Vibrational Spectra of Some Monosubstituted-*π*-arene Tricarbonylchromium Complexes and of Methyl Benzoate

By David M. Adams • and Alan Squire, Department of Chemistry, University of Leicester, Leicester LE1 7RH

New Raman polarisation data for $Cr(CO)_3(\pi$ -arene), where (arene) = aniline, anisole, and methyl benzoate, have allowed essentially complete assignments of the spectra of the π -arenes in these compounds. A new assignment is also given for methyl benzoate and corrections are made to published work on $Cr(CO)_3(\pi-C_6D_6)$ and $Cr(CO)_3(\pi-C_6D_6)$ mesitylene) which again emphasises the failure of the 'local' symmetry concept and the need to use full factor-group analysis. By comparison with the established frequencies of benzene in its first electronic excited state it is shown that many arene modes shift in the direction expected, if there is partial population of the π^* orbitals due to backdonation from the metal, but others, notably π -(C-H) modes, shift in the opposite sense owing to kinematic coupling.

The geometry of unsaturated ligands when π -complexed to metals is closely related to that of their first electronic excited states which become partially populated by back-donation of electrons from the metal atoms. This concept accounts well for the distinctive shapes of such molecules as carbon disulphide or acetylene when complexed to metals, as compared with their ground-state geometry. X-Ray diffraction shows that in π -benzene complexes the ring retains its regular shape: the involvement of excited states in bonding must therefore be demonstrated in other ways. We do this in the present paper by comparing the vibrational shifts of π -complexed benzene and other arenes with those established by Ingold and his co-workers in their classic study of the vibrational assignment of benzene in its first excited state.¹ The validity of our conclusions depend upon the use of well founded assignments, which we consider first, although the organometallic chemist may prefer to make straight for the Discussion section. With the exception of a superficial study by Humphrey² there seems to have been no consideration of the shifts of ligand internal modes upon π -complex formation, and little attention has been given to the π -arene part of the spectra of arene complexes as opposed to skeletal modes. We discuss

¹ F. M. Garforth, C. K. Ingold, and H. G. Poole, J. Chem. Soc., 1948, 491.

- R. E. Humphrey, Spectrochim. Acta, 1961, 17, 93.
 D. M. Adams and A. Squire, J. Chem. Soc. (A), 1970, 814.

the series $Cr(CO)_3(\pi$ -arene) in which arene = benzene, anisole, aniline, or methyl benzoate.

RESULTS AND ASSIGNMENTS

We report new Raman solution and other data for the three substituted benzene complexes, which have led to more complete and consistent assignments than those which we published earlier; ³ details are in Tables 1-3. The spectrum of $Cr(CO)_{3}(\pi$ -anisole) will be considered in detail as the high solubility of this compound allowed collection of the most complete Raman polarisation evidence. Similar arguments were used in making assignments for the other complexes.⁴ A comparison of the assignments of the three monosubstituted arenes in the free and complexed state is given in Table 4. The ligand vibrations are numbered in accord with Wilson's scheme; ⁵ the anisole numbering therefore differs from that given elsewhere.6 The vibrations of the -M(CO)₃ moiety, and skeletal vibrations involving the entire molecule are numbered ν_{21} onwards according to the scheme given previously.3

 $Cr(CO)_{3}(\pi$ -anisole).—All the $Cr(CO)_{3}$ modes other than v(CO) will be below 700 cm⁻¹ [cf. Cr(CO)₃(π -C₆H₆)].³ We make the following assignment for π -anisole modes occurring in the 700-1700 cm⁻¹ interval in the Raman solution spectrum. They are discussed in terms of C_s 'local' symmetry, and those of $Cr(CO)_3$ in terms of C_{3v} ,

- ⁴ A. Squire, Ph.D. Thesis, Leicester, 1970.
- ⁵ E. B. Wilson, *Phys. Rev.*, 1934, 45, 706.
 ⁶ M. T. Forel, C. Garrigou-Lagrange, J. Ganin, and M. L. Josien, J. Chim. phys., 1963, 60, 1047.

TABLE	1

The vibrational bands/cm⁻¹ of $Cr(CO)_3(\pi$ -anisole)

