching vibration of the PtCl₄ plane, $A_1(PtX_4)$. As the band at 316 cm⁻¹ is depolarised, it must be the $B_1(\text{PtX}_4)$ vibration. It is improbable that the $A_1(\text{PtX}_4)$ mode would account for the very strong i.r. band at 337 cm⁻¹ and we regard this band as arising primarily from the $E(PtX_4)$ mode. The i.r. intensity of the A_1 mode cannot be assumed to be negligible (cf. [PdCl₃L]⁻ where the related vibrations are not coincident⁶), but the polarised measurements shows that the Raman intensity of the Emode is very small. The wavenumber coincidence of these two modes parallels that between the symmetric and asymmetric PtCl₂ stretching modes in the anions [PtCl₃L]^{-.2,6} All three of these PtX₄ vibrations are close to the related modes of the complex trans-[PtCl₄- $(PEt_3)_2$ ^{7,8} in accord with the observation of Adams and Chandler 8 that vibrations of the PtX4 group are remarkably insensitive to substituents above or below the plane. The band at 274 cm⁻¹ must be the PtCl(trans to PMe₃) stretch, $A_1(PtX)$, but it is only slightly polarised; however, comparison with the bromide shows that the contribution to this band from the PC₃ asymmetric deformation is small.

The assignment of vibrations of the PtCl₄ group in the

- ⁶ R. J. Goodfellow, P. L. Goggin, and D. A. Duddell, J. Chem. Soc. (A), 1968, 504.
 ⁷ J. Chatt, G. J. Leigh, and D. M. P. Mingos, J. Chem. Soc. (A),
- 1969, 2972.
- ⁸ D. M. Adams and P. J. Chandler, J. Chem. Soc. (A), 1967, 1009.

	Vibrational sp	ectra ([below 80	0 cm ⁻¹) of	the salts	Pr ⁿ ₄N[P	tX ₅ L] (X	= Cl, Br	, or I; L =	NMe ₃ , PMe ₃ ,	AsMe ₃ ,	or SMe ₂)		
			Pr ⁿ ₄ N[Pt	Cl ₅ PMe ₃]			$Pr^{n}_{4}N[Pt$	${\rm Br}_5{\rm PMe}_3]$	Ð	r ⁿ 4N[PtI5PMe3]		Pr ⁿ 4N[P	ECI5ASMc3]	
	, I.r	lium.	I.T.soln. a	$\mathbf{R}_{\mathrm{solid}}$	Reoln. a	I.r.mull	I.r.soln. a	$\mathrm{R}_{\mathrm{solid}}$	R _{30ln} . a	I.r.mull	I.r.mull	I.r.soln. b	Rsolid	R _{soln} . "
PtL str. A_{1}^{\ddagger}	371r	н	371m	$371 \mathrm{m}$	371w,p	367m	368m	367w	370m, p	365m	$267 \mathrm{ms}$	$261\mathrm{m}$	$257 \mathrm{ms}$	261m,p
PtX str. A_i	2725		275s	271m	274m.dp	192 vs		191vs	$190 \mathrm{s,dp}$	154m	$286\mathrm{m}$	$291\mathrm{m}$	286w	291w
PtX, str. A	330	sh		334vs	336vs, p	200s	$207\mathrm{m}$	209s	208vs.p	137m			337s	338vs.p
B_1	313	νw		314s	316ms, dp			191vs	$190\mathrm{s,dp}$				318s	317s.dp
E^{1}	336	vs	337vs		•	225s	$226_{ m S}$		•	180s	336vs	333vs		T
YC _a asym. str.	7661	Ĕ	·:			752m	4	754vw	$754 \mathrm{vw,dp}$	749w	$635 \mathrm{wm}$	4	636 vw	635w,dp
•				757 v w	758vw,dp				ı		$629 \mathrm{wm}$	4	629 vw	
YC _a sym. str.	6861	н	•	685w	683w,p	682m	- -	686w	684w,p	681w	596 wm		596w	600m,p
YC sup def + 2.1	1016	, 45 by	AObd ab	040m by	99000 5	28UVW 9900	044.000		09.7 m	DQ,WV612			0050	00E
r Casyint, det. ‡ and	7047	, 118, DU	2 ± 000,511	242111,DU 095.5	d'inee-	5007	211111	M007	d'1111 07	MV142	101		2002	zuom,p
I C3 FOCK	167.	42 M		115062		159.00					MATRI			
WV in plane dof U	-101	11C, W V V				190m				110	170			
	TOT	111 M		153.00	۱۸۱ me dn	111/21		10.9 m	100sh day	111 11 11 11	M 17/T		1520	160m day
Other defs. and lattice	1521	В		export	dn'emrer	107w		111701	d'n'menn	100vw	139w		139vs	dn'woot
	1197	M		00									106w	
				$93 \mathrm{m}$				88vw						
	621	m,bd				58wm,bc	1				50m, bd			
Cation and other bands	7571	m w ch								$756 \mathrm{sh}$	752wm			
	721	M W				724w.sh				722w	722w			
	291	νw												
	566	νw												
	515 470	VW W				512w					514w 466w			
		:		435w				437w						
						336vw								
Limit of study	(40)) (200)	(80)	(001)	(40)	(200)	(10)	(20)	(40)	(40)	(200)	(80)	(140)

TABLE 1

524

				1			TABLE	I (Cont.)	~							
		Pr ^a 4N[P1	tBr ₅ AsMe	a]	I	'rad N[PtC	l ₅ NMe ₃]			Pr ^a 4N[Pt	Cl ₅ SMe ₂]			Pr ^a N[P	tBr ₅ SMe ₂	
PtL str. A.t	$1.r_{\rm mull}$ $270v_{\rm WW}$	I.r.soin. a	$\mathrm{R}_{\mathrm{solid}}$	$R_{soln.}$ a 270vw?	$I.r{mull}$ 548m	I.r. ^{soln.} ° 548w	R _{solid} 549wm	R _{sola} . ° 549wm	I.r.mull	I.r.soln. a	$\mathrm{R}_{\mathrm{solid}}$	R _{soln.} a	I.r. _{mull} 322m	I.r.soln. a	${ m R}_{ m solid}$	R _{soln.} a 322w.n
PtX str. A_1 PtX_4 str. A_1	180s 210m	$209\mathrm{m}$	191vs 206vs	180s,p 207vs;p	327s 345s	330s 341s	329s 344s	327ms 342s	317vs,bd	329s	340vs	338vs,p	202m 216vs	221s	1995 2165	199vs,p 218vs,p
$\operatorname{YC}_{2}^{B_1}(\operatorname{SC}_2)$ asym.	$243\mathrm{ms}$ $628\mathrm{m}$	241s	191VS 242vw	1925,ap 629vw,dp	<i>336</i> s †	341s †	\$010S	- + +	340vs 722vw	338s	<i>319</i> vvw 731 vvw	dp/S/19	241vs 722vw	239s	1965	190VS,U 683VW,P
YC ₃ (SC ₂)sym.str. YC ₃ asym. def.	596m		232w	598m,p	820s	+	820w	4-	687vw 292m,sh		687vw 291w	682vw,p	685vw 290w		289vw	
YC ₃ (SC ₂) rock	ч				2 82m,bd	+	258m	257m	231m		226m	230m,p	$221 \mathrm{sh}$		241 vw	241w,p
MX_4 in-plane def. E	114wm				193w		191w	192vw	177m				121m			
B_2 B_2 B_3	L		96s				162s	162m			152s	154ms,dp			99vs	
Other deis, and lattice	mw/.6				177Sh 165w 139w				152m $148sh$ $127m$		159sn		129s 106w 101sh		139w 106sh	
													91w		89 ms	
Cation and other	44w,b 752wm	q			$750 \mathrm{ms}$				58ms 776s				60s 766w			
bands	721 vw								754m 748sh				753m $747sh$			
	512vw				5 15w	512vw 309m			612vw 516w			960m ch da	514m 949			
Limit of study	322vvv (40)	, (200)	(20)	306vw,p (130)	(40)	(200)	(10)	(120)	(40)	(200)	(00)	(90)	249 sh (40)	(200)	(35)	304w,p (120)
			• In ni † Not	itromethane investigated	. ^b In <i>cis-</i> 1 or obscure	l,2-dichlo: sd by solv	roethylen 'ent band	e. ° In d s. ‡ Cou	ichloromet ipled mode	hane. s (see text	.(;					

