Phosphine-Borane Derivatives. Part VII. ${ }^{1}$ The Vibrational Spectra of the Phosphine Adducts of Boron Trihalides

By John E. Drake,* J. Lawrence Hencher, and Bernard Rapp, Department of Chemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4

The i.r. and Raman spectra of $\mathrm{PH}_{3}, \mathrm{BCl}_{3}, \mathrm{PD}_{3}, \mathrm{BCl}_{3}, \mathrm{PH}_{3}, \mathrm{BBr}_{3}, \mathrm{PD}_{3}, \mathrm{BBr}_{3}, \mathrm{PH}_{3}, \mathrm{BI}_{3}$, and $\mathrm{PD}_{3}, \mathrm{BI}_{3}$ are reported. A normal co-ordinate analysis, utilizing a modified Urey-Bradley force field, confirms the assignments. All the adducts give best fits for a HPH angle of $c a .105-106^{\circ}$.

A number of vibrational spectra studies have been reported concerning the boron trihalide adducts of various nitrogen donors. ${ }^{2-5}$ However, at the initiation of this investigation, there were no reported vibrational analyses of $1: 1$ adducts of BX_{3} with phosphine although the i.r. spectrum had been utilized to suggest that the adduct $\mathrm{PH}_{3}, \mathrm{BCl}_{3}$ was not entirely dissociated in the gas phase. ${ }^{6}$ Studies concerned with the vibrational properties of the $\mathrm{P}-\mathrm{B}$ bond have resulted in a wide range of assigned $\mathrm{P}-\mathrm{B}$ stretching frequencies (ca. $500 \mathrm{~cm}^{1}$ to $c a . ~ 900 \mathrm{~cm}^{-1}$)..$^{7-9}$ Moreover, studies have resulted in considerable differences in the assigned value of the PB stretching force constant. ${ }^{\mathbf{1 0}, \mathbf{1 1}}$ Thus we undertook the study of an apparently simple system, the phosphine-boron trihalides, together with their deuteriated analogues, to investigate the area more thoroughly. At the time that this manuscript was in preparation a paper appeared which included a vibrational analysis of phosphine-boron trichloride. ${ }^{12}$ Our more general coverage of the area and additional data leads us to suggest some alternative assignments.

EXPERIMENTAL

Starting Material.--Phosphine (Matheson) was distilled through a trap at $-126^{\circ} \mathrm{C}$ and its i.r. spectrum corresponded with that of the pure material. ${ }^{13} \quad\left[{ }^{2} \mathrm{H}_{3}\right]$ Phosphine was prepared by reduction of PCl_{3} with LiAlD_{4} (Alpha Inorganics) in a slurry of sodium-dried diethyl ether. ${ }^{14}$ The volatile materials were passed through a trap at $-126^{\circ} \mathrm{C}$
${ }_{1}$ Part VI, J. E. Drake and B. Rapp, Inorg. Chem., 1973, 12, 2868.
${ }_{2}$ R. 1. Amster and IR. C. Taylor, Spectrochim. Acta, 1964, 20, 1487 and references therein.
${ }^{3}$ W. Sawodny and J. Goubeau, Z. phys. Chem., 1965, 44, 227.

* P. D. H. Clippard, Ph.D. Thesis, University of Michigan, 1969.
${ }^{5}$ D. F. Shriver and B. Swanson, Inorg. Chem., 1971, 10, 1354.
${ }^{6}$ P. A. Tierney, D. W. Lewis, and D. Berg, J. Inovg. Nuclear Chem., 1962, 24, 1163.

7 M. A. Frish, H. G. Heal, H. Mackle, and I. O. Madden, J. Chem. Soc., 1965, 899 and references therein.
${ }_{3}$ R. W. Rudolph, R. W. Parry, and C. F. Farran, Inorg. Chem., 1966, 5, 723.
and pure PD_{3} was collected in a trap at - $196^{\circ} \mathrm{C}$. Its i.r. spectrum corresponded with that given in the literature ${ }^{15}$ with $5 \%{ }^{1} \mathrm{H}$ impurity as estimated from 10 cm gas-phase spectra. Boron trichloride (Matheson) and boron tribromide (Alpha Inorganies) were distilled through traps at -65 and $-45{ }^{\circ} \mathrm{C}$ respectively; their vapour pressures and i.r. spectra were in agreement with literature values. Boron tri-iodide (Alpha Inorganics) was purified as needed by agitation of a benzene solution with elemental mercury in a closed vessel under moisture-free conditions.