Raman			_			
~ <u> </u>	<u>۸</u>	So	lid		Solution	
Solid Ambient 3112w	Solution C ₆ H ₆ •	Ambient ^o 3113wm	Cooled	C ₆ H ₆	C ₂ Cl ₄	Assignment
3103sh 3098w 3078w 3051vw 3033vw,br		3105wm 3099vw 3080vw				(CH)
2990vw,br 2943w		2989w 2945wm 2923wm 2845w 1976ms				v(CH3) <i>as</i> v(CH3) <i>s</i>
1943sh		1951s,br				
1934m 1887w,sh ¢	1966w,P	1905ms		1966vvs	1975vvs	V ₂₁
1530wm	1532wm,P	1530ms	$1532 \mathrm{ms}$	1610w 1530ms	1530ms	¥80
1511w,br	1513w,dp	1511w,sh	1512w	1512sh	1509w	V85
1471w	1467wm,br,dp	1470ms		1464s	1468m	¥1.95
1435wm	1436w,dp	1435 ms	1433 ms	1437s	1437m	δ(CH ₈) _{as}
1422w	1420wm,P	1421wm	1420vw	1422wm	1419w	V19a
		1374w		1385w	1384vw	δ(CH ₃)
1252wm	1255wm,P	1251ms	1252ms	1253s	1252ms	$v_{13}^{\nu_{13}}$ v(O-Me)
1188w	1183w,P	1183ms	1188wm 1185w	1182m	1183wm	$\nu(O-Me)$
1154w	l154wm,dp	1151wm	1154w 1152w	1154wm	1153w	v ₁₅
1144win	1144wm,P	1144m	$1145 \mathrm{wm}$	$1145 \mathrm{wm}$	1144w	٧9 <i>a</i>
1057w	1057wm,dp	1057m	$1057 \mathrm{wm}$	1055m	1054wm	ρ(CH ₃)
1029wm	1028wm,P	1027 ms	1027ms	1028m ď	1032m	V18a
1010wm	1009wm,dp		1009w	n.o.	n.o.	V18b
991vs	992vs,P	991wm	992m	990wm	989wm	V ₁₂
971wm 956vw	965w,P n.o.	969vw 954vvw	971vw 954vw	n.o. n.o.	n.o. n.o.	V5
883wm	894w,?	n.o.	883vw	894w,br ^d	n.o.	V17a V10b
859wm	n.o.	858vw	860m	850vw,br	n.o.	V108 V10a
839w	830w,dp	837w,br	843w	n.o.	n.o.	100
815w	802w,P	815m	817s	806m	807w ^d	V ₁₁
781ms	785ms,P	$782 \mathrm{wm}$	$784 \\ 782 $ s	783m	783w ^d	ν ₁
677m	675w,P	679s	682s	675m ^d	672ms	ν ₂₂
667ms	659ms,P	666ms,shp	660s	658wm ^d	$654\mathrm{ms}$ $626\mathrm{ms}$	V4
637wm 614w	n.o. n.o.	635vs 613w	639vs 615w	626vs n.o.	n.o.	V29a,b
014w	11.0.	015	565m	H .0.	n .o.	V6b
$558 \mathrm{wm}$	n.o.	558wm	561m	$558 \mathrm{wm}$	558w,br	Vea
540wm	535w,br,dp	538wm	543m	532m	$531 \mathrm{wm}$	V30a, b
520wm	515w,br,?	$517 \mathrm{wm}$	521s	513m	510wm	V16b
487vvs	478vs,P	489wm	494s 487sh 479sh	475m	471wm	V _{22.31}
458m	455m,P		458vw			δ(COMe)
421w	200111,2	420w	421w	417wm		V16a
$354\mathrm{m}$	$352 \mathrm{m, P}$	356m	358w	$350 \mathrm{vw}$		V32a
323 m	328m,P?	322w	$326 \mathrm{wm}$	326w		v_{32b}
302vvs	304 vs, P	303s	305s	306m		ν ₂₄
269vvw	n.o.	270wm	272wm	n.o.		V 93
n.o.	n.o.	190wm,br	190wm,br			V17b
134m,sh			142w	A		
117vvs 107s			124w	l		plus lattice
98vvs	94vs,dp ^d		97w	n.i.		modes
36ms	n.i.		n.o.			
32m	n.i.		n.o.	*		J

• 1200—1060 cm⁻¹ for a C_2Cl_4 solution; 1060—850 cm⁻¹ for a CH_2Cl_2 solution. • 3200—2800 and 1600—1000 cm⁻¹ for hexa-chlorobutadiene mulls. • Observed for cooled samples. • For a CH_2Cl_2 solution.

although there is no doubt that those complex skeletal deformations involving the whole molecule are effectively without symmetry (the molecular point group is C_1).

A system C_6H_5X with C_s symmetry has 17A' + 13A''modes, all of which are i.r.- and Raman-active: the A'modes will be polarised in the Raman effect. For π -anisole in the region 700—1700 cm⁻¹ we expect: $\delta v(C-C) 3A' + 3A''$, v(C-X) A', $\delta(CH) 2A' + 3A''$, $\pi(C-H) 3A' + 2A''$, ponents. The polarised band at 1532 cm⁻¹ is assigned to v_{8a} , which is the highest-frequency v(C-C) mode in anisole.^{6,7} The i.r. band at 1384 cm⁻¹, although it has no Raman counterpart, is the only reasonable candidate for $\delta(CH_3)_s$ which always occurs in a restricted range. Similarly $\delta(CH_3)_a$ is placed at 1436 cm⁻¹ and, since it is not split, C_{3v} local symmetry rules evidently apply to the methyl group. The 1420 cm⁻¹ band is therefore assigned to v_{19a} .

TABLE 2
The vibrational bands/cm ⁻¹ of $Cr(CO)_3(\pi$ -aniline)