(Con	
Π	
TABLE	

TABLE 2

Vibrational spectra (below 800 cm⁻¹) of the complexes trans- $[PtX_4L_2]$ (X = Cl or Br; L = PMe₃, AsMe₃, or SMe₂)

		[PtCl4(PMe3)2]		נן	PtBr ₄ (PM	e ₃) ₂]	C	PtCl ₄ (AsMe	3) 2]
PtL ₂ str. A_{1g} A_{2u}	I.r. _{mull} 347vs	I.r. _{sojn.} •	R_{solid} 358s	R _{soln.} ª 357vs,p	I.r. _{mull} 349m	R _{solid} 360m	R _{soln.} ^a 358w,p	I.r. _{mull} 264m	I.r. _{soln} . ^a	$ m R_{solid}$ 254m
$PtX_4 str. A_{1g}$ B_{1g}	9.9 %	949	<i>339</i> vs <i>322</i> s	<i>335</i> vs,p <i>318</i> s,dp	050	201vs 192vs	<i>203</i> vs,p <i>191</i> s,dp			${ {338s \atop {336sh} 336sh} \atop {320 ms} }$
₽ _w YC₃asym. str.	337VS 755s	343 <i>vs</i> †			250m 755sh 749s			344s 337s 631m 627s	342s † †	
			758vw 749vw	† †		749w	t		,	$630 \mathrm{sh}$ $628 \mathrm{m}$
YC ₃ sym. str.	679s	Ť	685m	t	674s	679m	t	592s	Ť	596ms
YC₃asym. def.	279m	275m	282sh 268wm	·	282w	283w 267w	·	196m,sl	h	233w 222m
$\rm YC_3$ sym, def. and $\rm YC_3$ rock	235m 232m	228m	227m 208s		220s	227sh 218m 214sh	ca. 214sh,p	184s		168vs
PtX_4 in plane def.	203w	201w			205sh					
E_{u} B_{2g} LPtX def. E_{g}	177wm 156vw		159m 140s		118s	98s 117s		164wm 148vw		159sh 120s
Other defs. and lattice	128w 108s				132m 93w 83w			120w 92s 84sh		130sh 73vw,bd ca. 50bd,sh 41ms
Other bands Limit of study	(40)	(200)	(60)	(280)	324w (40)	(60)	(175)	(40)	(200)	178sh (30)
		[1]	PtBr ₄ (AsM	[e ₃) ₂]		[PtCl4(SM	$[1e_2)_2]$		[PtBr ₄ (SMe	2)2]
$PtL_2 str. A_{1g}$		I.r.mull	R _{solid} 259vw	R _{soln.} ^b 255w,p	I.r. _{mull}	R _{solid}	R _{soln} .	I.r. _{mull} 330sh	R_{solid} 324ms	R _{soin.} » 335m,p
$\begin{array}{c} A_{2u} \\ PtX_4 \text{ str. } A_{1g} \\ B_{1g} \\ E_u \end{array}$		264m 245s	207vs 193vs	206vs,p 193ms,dp	316m 342sh 349vs	340vs 321vs	339vs,p 321s,dp	319m <i>188</i> vvw <i>242</i> s	200s 189vs	203vs,p 200sh,dp?
YC ₃ (SC ₂)asym. str.		628m 623s			732vw 724vw	728vw	t	723vw	729vw	†
YC ₃ (SC ₂)sym. str.		591s	624w	623w			_	684w		
YC ₃ asym. def. (SC ₂ def.)		191sh	595m	594ms	292w	682w 277m	† 285m,p	3 03w	685w 287m	† 285ms,dp
YC ₃ sym. def. and YC ₃ (SC ₉) rock		183s	221vvw		255w		-	$225\mathrm{sh}$ $218\mathrm{s}$		-
		178sh	173s	170ms,p		220m 212m	220ms,bd,j	р	220m	$223 { m sh,p}$
$\begin{array}{c} \operatorname{PtX}_4 \text{ in plane def. } E\\ B\\ \operatorname{LPX} def. & E \end{array}$	u 29	109ms	94s 102s		178s 161w	$\frac{162m}{151s}$	140ms,bd,d	123vs p	102ms 139m	
Other defs. and latti	ce	120wm 97vw 82wm 75wm	57vw 46sh		134w 130sh 111wm	1010)		157vw 134vs 103w 95w	127m,bd 69wm b	d
						49wm 36m			50m 38sh 32ms	-
Other bands					245w,bd			261w,bd	021113	
Limit of study		(40)	(30)	(108)	(40)	(25)	(120)	(40)	(20)	(140)

^a In benzene. ^b In tetrahydrofuran.

† Not investigated or obscured by solvent bands.