Pa	man			I.r.			
Solid	Solution	So	olid		Solution		
Ambient	CH ₂ Cl ₂	Ambient	Cooled	CH ₂ Cl ₂	C ₆ H ₆	C ₂ Cl ₄	Assignment
1927wm	1960w.P	1943vvs	coolcu	1960vvs	C6116	1970vvs	Q
1919sh,br	1900w,F	1940005		1900775		1970008	v ₂₁
1845ms	1877m,dp	1867					
1839ms	101111,01	1834 vvs		1875 vvs		1894vvs	V ₂₈
n.i.	1620w,dp	1634s	1630s.br	1622 ms	1621 ms		$\delta(NH_2)$
1549wm	1548wm,dp?	1552s	1551s	1547s	1546s		VBa
1513w,br			1516wm				V86
1478w	1471w,dp?	1476s	1476s	1471wm	sol.		V1 96
1439w	sol.	Nujol	Nujol	1435w	1435wm		V19a
		1326w	1324wm	1.000	1200		V ₁₄
1311w	1291w,br,P	1312wm	1314ms	1290wm,br	1288wm		ν ₁₃
1162wm 1156wm	sol. sol.	1159s	1157s 1151w	1158wm	1154wm	1154wm	V ₁₅
1150wm	SOI.	110 0 w	1100m				V9a DOTA (NULL)
	1016vw.P	1022vw	1022wm				$\rho_t \text{ or } \rho_r (\text{NH}_2)$
1004s	1001s,P	1001wm	1022 will	998wm	997wm		V18a V12
973wm	963wm,P	970vw	974wm	00000	0010111		ν12 ν ₅
0.00	0000000,1	955w	958wm				V17a
		876wm	879wm				V105
868w		852wm	$855 \mathrm{wm}$		863w,br		V ₁₀ a
833wm	829ms,P	829wm	831wm	824w	823w,br		ν ₁
813m	803m,P	805 ms	807ms	799wm	7 98wm		V ₁₁
677wm	sol.	684s	686s	670s	sol.	699wm	ν22
671wm	$665 \mathrm{wm}, \mathrm{P}$	668m	671ms	660ms	sol.	654w	ν_4
638w	n .o.	640s	645s	000	<i>600</i>	007	
001	604 Jm	631s 621sh	633s 623sh	630vs 621sh	629vs 621sh	627wm 621sh	V ₂₉
621w 560w	624vw,dp	559m	563ms	02150	02150	02150	V65
545w		547m	556m	552wm	551wm.sh		V16b
531m	533w,br,dp	532m	536ms	535m	533m		V160 V30
001111	000W,DI,dP	002111	520m	517wm	515wm		ν _{6α}
492ms	485vs,P	488m	496m				ν ₂₃
482ms			489m	477wm	475wm		v ₃₁
429w	423w, P?	420wm,br					V _{16a}
400w		393w,br	395w				V 95
$\left. egin{smallmatrix} 359 \ 351 \end{smallmatrix} ight\} \mathrm{w,br}$	353w,dp						v_{32a}
		338wm,br	342wm,br				
327wm	319w,dp	312wm	315w				v325 ligand
306s	$304 \mathrm{vs}, \mathrm{P}$	298wm	300w				V ₂₄
186wm			194m,br				V170
136w,br							$\rightarrow 25.33$ 34 and lattice modes
106s 101s							and lattice modes

the ring breathing mode $v_{12} A'$, v(Me-O) A', plus methyl vibrations $\delta(CH_3) 2A' + A''$ and $\rho(CH_3) A' + A''$. Of the 14 polarised bands thus predicted for this region, ten were identified.

The two ring breathing modes v_1 and v_{12} are assigned to the high-intensity polarised Raman lines at 785 and 992 cm⁻¹. The weak, polarised 802 cm⁻¹ line has an intense i.r. counterpart, characteristic of the $v_{11} \pi$ (C-H) 'umbrella 'mode: it thus has an upward shift on co-ordination of 49 cm⁻¹. The 965 cm⁻¹ polarised line is close to v_5 in anisole and is so assigned.

In the region 1300—1500 cm⁻¹ 2A' + 2A'' bands due to ν (C-C) motion are expected, together with δ (CH₃)_s and δ (CH₃)_a, the latter possibly split into A' and A'' com-

This argument established downward shifts of ν_{8a} and ν_{19a} upon co-ordination.

Of the four remaining polarised bands, that at 1255 cm⁻¹ is close to v(C-X) in free anisole and is correspondingly assigned to v_{13} .

Since $\delta(CH_3)_a$ did not split, it is likely that $\rho_r(CH_3)$ will behave similarly. The three polarised bands may then be distributed between $2 \times \delta(C-H)$, $\nu(O-Me)$, and $\pi(C-H)$. The band at 1028 cm⁻¹ is close to ν_{18a} in anisole and is similarly assigned. A characteristic doublet *ca.* 1155 and 1147 cm⁻¹ appears in all three of the complexes studied: ν_{9a} is therefore placed at 1144 cm⁻¹ (pol.), 26 cm⁻¹ lower than in anisole, and the $\nu(O-Me)$ mode assigned to the

⁷ J. H. S. Green, Spectrochim. Acta, 1962, 18, 39.