-	Ja muona	[PtCl4(PMe3)		4							
			 	[PtBr4(]	PMe ₃) ₂]	[PtCl4	AsMe ₃ , ²]	LPtBr4(As	Me ₃)2]	s)fintal	$Me_2)_2$
	$I.r{mull}$	Rsolid	R _{soin} . «	I.r.mull	Raolid	L.r.mull	Reolid	L.T.mull	K ^{solid}	L.r.mull	Ksolid
MY ₂ str. (sym.)	381m	382w		377m	379m	$273 \mathrm{m}$	276w	280w			343s
(asym.)	362s	364w		359m	361m	257vs	254w,bd	266w			
MX. (trans) str. (sym.	336s	337vs	334s,p	208s	210 vs	337 sh	337vs	207s	209 vs	335s	336s
(asym.	348vs	349w	•	$249 \mathrm{wm}$		347vs	348w	250s	252 vw	346 vs	$350 \mathrm{sh}$
$MX_{o}(cis)$ str. (sym.)	296vs	295s	$302 \mathrm{wm,p}$	<i>191</i> s	195vs	301vs	$303\mathrm{m}$	183s	186vs		321 vs
z (asym.)	271vs	277s	288wm,dp	185vs	186vs	285vs	$287\mathrm{m}$	177vs	178vs	317vs	
YC _a (SC _a) asym. str.	759 sh		•								1
i i	756m			750m	755sh	635sh	632m	629 sh	$630 \mathrm{sh}$		728w
	750m			$745 \mathrm{m}$	748 wm	628s		625s	626m		716w
	744m			740m	743 sh	623 sh	624sh	619s	621w		
YC _a (SC _a) svm. str.	684s			681 ms	684s	595 ms	597s	593s	595m	682vw	685wm
n à	677s			674ms	678 sh	590 ms		589s	591sh	671vw	674wm
YC, asym. def.					$319 \mathrm{wm}$	230 bd	228m		$235 \mathrm{m}$	312sh	
(SC, def.)				$290 \mathrm{wm}$	293 sh				225vw,bd	298s	298m
				278wm	286wm						
YC ₃ sym. def.	249s	247s		249wm	245 ms	211m	210 vs				
		236vs		$223\mathrm{m}$							
YC ₃ (SC ₂) rock		212w								250m	253sh
		194vw								240m	237S
MX_4L_2 deformations	169wm	169sh		137sh	139Sh	1/3wm	174wm		USD/1	MAGI	108Wm
and lattice	1645N	SAGGI		114	11621	114m	109511 22 160ch	11411		1 62.00	5/01
	smoor	14606		114111	11011	190 <u>1</u>	190011 100211	104m hd	070	149,000	14464
	1431115	140511		M701	91m	199m	139sh	20111,00	c16	131sh	134w
	124wm	126vw			81w	101 wm	103sh		70vw.bd	125 wm	
		95m					96w				
	70 wm					71sh					
	$47 \mathrm{wm}$					59ms,bd					
Other bands	331sh				$267 \mathrm{wm}$	330w,sh					
Limit of study	315vvw (40)	(10)	(250)	(40)	(50)	180W (40)	(06)	(40)	(40)	(40)	(09)
•		•			" In dimethylf	ormamide.					
					•						

3	7.4.5
LE	1
AB	Ŷ
щ	b

Vibrational spectra (below 800 cm⁻¹) of the complexes cis-[PtX₄(YMe₃)₂] (X = Cl or Br; Y = P or As) and cis-[PtCl₄(SMe₂)₂]

ion [PtCl₅AsMe₃]⁻ follows from those of the trimethylphosphine complex leaving two Raman and i.r. bands, at 261 and 291 cm⁻¹, for the $A_1(PtL)$ and $A_1(PtX)$ motions. We have previously noted 9 that considerable mixing may occur between such trans related modes, but if the trimethylphosphine complex is a guide, the band at 261 cm⁻¹ being the more polarised could be more appropriately described as $A_1(PtL)$. For the trimethylamine complex, [PtCl₅NMe₃]⁻, the bands at 548 and 257 cm⁻¹ arise from $A_1(\text{PtL})$ and CNC deformation (sym) modes but, as with the Pt^{II} complexes,⁴ we expect there to be considerable

bromo-anions, but the $A_1(PtBr)$ vibration is more intense and polarised in the Raman spectrum than for the other species. As its energy seems rather low for $A_1(PtBr)$ trans to sulphide and the $A_1(PtBr_4)$ vibration is about 10 cm⁻¹ higher than in the other complexes, the explanation could be mixing between these two vibrations of the same symmetry.

The colour of the only iodide isolated, [PtI₅PMe₃]⁻, precluded Raman study. For the chloride and bromide the energies of the $E(PtX_4)$, $A_1(PtX_4)$, and $A_1(PtX)$ stretches follow the order of the $B_1(\text{PtX}_2)$, $A_1(\text{PtX}_2)$, and

[PtCl₃(PMe₃)₃]BF₄ [PtBr₃(PMe₃)₃]BF₄ I.r.mull I.r.soln. Rsolid Rsoin. a I.r._{solp.} a Raoin. " PtP str. 384w,p 385s383s 384w 384w,p 384m PtP₂ str. (sym.) 354m,sh 355m,p 353wm,p ca. 354s ca. 352vs (asym.) 355ms 203vs,p PtX₂ str. (sym.) 337vs 334vs.p (asym.) 35**4**s 352vs 245 vsPtX str. 297s 297s 295s197s,sh,dp PC₃ asym. str. 756m ca. 755m t t † t 743m 744m PC. svm. str. 681sh t 681m 1 1 t 675m673sh 326wm PC₃ asym. def. 323vw Ť 318 vw+ 293sh 280ms 285m,sh $\mathrm{PC}_{\mathbf{3}}$ sym. def. 240m 228m,p 239wm 228m,sh 215m,sh 219ms,sh,p and/or rock 215m,sh 203s 200ms,p PtX₃P₃ Deformations 150wm 150s,bd 144m,bd,dp and lattice modes 138wm 116wm 113w65wm.bd BF4-762m + ì 520wm Limit of study (40)(200)(60)(100)(200)(130)

TABLE 4

^a In dichloromethane.

† Not investigated or obscured by solvent bands.

mixing and separate identification is not justified. We have not assigned the PtS stretching vibration for the salt Prⁿ₄N[PtCl₅SMe₂] as, to judge from the bromo-complex, it will be concealed by the more intense chloride vibrations.

The intense i.r. band at 241 cm⁻¹ in the spectrum of the ion [PtBr₅AsMe₃]⁻, which has only a very weak Raman equivalent and none in the spectrum of the chloride, may be assigned to the E vibration. The strong Raman bands at 207 and 192 cm⁻¹, with i.r. counterpart of the first only, may be assigned to the $A_1(PtBr_4)$ and B_1 vibrations respectively. The symmetric AsC₃ deformation (at 205 cm⁻¹ in the chloride) will also contribute to the 207 cm⁻¹ band. Again these energies are close to those of the PtBr₄ group in the complex [PtBr4(PEt3)2].7,8 The remaining strong Raman and i.r. band at 180 cm⁻¹ must be the $A_1(\text{PtBr})$ stretch; it is not highly polarised. For the ion $[PtBr_5PMe_3]^-$, the $A_1(PtBr)$ and B_1 modes are coincident so that the Raman spectrum only shows two bands. Unfortunately, polarisation measurements were not sufficiently definitive to show a totally symmetric contribution to the band at 190 cm⁻¹. The PtBr stretching vibrations of the ion [PtBr₅SMe₂]⁻ correspond to those of the other

 $A_1(PtX)$ in $[PtX_3L]^-$. Platinum-iodide stretching assignments in Table 1 are based on the assumption that the same relation holds for the iodide.

(b) trans- $[PtX_4L_2]$. Like previous authors,^{7,8} we assume D_{4h} symmetry for these complexes. The halidestretching vibrations $A_{1g}(\text{PtX}_4)$, $B_{1g}(\text{PtX}_4)$, and $E_u(\text{PtX}_4)$ are readily identified from the results of other workers 7,8 on complexes of similar ligands and the PtL₂ vibrations are similar to those of trans- $[PtX_2L_2]$. In the complex $[PtCl_4(AsMe_3)_2]$ the $E_u(PtCl_4)$ stretching band is split into two equal-intensity components in the solid state but is single in benzene solution; an analogous observation has been made for [IrCl₄(PMe₃)₂].¹⁰ The i.r. spectrum of our sample of the complex trans- $[PtCl_4(SMe_2)_2]$ does not agree at all with that reported by Adams and Chandler,⁸ whose spectra showed a band at 392wm cm⁻¹ which may indicate a sulphide-bridged species.¹¹

(c) cis-[PtX₄ L_2]. In the assignments made previously ^{7,8} the energy of the symmetric PtCl₂ stretch is much lower than the other Pt-Cl stretching modes. This surprises us as the symmetric and asymmetric vbrations of the

P. L. Goggin and J. R. Knight, *J.C.S. Dalton*, 1973, 1489.
 P. L. Goggin, R. J. Goodfellow, D. L. Sales, J. Stokes, and P. Woodward, *Chem. Comm.*, 1968, 31.

⁹ R. J. Goodfellow, P. L. Goggin, and L. M. Venanzi, J. Chem. Soc. (A), 1967, 1897.

linear PtCl₂ group in the complex *trans*-[PtCl₂L₂] and [PtCl₃L]⁻ are almost coincident and we have found related motions of Pt^{IV} systems to be close to those of Pt^{II} systems. Indeed, the strong Raman band at 334 cm⁻¹ (and its i.r. counterpart at 336 cm⁻¹) found for the complex *cis*-[PtCl₄(PEt₃)₂]⁷ would seem better assigned to the symmetric PtCl₂ vibration rather than to the asymmetric PtCl₂ stretch which appears at 345 cm⁻¹.

Our cis-isomers are not very soluble in spectroscopically suitable solvents and we have had to use dimethylformamide, which has bands 358ms,dp, 322m,p, and 232w,vb,d cm⁻¹, to obtain Raman-polarisation data on cis-[PtCl₄-(PMe₃)₂]. These show the band at 334 cm⁻¹ to be strongly polarised and therefore clearly the symmetric stretch of the linear PtCl₂ group; the higher of the two PtCl(*trans* to PMe₃) stretching bands is also polarised and hence totally symmetric. The assignments for the trimethylarsine complex follow directly. The assignments for the dimethyl sulphide complex must be regarded as tentative

Skeletal-deformation vibrations. These motions are particularly liable to couple with lattice modes and studies in solution are hampered by the difficulty of finding a suitable solvent. In view of this and the confusion with internal motions of the ligand, we feel that previous assignments are somewhat optimistic. The in-plane MX4 deformations should remain reasonably constant with change of ligand in the complexes trans-[PtX₄L₂] and would be expected to be related in energy to those of [PtX₄]²⁻. For the salt (Buⁿ₄N)₂[PtCl₄] in solution, the B_{2q} mode occurs at 173 cm⁻¹ and the E_u mode at 165 cm⁻¹, whilst for the corresponding bromide the values are 113 and 112 cm⁻¹ respectively.¹³ Likewise, the other Ramanactive deformation would be expected to relate to the scissors mode of the complexes trans-[PtX₂L₂]. These criteria seem to lead to logically consistent assignments

TABLE 5

N.m.r. parameters of trimethylphosphine complexes of platinum(IV)

	$\tau_{\rm CH_3}$	$^{2}J_{PH}$	³ Јрŧн	δ _P α, b	¹J _{PtP} ₫	${}^{3}J_{\mathrm{Pt(IV)H}}:{}^{3}J_{\mathrm{Pt(II)H}}$	${}^{1}J_{\text{Pt}(\text{IV})\text{P}}$: ${}^{1}J_{\text{Pt}(\text{II})\text{P}}$
PtCl ₅ PMe ₃]-	8.18	-13.5	+18.3	0.2	$+2\ 119$	0.60	0.577
PtBr ₅ PMe ₃]-	7.91	-12.8	$+22 \cdot 2$	14.7	$+2\ 095$	0.71	0.594
PtI ₅ PMe ₃]	7.58	-12.5	+26.0	46.2	$+2\ 181$	0.75	0.646
is-[PtCl4(PMea),]	8.04	-12.5 °	+19.9	-1.7	+2.081	0.56	0.598
is-[PtBr, (PMe)]	7.89	$-12\cdot 2$ d	+21.5	11.7	$+2\ 015$	0.60	0.588
rans-[PtCl4(PMe3)2]	8.28	-8·4 °	+12.6	11.8	+1 516	0.59	0.637
$rans-[PtBr_{4}(PMe_{3})_{2}]$	8.03	- 8·3 °	+14.5	31.5	+1550	0.66	0.664
rans-[PtI4(PMe3)2]	7.44	-8·1 °	+17.8	64.6	+1 585	0.77	0.711

^e From ¹H(³¹P)INDOR measurements. ^b P.p.m. upfield from H₃PO₄. ^e(²J_{PH} + ⁴J_{PH}); in CD₃NO₂ solution ²J_{PP} 4.5, ²J_{PH} - 13.0, and ⁴J_{PH} + 0.4 Hz. ^e(²J_{PH} + ⁴J_{PH}); in CD₃NO₂ solution ²J_{PP} 3.5, ²J_{PH} 12.5, and ⁴J_{PH} + 0.2 Hz. ^e(²J_{PH} + ⁴J_{PH}).

because of complications arising from PtCl stretching, Pt-S stretching, and SC_2 bending vibrational energies being similar.⁵ Assignments of vibrations of the PtBr₄ group are made by analogy with the chlorides.

(d) $mer-[PtX_3(PMe_3)_3]BF_4$. If these complexes are regarded as of C_{2v} symmetry, there are both symmetric and asymmetric stretching vibrations for $trans-PtP_2$ and -PtX₂ groupings active in the i.r. and Raman spectra, as well as Pt-P and Pt-X vibrations of the linear P-Pt-X unit. The bromide has only been investigated as a solution in dichloromethane prepared by the action of bromine on a solution of the salt [PtBr(PMe₃)₃]BF₄; it has been authenticated by its ¹H n.m.r. spectrum.¹² Since its Raman spectrum shows two polarised bands in the region 350-400 cm⁻¹, *i.e.* 384 and 353 cm⁻¹, both must be assigned as Pt-P symmetric stretching and from the relation with the other spectra the higher must be concerned with the phosphine trans to bromide. The i.r. spectrum also shows two bands at essentially the same wavenumbers but the stronger one, 355 cm⁻¹, must be the asymmetric PtP₂ vibration on the grounds of its intensity. This closeness between symmetric and asymmetric trans-MP, energies has been found in all other complexes with three trimethylphosphine ligands as constituents of a square plane.^{2,10} The assignment of PtBr₂ vibrations is straightforward and the PtBr mode is revealed as a strong band, certainly of rather high depolarisation ratio, under the perpendicular polarisation condition, but is hidden beneath

¹² P. L. Goggin, R. J. Goodfellow, J. R. Knight, M. G. Norton, and B. F. Taylor, J.C.S. Dalton, 1973, 2220.

for the trimethyl-phosphine and -arsine complexes but the assignments are less certain for the dimethyl sulphide complexes. The equivalent deformations of the PtX_4 group in the ion $[PtX_5L]^-$ may be assigned by analogy but it does not seem reasonable to assign the other deformations of these or the other species.