	Rama	ın	_		I.r.			
Sol	lid		Sol	id		Solution		Assignment
Ambient	Cooled	Solution CH ₂ Cl ₂	Ambient	Cooled	CH ₂ Cl ₂	C ₆ H ₆ 3957w 3880w 3804w 3440w	C ₂ Cl ₄	$\begin{array}{c} 2 \ \times \ \nu_{21} \\ \nu_{21} \ \times \ \nu_{26} \\ 2 \ \times \ \nu_{23} \\ 2 \ \times \ \nu(C=O) \end{array}$
112w 104w 083w	3118m 3108m 3089wm 3083wm 3079wm 3040w,br 3040w,br					5110W		}v(CH)
959w,br	2956wm				1005	2950m 2920m	1000	v(CH3) <i>as</i> v(CH3)s
969m	1969m 1960w	1979w,P			1985vvs	1983vvs	1989vvs	v_{21}
897vs 868vs 856wm	1898vs 1867vs 1854wm	1910w,dp			1910vvs	1914vvs	1924vvs	ν ₂₈
716vs	1851wm 1715s		1713m	1713ms	1725s	1731s	1733s	ν(C=O), ester
522s	1525s	1521m,dp?	1539vw 1521wm	$1546 \mathrm{vw}$ $1524 \mathrm{m}$	1521wm	1518wm	1518wm	V8a
508wm,sh 455ms	1519vw,sh 1509w 1439w 1450w	1454w,dp	1503m	1507w	1500w 1453w	1450w,sh	1502w 1453w	V80 V190
439wm 415wm 386w	1430w 1439w 1416w 1387vw,br	sol. sol.	1436m 1414m	1440m 1417wm	1437m 1413wm	1437m 1414wm	1437m 1412wm	δ(CH ₃) _{αs} ^ν 19σ
298m 275vs	1308w,sh 1299wm 1277s	1298wm,P 1281m,P	$\left. egin{smallmatrix} 1295 \ 1275 \end{smallmatrix} ight\} { m s,br}$	$\left. egin{smallmatrix} 1297 \\ 1285 \end{smallmatrix} ight\} \mathrm{vs,br}$	1295ms 1277s	1295ms 1277s	1295ms 1275s	v(C=OMe) v ₁₃
160m	1194w 1158w	sol.	1188vw	1194vw 1157w	1194 _{wm}	1191wm	1194wm	ν ₁₃ ν(Ο-Μe) ν ₁₅
149m 110vw	1150wm 1114vw	sol.	1149ms 1106ms	1152wm 1115m	1147 _{wm} 1114 _{ms}	1145wm 1111ms	1144w 1106m	ν _{9α} ρ(CH ₃)
970vw 954vw	1074vw 1055vw		1067vw 1051w	1063vw 1054w	1069vw 1052wm	1049w	1066vw 1050wm	ρ(CH ₃)
015m 997vs	1015m 998vs	1010sh,P 996ms,P	1013vw 998vw	1016vw 997vw	1010_{WM} 994_{VW}	1008wm 990w	1010wm 990w	ν _{18α} ν ₁₂
980m 960wm 954wm	982wm 964w 956wm	·	981wm 959w,br	983wm 963wm 950wm	955 _{wm,br}	95 4 w	961w	V5 V17a
881wm 831wm	884wm 834wm	829w,P?	887wm 830w	889wm 831w	828 _{wm}	825w		V176
817s	819s	819wm,P	819wm	819wm	817wm	815w		ν _{10a} ν ₁
772m 678wm	774wm 679wm	sol. sol.	772m 679m	772m 679m	$^{ m sol.}_{ m 677m}$	768wm sol.	sol.	ν ₁₁ δ(OCO)
663m	$665 \mathrm{wm}$	501	659ms	661s,br	654s	sol.	649s	V ₂₂
347wm 332w	647w 635w		648m,br 629s	647m 631ms	$644{ m sh}$ $626{ m sh}$	sol. sol.	641wm,sh∖ 627wm,sh∫	ν ₄ ν ₂₉
523wm	625wm 617vw 542wm		617s	622m 615m 541ms	616s	613s	613s	·29 ∨6∂
537wm	537w 487m,sh		537m 487w,sh	538ms 487w	531 m	530ms	529m	^V 30 V165
$480 \mathrm{ms}$	483vs 475ms	471m,P	47 8m	$481 \mathrm{ms}$ $473 \mathrm{w}$	47 0m	469m	463m	^ν 23 ^ν 31
452wm	45 0 m		4 20w	447vw 417vw 407w				^{У6а} ^V 16а
391 w	389wm 346ms	381w,dp	387m 348s	390wm 357m		383w 346wm		8(COMe)
358w,sh 323vvs	325vvs	$323 \mathrm{ms}$, P	322s	325m		322w)
111vvs 199vs	312vvs 300vs	sol. sol.	305s 298sh	$egin{array}{c} 308 { m ms} \ 299 { m wm} \ 188 \ 177 \ m vvs, br \end{array}$		sol. 291w		
	159w 144w		180s 151m 139sh	177) (V3,61 157 m 142w		:		J
117vs 107m,sh 91vs	125m 113m 99ms		102vw	103w				$v_{25,33,31}$ and lattice mod
	92wm 70m 56wm 46m		86vw 5 4 vw	93wm 58vw				J

band at 1183 cm⁻¹. This assignment of ν_{15} and ν_{9a} for the complex reverses the order of these modes in the neutral ligand.

Assignment of A'' components (where appropriate) follows closely those of the A' equivalents above. v_{190} was placed at 1467 cm⁻¹, and not 1436 cm⁻¹, to maintain consistency with the assignment for the π -aniline and π -methyl benzoate complexes.

The Region below 700 cm⁻¹.—Bands due to $Cr(CO)_3$ were identified by comparison with the π -benzene complex,³ and remaining bands then distributed among the so-far unassigned ring deformation modes. v_{6b} Is insensitive to substitution and is assigned at equivalent positions for all spectrum is based upon Evans' study of aniline⁸ with modifications suggested by Tsuboi's work⁹ with [¹⁵N]aniline. However, anomalies in relative band intensities, compared with other monosubstituted benzenes and some apparent uncharacteristic frequency shifts upon co-ordination, make the assignment for this complex a little more tentative than for the other complexes studied.