N.M.R. Spectra.—The ¹H n.m.r. spectra of the Pt^{IV} complexes in general resemble those of the corresponding Pt^{II} complexes but with a much lower value of ${}^{3}J_{\text{PtH}}$. cis-[PtX₄(PMe₃)₂] (X = Cl or Br) complexes are too insoluble in dichloromethane to show the effects of phosphorus-phosphorus coupling on these [AX₉]₂ systems,¹⁴ but saturated solutions in CD₃NO₂ are sufficiently strong to show the inner and outer lines for $\chi=1.$ The inner lines are partly obscured by platinum satellites but the latter were largely removed by irradiating the appropriate region of the ¹⁹⁵Pt spectrum. The authenticity of the lines was checked by 'tickling' experiments similar to those with the complex $[PtBr_2(PMe_3)_2]^3$ and the parameters extracted in the usual way.¹⁴ The *trans*-isomers showed the usual triplet with a broad central line as found for other systems where ${}^{2}J_{\rm PP} \gg |{}^{2}J_{\rm PH} - {}^{4}J_{\rm PH}|$. Where both cis- and trans-isomers occur, the trans-isomers seem more favoured for Pt^{IV} than for Pt^{II} but the rate of interconversion is slower. For this reason, solutions for the n.m.r. measurements of some of the cis-isomers were most conveniently obtained by oxidation of a solution of the appropriate Pt^{II} complex. The same method was used for the

¹³ P. L. Goggin and J. Mink, unpublished work.

¹⁴ R. K. Harris, Canad. J. Chem., 1964, 42, 2275.

iodide complexes as these were not stable enough to be isolated. The complex $[PtI_4(PMe_3)_2]$ appears to be in equilibrium with $[PtI_2(PMe_3)_2]$ even in the presence of excess of iodine and lowering of the temperature was necessary to sharpen up the resonances.

Since J_{PtP} is of particular interest, we have obtained details of the ³¹P resonances by ¹H(³¹P)INDOR measurements and these are included with the proton n.m.r. data on the phosphine complexes in Table 5. The equivalent information on the Pt^{II} complexes was required for comparison and this is presented in Table 6 together with

TABLE 6

³¹P N.m.r. parameters derived from ¹H(³¹P)INDOR measurements on trimethylphosphine complexes of palladium(II) and platinum(II)

	M = Pd		M = Pt
	δ _P α	δ _P «	¹ J _{PtP}
Pr ⁿ ₄ N[MCl ₃ PMe ₃]	-0.8	30.6	3674
Pr ⁿ ₄ N[MBr ₃ PMe ₂]	0.5	31.5	$3\ 542$
Pr ^a ₄ N[MI ₃ PMe ₃]	3.48	$32 \cdot 2$	$3\ 377$
$[M_2Cl_4(PMe_3)_2]$	-15.7	$23 \cdot 2$	3 834
$[M_2Br_4(PMe_3)_2]$	-12.4	24.5	3682
$[M_2I_4(PMe_3)_2]$	-4.8	26.4	$3\ 480$
cis-[MCl ₂ (PMe ₃) ₂]	1.9	24.0	$3\ 480$
$cis - [MBr_2(PMe_3)_2]$	1.7	$23 \cdot 8$	$3\ 426$
$cis-[MI_2(PMe_3)_2]$		26.0	$3 \ 306$
trans-[MCl ₂ (PMe ₃) ₂]	11.9	15.8	$2\ 379$
$trans-[MBr_2(PMe_3)_2]$	16.9	20.4	$2\ 336$
$trans-[MI_2(PMe_3)_2]$	27.8	$32 \cdot 2$	$2\ 230$
$trans-[M(CN)_2(PMe_3)_2]$	12.8	19.6	$2\ 120$

^a P.p.m. upfield from H₃PO₄.

results on related Pd^{II} complexes and halogeno-bridged dimers $[M_2X_4(PMe_3)_2]$ for completeness. We have determined the signs of coupling constants relative to J_{PtP} for the Pt^{IV} phosphine complexes. Values of J_{PtP} for the complexes *cis*- and *trans*-[PtCl₂(PMe₃)₂] are close to those of the equivalent triethylphosphine complexes which have been shown by McFarlane to be positive for both isomers.¹⁵ In view of the large magnitude of J_{PtP} it seems safe to assume that J_{PtP} is positive in all the trimethylphosphine complexes studied here. On this basis ${}^{3}J_{PtH}$ is positive and ${}^{2}J_{PH}$ negative as we have found on systems with three or four phosphine ligands.¹²

Values for J_{PtN} would be desirable to compare with J_{PtP} . However, the protons of NMe₃ co-ordinated to platinum do not show any sign of coupling to ¹⁴N which is not surprising in view of the probably small value of the coupling ¹⁶ and the relatively rapid relaxation of ¹⁴N, expected because of its quadrupole moment. Thus ¹H(¹⁴N)INDOR measurements are not practicable but, fortunately, ¹H(¹⁹⁵Pt)INDOR spectra do show broadening due to platinum-nitrogen coupling and for the complexes $[PtCl_5NMe_3]^-$, trans- $[PtCl_4(NMe_3)_2]$, and trans- $[PtCl_2^-]$ (NMe₃)₂] the relaxation of the nitrogen atom is sufficiently slow to cause partial resolution of this splitting (see Figure). The 1:1:1 triplet and 1:2:3:2:1 quintet shown by the complexes with one or two amine ligands respectively are expected for coupling to a nucleus of I = 1. Approximate values of J_{PtN} are: [PtCl₅(NMe₃)]⁻, 157 \pm 2; trans-[PtCl₄(NMe₃)₂], 166 \pm 5; trans-[PtCl₂(NMe₃)₂], 209 \pm 10 Hz. The only previous report of platinum-nitrogen

¹⁶ E. W. Randall and D. G. Gillies, Progr. N.M.R. Spectroscopy, 1971, 6, 119. coupling seems to be for the complex cis-[Pt(NCS)₂-(PBuⁿ₃)₂] for which Howarth *et al.* observed the much larger value of 430 \pm 3 Hz.¹⁷ Data on the ions [PtXL₃]⁺

¹H(¹⁹⁵Pt)INDOR spectra of (i) $Pr^{n}_{4}N[PtCl_{5}NMe_{3}]$, (ii) trans-[PtCl_{4}(NMe_{3})_{2}], and (iii) trans-[PtCl_{2}(NMe_{3})_{2}] with lines relevant to the values of coupling constants given in the text

and mer-[PtX₃L₃]⁺ have been reported in a previous paper ¹² and data on Pt^{IV} complexes of ligands other than trimethylphosphine are given in Table 7.