The $\delta(\text{NH}_2)$ mode and the $\nu(\text{C-NH}_2)$ mode, ν_{13} , would not be expected to be frequency-sensitive upon co-ordination, and are assigned to bands at 1622 and 1291 cm⁻¹ respectively, close to the frequencies of these modes in aniline.^{8,9} $\nu_{8a,b}$ and $\nu_{19a,b}$ are readily assigned in the absence of interfering bands. Similarly, ν_{9a} can be assigned

TABLE	4
-------	---

A comparison of the vibrational bands/cm⁻¹ of some monosubstituted benzenes in the free and complexed states

	nisole	Methy	yl benzoate	A	niline	Average	Assignment and
Free	Complex	Free	Complex	Free	Complex	shift	approximate description
		1723	$17\overline{2}5$			2	v(C=O), ester
				1618	1622	4	$\delta(\mathrm{NH}_2)$
1601	1532	1602	1521	1600	1551	-66	$v_{8a}, v(C - C)$
1588	1513	1581	1500	1586	1513	-76	$v_{8b}, v(C-C)$
1497	1467	1493	1454	1500	1471	-33	v195, v(C-C)
1468	1422	1452	1415	1468	1439	-37	$v_{19a}, v(C-C)$
1453	1436	1433	1437				$\delta_a(CH_3)$
1338	n. o.	n.o.	(1308)	1330	(1326)		$v_{14}, v(C-C)$
(1296)	n.o.	n .o.	`n.o´	1308	n.o.		ν ₃ , δ(ČH)
1247	1252	1278	1281	1288	1291	4	v_{13} , $v(C-X)$
		1314	1295				v(C-OMe)
1182	1183	1190	1194				v(O–Me)
1170	1144	1175	1147	1173	1151	-25	ν _{9a} , δ(CH)
1152	1154	1155	1158	1152	1158	3	v ₁₅ , δ(CH)
				1115	1100		$\rho(\mathbf{NH}_2)$
	1057	1108	1114				ρ(CH ₃)
1044	1009	1069	1069	(1054)	n .o.		ν ₁₈₀ , δ(CH)
1022	1029	1027	1010	1028	(1016)		$v_{18a}, \delta(CH)$
995	992	1004	998	996	`1001	-2	v ₁₂ , Ring breathe
971	965	995	982	970	965	8	$v_5, \pi(CH)$
957	956	965	960	959	958	-2	ν _{17a} , π(CH)
878	894			880	876		$v_{10\delta}, \pi(CH)$
		869	884				ν _{17b} , π(CH)
823	859	805	829	826	863	32	$\nu_{10a}, \pi(CH)$
785	785	822	819	812	824	0	v_1 , Ring breathe
753	802	710	768	751	799	52	$\nu_{11}, \pi(CH)$
689	659	676	644	691	665	-29	$v_4, \pi(CCC)$
		686	677		1. S. 1998		S(OCO)
615	614	615	617	618	621	1	$v_{6b}, \delta(CCC)$
553	558	?	(450)	501	517	10	$v_{6a}, \delta(CCC)$
509	513	479	(487)	(527)	552		$v_{16b}, \pi(CCC)$
415	417	420	420	415	423	3	$v_{16a}, \pi(CCC)$
258	270	n.o.	n.o.	390	400	11	$v_{9b}, \delta(CX)$
209	190			233	194		$\nu_{18\delta}, \pi(CX)$
		217	188				ν _{10b} , π(CX)

three complexes; similarly, v_{160} is assigned to a weak band *ca*. 420 cm⁻¹, both its frequency and intensity being characteristic. Two X-sensitive vibrations, v_{6a} and v_{16b} , are expected in the 300—560 cm⁻¹ region: three bands are found in that range for both anisole and its π -complex. Green ⁷ assigned the 533 cm⁻¹ band to a combination, but the intensity of the corresponding Raman band suggests that this is erroneous. Josien *et al.*⁶ assigned this band to an X-sensitive mode V, equivalent to v_{16b} . A δ (COMe) mode is expected in this region, assigned by Green to a dubious i.r. band at 352 cm⁻¹. It seems more reasonable to assign it in the 440—560 cm⁻¹ region. Having placed v_{6a} and v_{16b} as shown, we assign the strong polarised Raman line at 440 cm⁻¹ to δ (COMe) by elimination.

 $Cr(CO)_{3}(\pi$ -aniline).—The assignment of the ligand

⁸ J. C. Evans, Spectrochim. Acta, 1960, 16, 428.

• M. Tsuboi, Spectrochim. Acta, 1960, 16, 505.

at 1151 cm⁻¹, confirming the downward frequency shift of this mode upon co-ordination found for the anisole complex. However, the assignments of $v_{18a,b}$ are less certain. Evans assigned ⁸ v_{18a} to a strong, polarised Raman band at 1028 cm⁻¹. The intensity of this band in the Raman spectrum of the complex is greatly reduced compared with that of the adjacent v_{12} , and the only possible assignment is to a weak feature at 1016 cm⁻¹. Evans' assignment of v_{18b} at 1118 cm⁻¹ is outside the characteristic frequency range for this mode as given by Varsanyi,¹⁰ and we prefer the Tsuboi assignment of this band to the ρ_t or $\rho_r(NH_2)$ mode, v_{18b} being assigned at 1054 cm⁻¹. No band could be found to make a suitable assignment of v_{18b} in the complex.