TABLE 7

¹H N.m.r. parameters of trimethylamine, trimethylarsine, and dimethyl sulphide complexes of platinum(*iv*)

	$\tau_{\rm CH_3}$	³∫рŧн	³ J _{Pt(IV)H} : ³ J _{Pt(II)H}
Prn ₄ N[PtCl ₅ NMe ₃]	7.19	26.0	0.82
Pr ⁿ ₄ N[PtBr ₅ NMe ₄]	6.98	28.7	0.87
trans-[PtCl ₄ (NMe ₃) ₂]	7.19	27.5	0.96
trans-[PtBr ₄ (NMe ₃) ₂]	6.86	30.8	1.08
Ph ₄ P[PtCl ₅ AsMe ₃]	8.29	13.5	0.62
Ph ₄ P[PtBr ₅ AsMe ₃]	8.07	16.1	0.73_{5}
Ph ₄ P[PtI ₅ AsMe ₃]	7.74	19.3	0.85
cis-[PtCl ₄ (AsMe ₃) ₂]	8.13	14.9	0.62
$cis-[PtBr_4(AsMe_3)_2]$	8.02	15.8	0.66
trans-[PtCl ₄ (AsMe ₃) ₂]	8.34	10.3	0.60
$trans-[PtBr_4(AsMe_3)_2]$	8.16	11.6	0.68
trans-[PtI4(AsMe3)2]	7.69	14.6	0.80
Prn ₄ N[PtCl ₅ SMe ₂]	7.56	31.5	0.66
$Pr_4^n N[PtBr_5SMe_2]$	7.42	33.8	0.70
$cis-[PtCl_4(SMe_2)_2]$	7.43	$32 \cdot 0$	0.64
cis-[PtBr ₄ (SMe ₂) ₂]	7.35	$33 \cdot 6$	0.62
trans-[PtCl ₄ (SMe ₂) ₂]	7.44	30.0	0.72
$trans-[PtBr_4(SMe_2)_2]$	7.19	$32 \cdot 3$	0.78

We have previously commented on the greater effect that a halide in a *cis*-position has on τ_{Me} , δ_P , ${}^2J_{PH}$, and ${}^3J_{PtH}$ compared to a halide in the *trans*-position.^{3,13} The same is true of the Pt^{IV} complexes and the results are more noticeable because of the greater number of halides in *cis*-positions. Any similar effect on J_{PtP} is relatively small. Thus the *trans*-halide causes a marked decrease in J_{PtP} in the order Cl > Br > I corresponding to the *trans*-influence of the halide except for the ion [PtX₅-

 17 O. W. Howarth, R. E. Richards, and L. M. Venanzi, J. Chem. Soc., 1964, 3335.

¹⁵ W. McFarlane, J. Chem. Soc. (A), 1967, 1922.

 (PMe_3)]⁻. For the latter and trans- $[PtX_4(PMe_3)_2]$, it looks as if a positive contribution from the four *cis*-halides (which may or may not be chemically significant) dominates.

DISCUSSION

We have previously commented on the unsatisfactory nature of the results obtained from force-field calculations for systems as complicated as these.² In considering the behaviour of metal-ligand bonds, we will base our deductions on the observed frequencies, with all the uncertainties that this implies. From the way in which trans-MY2 group vibrations display practically constant energies within various series of complexes ^{2,5,18} there would appear to be relatively little mixing between stretching vibrations in perpendicular directions unless the groupings on the two directions are identical (*i.e.* the axes are degenerate). Thus, by comparing only the stretching energies of particular trans-groupings in different complexes, e.g. Cl-Pt-Cl in the complexes $trans-[PtCl_2(PMe_3)_2]$ and cis-[PtCl₄(PMe₃)₂] but not in trans-[PtCl₄(PMe₃)₂], we would expect conclusions to be fairly well founded. There is also an uncertainty in designations such as 'M-L stretching' in these complexes of polyatomic ligands as there is always a deformation about the donor atom of the same symmetry. In our previous work on trimethylphosphine complexes we have described the higher in energy of the conjugate pair of modes as M-P stretching; it is usually easy to identify with certainty, and behaves as such a vibration would be expected to do both in terms of symmetry of the various complexes and the expected bond strengths. Where the lowerenergy band has also been unambiguously identified, it follows a trend in the same direction between complexes, and although the extent to which either frequency is 'M-P stretching' or 'PC3 symmetric bending ' in character must vary from complex to complex, effects implied by observing the change in either parameter seem to be chemically sensible. Nakamoto's work using different metal isotopes has implied a very wide range of Ni-P stretching frequencies 19 for compounds with much more complicated phosphines than ours but it is usually evident that a number of features show sensitivity to the mass of the metal and that designation of a stretching vibration between a metal and a polyatomic ligand has an imprecise meaning. In the present discussion we will continue to use the relevant frequencies in the 330-420 cm⁻¹ range as our indicator of M-P bonding.

Comparison between the complexes mer-[IrCl₃-(PMe₃)₃]¹⁰ and -[PtCl₃(PMe₃)₃]⁺ has the advantage that there is no change of structure and the complexes contain three types of *trans*-groupings. For Cl-M-Cl. the symmetric and asymmetric vibrations respectively increase by 23 and 28 cm⁻¹ from iridium to platinum; M-Cl (trans to P) increases by 30 cm⁻¹ whilst M-P (trans to Cl) decreases by 10 cm⁻¹. The P-M-P modes also decrease by about the same amount. The effect on the vibrational energies of unit increase in charge

on the complex can be estimated from data on other octahedral complexes; ¹⁰ it is positive for both M-P and M-Cl vibrations and for the latter is much less than the differences we observe between Ir^{III} and Pt^{IV}. The corresponding changes between complexes trans-[MCl₄(PMe₃)₂] are broadly similar, M-Cl stretches showing large increases (25 cm⁻¹ on average) and the average of the P-M-P energies remaining static. The increased binding of the negatively charged halide on increasing oxidation state is to be expected. The decrease in M–P bond strength could be due to decreased overlap between the phosphorus lone pair and the metal d orbitals since the latter will contract on going from Ir^{III} to Pt^{IV}; increasing positive charge on the complex alone must have much less effect on the charge carried by the metal than change of oxidation state. Equally, if π -bonding is considered, the change in M-P energies is consistent with the expected lower π -bond order for the higher-oxidation-state complex.

Considering oxidation of Pt^{II} to Pt^{IV}, there is the added complication of change in co-ordination number. The mean wavenumber changes on oxidation for groupings in complexes of the same overall charge are approximately: Cl-Pt-Cl, +9; Cl-Pt (trans to P), -9; P-Pt (trans to Cl), -19; and P-M-P, -9. Thus, whilst the behaviour of v(PtP) is in the same sense as that observed above between Ir^{III} and Pt^{IV}, the increase in Cl-Pt-Cl is much less than comparisons between the different octahedral complexes might have led us to expect, and Pt-Cl (trans to P) actually decreases. The latter are most probably due to the inclusion of two extra chlorine atoms which greatly increases the number of Cl-Cl repulsions at 90°. Since the chlorine atom opposite the phosphine group will be more ionic in nature and carry a larger negative charge than mutually trans chlorine atoms, it would show the greater reaction to such repulsion. The effect on the Pt-P bonding should, if anything, be in the opposite sense since the phosphorus atoms probably carry a small positive charge. The greater weakening of a Pt-P bond trans to Cl compared to that of mutually trans Pt-P bonds could be because it has higher covalency and is more susceptible to metal *d*-orbital contraction. Reduction in π -bonding potential on oxidation could offer an alternative explanation since the effect should be less for trans Pt-P bonds which would have less π -character in the lower oxidation state because they are both competing for use of the same d orbitals.

Changes in J_{PtP} reflect those in v(PtP), and ratios for Pt^{IV}: Pt^{II} coupling constants are in fact less than 2:3, the value predicted for comparison of dsp^2 and $d^{2}s\rho^{3}$ hybridised states if the s orbital contributes equally to all hybrids. The ratio for J_{PtP} (trans to Cl) is much less than for J_{PtP} (trans to P), for example in the ion $mer-[PtCl_3(PMe_3)_3]^+$ the ratios are 0.604 and 0.642:1 respectively (see also Table 5). It may be

D. M. Adams, J. Chatt, J. Gerratt, and A. D. Westland, J. Chem. Soc., 1964, 734.
 K. Nakamoto, Angew. Chem. Internat. Edn., 1972, 11, 666.

fortuitous but it is interesting to note that $J_{\rm MP}$ (trans to Cl)/ $J_{\rm MP}$ (trans to P) is 1.50, 1.41, and 1.31 for the complexes [PtCl(PMe₃)₃]⁺, mer-[PtCl₃(PMe₃)₃]⁺, and mer-[RhCl₃(PMe₃)₃] respectively compared with v(M-P)-(trans to Cl)/mean v(MP₂) equal to 1.10₀, 1.08₆, and 1.08₀ showing that changes implied by the two types of measurement parallel each other.

Stretching vibrations of the trimethylarsine complexes seem to behave in much the same way on oxidation as the trimethylphosphine analogues, as far as inherent confusion between Pt-As and Pt-Cl frequencies allows us to judge. For the dimethyl sulphide complexes it is difficult to make firm comparisons between the Pt-S stretching energies because they typically occur very close to more intense Pt-Cl features, but in a number of cases they seem to be less lowered on oxidation than analogous Pt-P energies. In the trimethylamine complex, considering either the band near 550 or near 250 cm⁻¹ as v(Pt-N), the energy either remains unchanged or increases on oxidation. Furthermore, v(Pt-Cl) increases on oxidation when *trans* to N or S in contrast to the behaviour when trans to P: both the N and S ligands have much lower trans-influence than the P and As ligands. The ratio $I_{Pt}^{IV}N: I_{Pt}^{II}N$ for the two trans bis(trimethylamine) platinum chlorides is 0.80 ± 0.06 : 1, very different from the corresponding ratio in the phosphine complexes. Since π -bonding possibilities do not exist for trimethylamine, we could either account for the observed ratio being above 2:3 by postulating some destabilising feature for the Pt-N bond in the platinum(II) complex (e.g. repulsive interaction between filled platinum d orbitals and electron density in N-C bonds of the ligand 4) or suggesting that the ratio should not be 2:3 anyway. In the one case we have studied, the behaviour of v(Pt-N)does not indicate a very marked increase in bond strength for the platinum(IV) complex, so we favour the second suggestion. Since in square-planar complexes s and d_{z^3} orbitals are of the same symmetry, it is probable that the non-bonding pair of electrons has both 6s and $5d_{z^2}$ character. For the trimethylarsine and dimethyl sulphide complexes, we cannot, of course, obtain direct metal-ligand coupling information. The constant ${}^{3}J_{\text{Pt-H}}$ is dependent on a number of influences but from the trimethyl-phosphine and -amine complexes there is a rough relation between the one-bond coupling ratios for the two oxidation states and three-bond coupling constant ratios especially for the chlorocomplexes (Table 5). When values for ${}^{3}J_{\text{PtH}}$ of the trimethylarsine and dimethyl sulphide complexes are included, there is a trend from PMe₃, through AsMe₃ and then SMe₂ to NMe₃ in agreement with indications from vibrational spectra.

In contrast to the corresponding values for J_{PtP} , J_{PtN} is less in the anion $[\text{PtCl}_5\text{NMe}_3]^-$ than in the *trans*-complex $[\text{PtCl}_4(\text{NMe}_3)_2]$ implying either that trimethylamine has a lower *trans*-influence than chloride or that the Pt-N bond strength has increased more with increasing overall positive charge than it has lost through

the *trans*-influence of trimethylamine. The fact that trimethylamine complexes can only be prepared by routes which do not involve rupture of terminal platinum-halide bonds⁴ tends to support the former postulate.

If we wish to compare the coupling of ¹⁹⁵Pt to ³¹P and ¹⁴N, we must use reduced coupling constants, the relevant values of which are given in Table 8. Since

	TABLE	8	
	$K_{\mathbf{PtN}}$ ^a	$K_{\mathbf{PtP}}$ a	$K_{\mathbf{PtP}}: K_{\mathbf{PtN}}$
trans-[PtCl_L_]	112.5	228.6	$2 \cdot 1$
trans-[PtCl_L_]	89.4	145.7	1.6
Prn ₄ N[PtCl ₅ L]	84.5	203.7	$2 \cdot 4$
	« 10 ²⁰ N A ²	m ⁻³ .	

 $\langle \psi_{\rm s}(0) |^2$ is greater for phosphorus than nitrogen by *ca*. 7:6,²⁰ the reduced couplings must overstate the relative position of phosphorus as a donor atom to this extent. The values of the ratios themselves are also limited in significance since we do not know the *s*-orbital contribution to the donated electron pair and it is unlikely to be the same in each case. However, comparison of the ratios for the neutral Pt^{II} and Pt^{IV} systems shows how much more the *s*-orbital interaction is increased by reducing a phosphine complex than by reducing an amine complex. Although this information can give no direct measure of electrons in the π -bonds, the change observed is in keeping with synergically enhanced σ -bonding which would accompany π -accepting behaviour by phosphorus.

In many *d*-electron complexes, three facets of bonding must be considered: σ -donation from ligand to metal; π -donation from metal to ligand; and π^* -repulsion between metal and ligand. π -Donation will only be important for bonding of a neutral ligand with available π -acceptor orbitals (P, As, and S in this work) and π^* -repulsion will be most significant when the ligand has unused lone-pair orbitals (S and halide). The two effects cannot be clearly separated by the measurements here but our results are certainly consistent with π -bonding playing a significant role in the Pt-P bond, at least for Pt^{II}, contrary to some recent trends in thought!