In the region 700–900 cm⁻¹ of the monosubstituted- π -¹⁰ G. Varsanyi, 'Vibrational Spectra of Benzene Derivatives,' Academic Press, New York, 1969.

arene complex, we expect the i.r. spectrum to be dominated by a band assigned to the $\pi(CH)$ mode, ν_{11} ; the Raman spectrum should have an intense band due to v_1 , the X-sensitive symmetric ring-deformation mode. In the Raman spectrum of aniline, however, Evans found 8 two polarised bands of comparable intensity at 812 and 826 cm⁻¹. Upon deuteriation of the amine group the lower-frequency band becomes relatively more intense and we prefer to assign this band to v_1 , the other band being assigned to the $\pi(CH)$ mode ν_{10a} . ν_{11} Has been assigned at 751 cm⁻¹.

In the spectrum of the complex, bands of comparable intensity in both the i.r. and the Raman spectrum are found at 803 and 829 cm⁻¹. The temptation is to make a directly analogous assignment to that suggested for aniline. However, from other experience in this work we expect v_{11} to rise in frequency upon co-ordination by *ca*. 50 cm⁻¹, and it is expected at ca. 800 cm⁻¹, v_{10a} moving up to 852 cm⁻¹ in the complex. This upward frequency shift of 26 cm⁻¹ for v_{10a} is consistent with the behaviour of this mode in other monosubstituted arene complexes. v_1 Is assumed to increase in frequency upon co-ordination, and is assigned at 829 cm⁻¹.

Two bands are found with frequencies close to those assigned to $\nu_{6\alpha}$ and $\nu_{16\delta}$ in anisole. However, the Raman polarisation data show that the assignment is reversed for aniline. The bands are not appreciably frequencysensitive upon co-ordination.

 $Cr(CO)_{s}(\pi$ -Methyl Benzoate).—We are unaware of a complete vibrational assignment for the spectrum of methyl benzoate. This was therefore recorded, and assigned in accordance with the 'characteristic frequency ranges' given by Varsanyi.10

The interpretation of the spectrum above 600 cm^{-1} is unambiguous when compared with the spectra of other relatively simple monosubstituted arenes, such as anisole. The only point of contention concerns the $\pi(CH)$ mode v_{11} . Bellamy ¹¹ has previously assigned this to a strong i.r. band at 710 cm⁻¹. Varsanyi rejected this assignment,¹⁰ the frequency being below the characteristic range for this mode, but did not suggest an alternative assignment. We are led to confirm Bellamy's assignment on the basis of (a) the characteristic intensity of the i.r. band and (b)the absence of any credible alternative assignment. We also note that Gerrard et al.¹² found that v_{11} is characteristically of lower frequency in molecules of the type Ph-CO·Y, owing to the electronic influence of the substituent. This assignment appears to be confirmed by the characteristic upward frequency shift of this intense i.r. band in the spectrum of the complex.

The remaining assignment of the characteristic ligand vibrations ca. 700 cm^{-1} in the spectrum of the complex is directly analogous to that for the anisole complex. The relative assignment of the two i.r. bands at 686 and 676 cm⁻¹ of methyl benzoate to the δ (OCO) mode and the $\pi(\text{CCC})$ mode ν_4 was determined by consideration of the characteristic frequency shift of ν_4 found for the aniline and anisole complexes. A downward shift of ca. 30 cm⁻¹ is expected, and since the band at 659 cm^{-1} in the i.r. spectrum of the complex has the characteristic intensity and broadish profile of those associated with $\delta(MCO)$

 L. J. Bellamy, J. Chem. Soc., 1955, 4221.
 W. Gerrard, E. F. Mooney, and H. A. Willis, J. Chem. Soc., 1961, 3153.

¹³ G. Davidson and E. M. Riley, J. Organometallic Chem., 1969, **19**, 101.

modes, v_4 in the complex is assigned at 644 cm⁻¹. This implies that ν_4 is best assigned to the band at 676 $\rm cm^{-1}$ in methyl benzoate.

Assignment of the $(\pi$ -Arene)Cr(CO)₃ Skeletal Modes. From our previous ^{3,4} and other work ^{13,14} the frequencies and band characteristics of the $\delta(CrCO)$ and $\nu(Cr-C)$ modes can be predicted; they are expected in the range 450-700 cm⁻¹. For the monosubstituted arene complexes, the spectra show more bands in this region than the simple benzene case owing to the skeletal deformations of the ligand. Raman solution data for the benzene complex 4 and the anisole complex clearly show that the highestfrequency δ (CrCO) mode is totally symmetric. The π (CCC) mode v_4 interferes in this region and the reasoned assignments are given later. Other $\delta(CrCO)$ modes are expected at ca. 635 and 540 $\rm cm^{-1}.$

It has been established 3,4 that the two $\nu(\text{Cr-C})$ modes ν_{23} and ν_{31} are expected close together between 470 and 500 cm⁻¹, with ν_{23} of higher frequency. A possible assignment of ν_{31} at 450 $\rm cm^{-1}$ in the methyl benzoate complex was rejected since this would give too great a frequency separation between v_{31} and v_{23} , the latter being clearly identified by the intense, polarised Raman band.

In $Cr(CO)_3(\pi$ -aniline) v_{23} is clearly identified at 475 cm⁻¹ for a dichloromethane solution in the Raman spectrum. The corresponding i.r. band, in the same solvent, appears at 477 cm⁻¹ and is assigned to v_{31} since the frequency difference is significant. If it is true that the dominant band in the Raman spectrum arises from ν_{23} and that the i.r. spectrum arises from $\nu_{31},$ then for the methyl benzoate complex the Raman band at 471 cm⁻¹ and the i.r. band at 470 cm⁻¹ may be of different origin. A significant separation of v_{23} at 485 cm⁻¹ and v_{31} at 477 cm⁻¹ was also found for the aniline complex.