EXPERIMENTAL

I.r. and Raman measurements were made as previously reported.^{2,4} N.m.r. spectra were measured on 0·1_M-solutions in dichloromethane, except that the *cis*-isomers were not soluble to this extent. For comparability with the Pt^{II} results, the anions [PtX₅L]⁻ (L = PMe₃ or AsMe₃) were measured as solutions of their tetraphenylphosphonium salts, obtained by oxidation of the platinum(II) complexes.³ However, for the INDOR measurements, the more soluble Prⁿ₄N⁺ salts were used: there was a small change in τ_{Me} on changing the cation. For INDOR spectra of the *cis*-isomers, solutions in CD₃NO₂, in which they are more soluble, were used. The phosphorus-proton coupling was 'resolved' in the ¹H(³¹P)INDOR

²⁰ J. A. McMillan and T. Halpern, J. Chem. Educ., 1970, **47**, 644.

tr

tr

spectra of the anions and for several of the trans-isomers, the latter with splitting of $1/2({}^{2}J_{\rm PH} + {}^{4}J_{\rm PH})$. For the cis-complexes several lines were observed corresponding to the ³¹P spectrum, but as the pattern was not symmetric when a sharp line was monitored, the patterns for both sharp lines (which are mirror images) were drawn out to obtain the true centre of the resonance. ¹H(¹⁹⁵Pt) Measurements on the trimethylamine complexes were carried out on $(CD_3)_2CO$ solutions at 340 K so that the low viscosity would increase the relaxation time of the ¹⁴N nucleus. The measurements were made as previously described 12 and the results are given in Hz for coupling constants, p.p.m. for chemical shifts on the τ scale for protons, or

ated to dryness and the products recrystallised from benzene. For the complex trans- $[PtCl_4(AsMe_3)_2]$, the benzene solution prior to oxidation was prepared by prolonged boiling of cis-[PtCl₂(AsMe₃)₂] with the solvent. The complex cis-[PtBr₄(PMe₃)₂] was prepared by a similar method to the chloride; the trans-analogue was obtained by heating the *cis*-complex under reflux with benzene for some days and recrystallised from benzene. Bromine oxidation of the complex [PtBr₂(AsMe₃)₂] in CH₂Cl₂ caused precipitation of cis-[PtBr₄(AsMe₃)₂], which was washed with methanol and then benzene; after evaporation of the mother liquor, the trans-complex was extracted into benzene from which it was recrystallised. It was also prepared in a similar

TABLE 9

Analytical data for the complexes

			C	2	Н		Ν		Х	
	Colour	M.p. $(t/^{\circ}C)$	Found	Calc.	Found	Calc.	Found	Calc.	Found	Calc.
Pr ⁿ ₄ N[PtCl ₅ NMe ₃]	Yellow-orange	149 - 152	29.8	29.65	5.9	$6 \cdot 1$	4.45	$4 \cdot 6$		
Pr ⁿ ₄ N[PtCl ₅ SMe ₂]	Yellow	180 - 184	27.0	27.1	$5 \cdot 4$	$5 \cdot 5$	2.55	2.25	28.35	28.55
Prn ₄ N[PtBr ₅ SMe ₂]	Orange	178 - 179	20.1	19.95	4.05	4.05	1.7	1.65	48.25	$47 \cdot 45$
PrnAN[PtCl,PMe3]	Yellow	159 - 161	28.35	28.45	5.75	5.85	$2 \cdot 3$	$2 \cdot 2$	27.7	27.95
Pr ⁿ ₄ N[PtBr ₅ PMe ₃]	Orange	164 - 167	21.4	21.0	$4 \cdot 3$	$4 \cdot 3$	1.7	1.65	46.4	46.65
Prn ₄ N[PtI ₅ PMe ₃]	Black	145 - 150	16.8	16.5	3.25	3.4	1.3	$1 \cdot 3$		
Pr ^a ₄ N[PtCl ₅ AsMe ₃]	Yellow	172 - 176	27.05	26.55	4.65	4.45	$2 \cdot 35$	$2 \cdot 05$	26.0	26.15
Pr ⁿ ₄ N[PtBr ₅ AsMe ₃]	Orange-red	164 - 166	20.55	20.0	4.35	4.15	1.65	1.55	43.85	$44 \cdot 4$
cis-[PtCl ₄ (SMe ₂) ₂]	Pale yellow	234 - 235	10.5	10.4	2.65	$2 \cdot 6$				
trans-[PtCl ₄ (SMe ₂) ₂]	Chrome yellow	234 - 235	10.4	10.4	2.55	$2 \cdot 6$				
$trans-[PtBr_4(SMe_2)_2]$	Orange	235—240 (decomp.)	7.85	7.5	$1 \cdot 6$	1.9				
$cis-[PtCl_4(PMe_3)_2]$	Green-yellow	194 (decomp.)	14.85	14.75	3.75	$3 \cdot 7$			29.15	29.0
$trans-[PtCl_4(PMe_3)_2]$	Yellow	204—208 (decomp.)	14.5	14.75	$3 \cdot 7$	3.7			29.2	$29 \cdot 0$
$cis-[PtBr_4(PMe_3)_2]$	Yellow-orange	226—229 (decomp.)	10.85	10.8	$2 \cdot 8$	2.75				
$trans-[PtBr_4(PMe_3)_2]$	Orange	225 - 229	11.0	10.8	2.85	2.75				
$cis-[PtCl_4(AsMe_3)_2]$	Yellow	220 (decomp.)	12.2	12.5	3.02	3.15				
trans-[PtCl ₄ (AsMe ₃) ₂]	Chrome yellow	212-214 (decomp.)	12.2	12.5	$3 \cdot 2$	3.12			$24 \cdot 6$	24.6
$cis-[PtBr_4(AsMe_3)_2]$	Yellow-orange	235—236 (decomp.)	9.7	9.55	$2 \cdot 45$	$2 \cdot 4$				
trans-[PtBr ₄ (AsMe ₃) ₂]	Orange-red	238	9.75	9.55	$2 \cdot 5$	$2 \cdot 4$				
mer-[PtCl ₃ (PMe ₃) ₃]BF ₄	Pale yellow	158 - 160	17.15	17.55	$4 \cdot 3$	$4 \cdot 4$				

upfield of external 85% H3PO4 taken as resonating at 40 480 754 Hz¹² when tetramethylsilane resonates at 100 MHz exactly.

Preparation of Complexes.—The preparation and characterisation of the Pt^{II} and Pd^{II} complexes has been given elsewhere.^{2,4,5} Salts $Pr_4^nN[PtX_5L]$ were obtained by treating $Pr_4^nN[PtX_3L]$ in dichloromethane with a small excess of halogen and the product was precipitated on addition of ether. The complexes were recrystallised from acetone by slow addition of ether. The complexes cis- $[PtCl_4L_2]$ (L = PMe₃ or AsMe₃) were obtained by halogen oxidation of $\mathit{cis}\text{-}[\operatorname{Pt}Cl_2L_2]$ in dichloromethane from which the products precipitate; they were washed with warm methanol. The complexes trans-[PtCl₄L₂] (L = PMe₃ or SMe₂) were prepared by treating a benzene solution of trans-[PtCl,L,] with chlorine. The solutions were evaporway to the trimethylphosphine complex. The complex cis-[PtCl₄(SMe₂)₂] was prepared by the action of chlorine on a boiling saturated aqueous solution of cis-[PtCl₂- $(SMe_2)_2$; the precipitate formed was a mixture of the *cis*and trans-isomers but the latter was extracted by washing with successive portions of cold benzene until no colour was imparted to the solvent over a few minutes.

The salt mer-[PtCl₃(PMe₃)₃]BF₄ was prepared by chlorination of a dichloromethane solution of [PtCl(PMe₃)₂]BF₄ and crystallised by addition of hexane. Analytical data for the complexes are given in Table 9.

We thank the S.R.C. for a grant to purchase the laser Raman system and for Research Studentships (to J. R. K. and B. F. T.).

[3/518 Received, 12th March, 1973]