For all complexes except $Cr(CO)_3(\pi$ -methyl benzoate) the $\nu(\text{Cr-ring})$ mode, $\nu_{24},$ is clearly identified by a single, intense, polarised band in the Raman solution spectrum. Three such bands are found in the spectrum of the methyl benzoate complex in both the solid state and solution. We suggest that these three bands arise from the three components of the symmetric and asymmetric ring ' tilting' modes v_{24} , v_{32a} , and v_{32b} , and since the molecular symmetry is trivial, that these components interact and share intensity.

Below 200 cm⁻¹ the spectra are very complex in the solid state and we reaffirm our belief that this portion of the spectrum cannot be meaningfully interpreted at present.

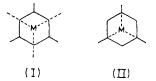
The $v_4 \pi$ (CCC) Mode in π -Benzene and π -C₆H₅X Complexes.-The i.r.-Raman band at ca. 656 cm⁻¹ in Cr(CO)₃- $(\pi$ -C₆H₆) has previously been attributed ³ to a δ (MCO) mode and, more recently,¹⁵ to the π (C-H) ν_{11} . The latter assignment ignores the more obvious i.r. feature at 783 cm⁻¹. Re-examination of the π -benzene assignment for consistency with those made above for the π -C_eH₅X complexes now suggests that the true origin of the 656 cm⁻¹ band is v_4 , π (CCC).

The expected location of v_4 in the benzene complex was deduced by the requirement to produce assignments resulting in similar frequency shifts of this mode on complexing all the monosubstituted arenes studied in this work. v_4 Gives rise to a relatively intense i.r. band, of

¹⁴ G. Davidson and E. M. Riley, Spectrochim. Acta, 1971, 27, A,

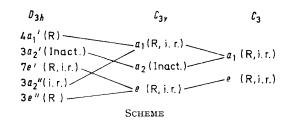
1649. ¹⁵ I. J. Hyams and E. R. Lippincott, Spectrochim. Acta, 1972, 28, A, 1741.

the same order as the two $\delta(CrCO)$ modes expected in this region. However, for solution spectra, $\delta((MCO))$ modes can be distinguished by their greater bandwidths. Table 4 shows the consistency of the frequency shift in ν_4 . The magnitude of the shift is aniline > anisole > methyl benzoate which is also the order of the electrophilic nature of the substituent. This order is repeated in the shifts of other frequencies, *cf.* ν_{8a} , ν_{8b} , ν_{19a} , and ν_{9a} .


For the π -benzene complex the band which we now attribute to v_4 is only seen in solid-state spectra. This is consistent with its symmetry. It originates in benzene as b_{2g} (inactive in D_{6h}), becomes a_2 (inactive in C_{3v}) in the π -complex, but it is allowed in both i.r. and Raman spectra by virtue of the C_s site symmetry (A'') and the correlation field $(B_g + A_u \text{ in } C_{2h}^2)$. This further emphasises the need to interpret these spectra by using full factor-group analysis rather than some form of 'local' symmetry. Even very recently Hyams and Lippincott ¹⁵ still consider C_{6v} 'local' symmetry for π -C₆H₆, despite much evidence to the contrary. In addition to appearance of v_4 , further evidence of the failure of C_{6v} and C_{3v} 'local' symmetry rules for $Cr(CO)_3(\pi-C_6H_6)$ in the solid state is as follows: (i) Appearance of v_8 at 1518 cm⁻¹, inactive in C_{6v} but active in C_{3v} and C_3 ; (ii) appearance of v_{12} at 1010 cm⁻¹, inactive under both C_{6v} and C_{3v} ; and (iii) presence of three bands in the 1140—1160 cm⁻¹ interval. Only one is predicted by C_{6v} , two by C_{3v} . The appearance of bands at 1510 and 613 cm⁻¹ in the i.r. solution spectrum,⁴ not observed by Hyams and Lippincott, is evidence that C_{6v} is not the effective symmetry in solution. However, no evidence is available to show that C_{3v} is not the effective 'local' symmetry in solution.

Following our v_4 argument, several changes must be made in Hyams and Lippincott's assignment ¹⁵ for Cr(CO)₈- $(\pi$ -C₆D₆). Specifically these are shown in Table 5. Thus

	TABLE 5	
Band/cm ⁻¹	Ref. 15	This work
610	Combination	ν4, π(CCC)
582	δ(CCC)	ν ₁₁ , π(C-D)
575	Combination	ν ₆ , δ(ČCC)


modes associated with the $\rm C_6$ skeleton move down by 40—50 cm^-1 on deuteriation.

 $Cr(CO)_3(\pi$ -Mesitylene).—Since our work on this complex, and its molybdenum analogue, was completed Davidson and Riley¹³ have reported a similar study. We are in general agreement⁴ with their data but not with all their arguments. We consider only points of difference. They concluded erroneously that for an arbitrary orientation of the C_{3v} M(CO)₃ top relative to the C_{3v} M(π -Ring) part the overall molecular symmetry (methyl being treated as a point mass) is trivial (C_1): in fact it is C_3 . If the

 $M(CO)_3$ part adopts one or other of the configurations (I) or (II) relative to the ring, or if the interaction between the two halves is so weak that the molecule can be treated as a free rotor, then the molecular symmetry is C_{2r} . It

is important to note that the only way to differentiate between these possibilities is to prove that the three inactive a_2' (in D_{3h}) modes of mesitylene become active in the π -complex, as shown in the Scheme, since they are inactive under C_{3v} but not under C_3 . Since the inactive

modes of mesitylene have never been reliably assigned this question remains open. Therefore, Davidson and Riley's assignment using C_{3v} 'local' symmetry has not established that 'local' symmetry is applicable.

According to the same authors, $\nu_1,$ the ring breathing mode, is coincident with ν_{22} , the symmetric $\delta(MoCO)$ mode at 572 cm⁻¹. We find an additional polarised band at 622 cm⁻¹ in the Raman solution spectrum. This band is assigned to v_{22} since the band at 572 cm⁻¹ is (a) intense in the Raman spectrum, (b) not observed in the i.r. spectrum, and (c) frequency-insensitive to co-ordination, all of which are characteristic of ν_1 in other $\pi\text{-}arene$ complexes studied here and are the opposite of what is expected for a $\delta(MCO)$ mode. The band at 492 cm⁻¹ is intense in the i.r. spectrum, and relatively weak in the Raman spectrum. This is characteristic of $\delta(MCO)$ modes and this band is assigned to v_{30} . This differs from previous assignments.^{13,16} This assignment also results in a 90 cm⁻¹ difference between ν_{29} and $\nu_{30},$ which is characteristic of these two modes for the analogous chromium complexes.

DISCUSSION

In their classic study of benzene Ingold and his co-workers¹ established the vibrational assignment for the first electronic excited state, revealing major differences from that associated with the electronic ground state. The lowest unfilled π^* orbital of benzene is of the right symmetry to overlap with the $d_{x^2-y^2}$ orbital of a metal in π -complex formation; back donation from the metal therefore partially populates the π^* orbital. The shifts due to electronic excitation of free benzene may be taken as a guide to the direction in which normal mode energies should vary upon complex formation, although in the π -complex both ground and excited state orbitals are populated.

Table 6 shows Ingold's vibrational assignment for the first electronically excited state and the shifts in the benzene spectrum consequent upon π -complex formation. Of the several benzene modes which are substantially affected by π -complex formation about half move in the same sense as the corresponding ground-to-excited-state shifts: these are principally ν (C-C) and δ (C-H) modes. But the most striking change on π -complex formation is, as is well known, the *upward* shifts associated with π (C-H) modes, ¹⁶ D. M. Adams, J. Chem. Soc., 1964, 1771. +109 cm⁻¹ for v_{11} and +57 cm⁻¹ for v_{10} : these are in the *opposite* sense to what is expected on the excited state population model. We therefore consider that the major

TABLE 6

Comparison of the vibrational frequencies of benzene in its ground and first excited electronic states,¹ and when π -complexed in $Cr(CO)_3(\pi$ - $C_6H_6)$

		1st Excited		
	Ground state	state	Complex	
ν ₁	992	923	980	v(CC)
ν.2	3062	3130	3110	ν(CH)
ν,	703	365	658	$\pi(CCC)$
ν ₆	606	521	612	δ(CCC)
ν ₇	3047	3080	3023	ν(CH)
ν _s	1596	1470	1520	v(C-C)
ν ₉	1178	1130	1158	δ(C-H)
V10	849	585	906	$\pi(C-H)$
ν ₁₁	675	513	784	$\pi(C-H)$
ν ₁₆	405	243	421	$\pi(CCC)$
V ₁₇	975	706	966	$\pi(C-H)$

shifts in ν (C-C) and some C-H modes which are of the same sign as those from the ground-to-excited-state of free benzene are electronic in origin, but that kinematic effects are responsible for the characteristic π (C-H) shifts.

An analogous story emerges from the assignments suggested here for the aniline, anisole, and methyl benzoate π -complexes, compared with those for the free ligands. The v(C-C) modes v_{8a}, v_{8b}, v_{19a}, and v_{19b}

are lowered, as are $\nu_{9\alpha}$, $\delta(C-H)$, and ν_4 , $\pi(CCC)$; $\pi(C-H)$ modes rise as in the benzene case. The shifts of $\nu(C-C)$ modes due to complex formation decrease in the order $CO_2Me > OMe > NH_2$, consistent with the view that the more electrophilic substituent enhances backdonation from the metal, as shown by the well known variation of $\nu(CO)$ frequencies in $M(CO)_3(\pi$ -arene) complexes with ring substituent.

EXPERIMENTAL

The complexes were prepared by the standard method ¹⁷ and purified by recrystallisation or by resublimation.

The i.r. spectra were recorded for mulls, at both ambient and liquid-nitrogen temperatures, with a Perkin-Elmer model 225 spectrophotometer. Low-frequency spectra were obtained on a Beckman-R.I.I.C. model 620 interferometer.

Raman spectra were recorded with a Coderg model PH 1 spectrometer equipped with a Spectra-Physics He-Ne laser delivering 60—100 mW at 632.8 nm. Solutions were filtered directly into the cell through a Millipore adaptor to minimise background scatter. Polarisation data were recorded by varying the incident vector by use of a half-wave plate, with a polarisation scrambler in the scattered beam, giving $\rho_{max} = 6/7$.

We thank the S.R.C. for a maintenance grant (to A. S.) and for other support.

[3/1691 Received, 9th August, 1973]

¹⁷ B. Nicholls and M. C. Whiting, J. Chem. Soc., 1959, 551.