Formation of the Adducts.-All reactions were carried out on a conventional Pyrex-glass vacuum system. Equimolar quantities (usually, ca. 0.5 mmol) of phosphine and boron trichloride or boron tribromide were distilled into a small-diameter (4 mm . o.d.) thin-walled glass tube with a constriction $c a .5 \mathrm{~cm}$ from the bottom. As the contents were allowed to slowly warm from $-196{ }^{\circ} \mathrm{C}$ to room temperature the formation of the white adducts became eviclent. After 30 min at ambient temperature the reaction tube was momentarily opened to the pump to remove excess of one or the other reactant. The tube was then sealed with the product held in the botton portion at $-196^{\circ} \mathrm{C}$.

For the phosphine adduct of BI_{5}, the purified benzene solution was transferred to the reaction vessel in a dry-box before attachment to the vacuum line. The tube and contents were then placed at $-196{ }^{\circ} \mathrm{C}$ and evacuated. Phosphine was introduced in slight estimated excess. Upon warming and gentle agitation a white precipitate formed which gradually settled. After 30 min at ambient temperature the system was placed at $-78{ }^{\circ} \mathrm{C}$ and opened to the manometer. A slight positive pressure indicated an excess of phosphine and completeness of reaction. The
${ }^{9}$ J. Davis and J. E. Drake, J. Chem. Soc. (A), 1971, 2094.
10 W. Sawodny and J. Goubeau, Z. anorg. Chem., 1968, 356, 289.
${ }_{11}$ G. W. Chantry, A. Finch, P. N. Gates, and D. Steelc, J. Chem. Soc. $(A), 1966,896$.

12 J. D. Odom, S. Riethmiller, J. D. With, and J. IR. Durig, Inorg. Chem., 1973, 12, 1123.
${ }_{13}$ V. M. McConaghie and H. H. Neilsen, J. Chem. Phys., 1953, 21, 1836.
${ }^{14}$ A. E. Finholt, A. C. Bond, and H. I. Schlesinger, J. Amer. Chem. Soc., 1947, 69, 1199.
${ }^{15} \mathrm{~K}$. K. Lee and C. K. Wu, Trans. Faraday Soc., I939, 35, 1366.
phosphine was then removed and the benzene gently distilled from the reaction vessel. The adduct was then

Table 1
Approximate description of the fundamental vibrational modes for $\mathrm{PH}_{3}, \mathrm{Bx}_{3}\left(\mathrm{H}={ }^{1} \mathrm{H},{ }^{2} \mathrm{H} ; \mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}\right)$

opened to the pump for 3 h after which the tube was sealed.

When solutions of the adducts (MeI and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) were required, the sample tubes were broken open under moisturefree conditions, the appropriate solvent added, and the contents agitated. A syringe was used to extract clear solutions for spectroscopic analysis.
spectrum of one solvent would be observed in the spectrum. of the other solution.
I.r. spectra were recorded on a Beckman IR 12 spectrometer with CsI pellets and Nujol mulls between CsI plates for solid samples and typical KBr solution cells for the various solution spectra. The spectrometer calibration was periodically checked against the polystyrene spectrum.

DISCUSSION

The molecules $\mathrm{PH}_{3}, \mathrm{BX}_{3}$ and $\mathrm{PD}_{3}, \mathrm{BX}_{3}$ are assumed to possess $C_{3 k}$ symmetry in staggered conformation leading to five a_{1} fundamental modes, six doublydegenerate e modes, and one a_{2} mode. All fundamentals, with the exception of the a_{2} mode, are expected to be both Raman- and i.r.-active. The a_{1} modes should be polarized and the e modes depolarized in the Raman effect. The conventional description of these fundamentals is given in Table 1.

All of the frequency values (Tables 2-4) are initially obtained from the Raman spectra of the solid samples

Table 2
Observed i.r. and Raman frequencies/ $\mathrm{cm}^{-1} \pm 3 \mathrm{~cm}^{-1}$ of solid phosphine-boron trichloride, with Raman polarization data taken from MeI and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions

	$\mathrm{PH}_{3}, \mathrm{BCl}_{3}$			$\overbrace{}^{\mathrm{PD}_{3}, \mathrm{BCl}_{3}}$		
	Ir (CsI)	Raman (s)	(Sol)	Ir (Csi)	Raman (s)	(Sol)
ν_{7}	2445 m	2447s	$2445 \mathrm{~m}, \mathrm{dp}$	1790w	1787s	1789s, dp
v_{1}	2415 w	2412 vs	2415 vs , P	1745 vw	1743 vs	1744vs, p
$2 \mathrm{v}_{2}$		1952w			1560 w	
$2{ }^{2} 9$		1455 vw			ca. 1440 ww	
${ }^{2} \nu_{3}$		1382 w			ca. 1250 rw	
$2 v_{10}$	1120 ww	1118w	1120vw, dp	880w	880 vw	
${ }^{1} 8$	1058s	1061 s	1060 m , dp	775m *	774 ms	775m, dp?
${ }^{2} 2$	988 s	981 m	988w, p	785sh *	(ca. 780)	780sh, p
	750sh 725 s	730 m		ca. $\begin{gathered}750 \mathrm{sh} \\ 720 \mathrm{~s}\end{gathered}$	718w	725w, dp?
$\gamma_{10}+\gamma_{12}$		(ca. 700)			585 vw	72m, dp.
$\chi_{3}\left({ }^{10} \mathrm{~B}\right)^{11}$		700sh		658 m	647 m	$650 \mathrm{sh}, \mathrm{p}$?
$\left.\nu_{3}{ }^{(11} \mathrm{B}\right)$	675 m	693 m	$675 \mathrm{~m}, \mathrm{p}$	635 m	632 ms	$633 \mathrm{sh}, \mathrm{p}$?
$\nu_{4}+v_{5}$	640sh	640 mi			(ca. 645)	
v_{10}	553 m	560 m	556w, dp	440w	4415	440m, dp
v_{4}	395 m	399 vs	399 vs , p	398 vw	395vs	397 vs , p
v_{5}	252 s	254 s	$250 \mathrm{~m}, \mathrm{p}$	249 vw	247 s	244 m , F
y_{11}	240sh	244 s	$240 \mathrm{~m}, \mathrm{dp}$	238w	${ }_{144 \mathrm{w}}$	${ }^{235 m} \mathrm{~m}, \mathrm{dp}$
γ_{12}		148w	147w, dp		144w	143*w, dp

Lattice modes not listed; only combinations coincident in both system can be assigned.

* Taken from solution.

Spectroscopic Techniques.-Raman spectra were recorded on solid samples in thin-walled glass tubes on a SpectraPhysics Model 700 spectrometer in conjunction with a Model 164 Argon-ion laser and Model 265 Exciter Unit. Typical power output was varied between 100 and 300 mW ; the $20492 \mathrm{~cm}^{-1}$ frequency was employed as the exciting line. Before use the instrument was corrected to zero wavenumbers and checked against the spectrum of CCl_{4} for precision and polarization efficiency. Polarization data were secured by use of MeI and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions of the adducts in capped solution cells. These solvents are far from ideal but were the only ones that gave significant, though low, solubility for solution spectra. The low solubility of the adducts required high instrument gain and laser output between 300 and 700 mW . Two different solvents were used so that any adduct peaks masked by the
since these in general provide the more intense set of bands as well as some overtone and combination bands. The general agreement between solid and solution phase Raman and i.r. spectra suggest only minimal solvation effects though in a few instances there are appreciable differences in one or two modes in the solution spectra. Several intense bands at low frequency in the Raman spectra of the solids, which are absent from the solution spectra, are assumed to be lattice modes and are not listed. Overtones are only listed where the particular combination occurs for more than one species.

Relative band intensities as well as peak broadness ${ }^{\mathbf{1 6}}$
${ }^{16}$ G. Herzberg, 'Molecular Spectra and Molecular Structure,' vol. II, Van Nostrand, Princeton, 1968, p. 491.
are of some assistance in determining symmetry type, but polarization data from the Raman spectra of the solutions are used whenever possible in assigning symmetry species. Unfortunately, the extremely low solubility of these adducts ${ }^{17}$ required the use of solvents
extent, in $\mathrm{PH}_{3}, \mathrm{BBr}_{3}$. This is not surprising in view of the relatively high dissociation pressure associated with the adducts ${ }^{6}$ and our experience in studying their n.m.r. spectra. ${ }^{1,17}$ The Raman spectrum of solid $\mathrm{PH}_{3}, \mathrm{BBr}_{3}$ (Figure 1) and its i.r. spectrum in MeI (Figure

Table 3
Observed i.r. and Raman frequencies/ $/ \mathrm{cm}^{-1} \pm 3 \mathrm{~cm}^{-1}$ of solid phosphine-boron tribromide, with Raman polarization data taken from MeI and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions

	$\mathrm{PH}_{3}, \mathrm{BBr}_{3}$			$\mathrm{PD}_{3}, \mathrm{BBr}_{3}$		
	Ir (CsI)	Raman (s)	(Sol)	Ir (CsI)	Raman (s)	(Sol)
v_{7}	2430 m	2428s	2426s, dp	1768 m	1773 s	1772s, dp
v_{1}	2390w	2390 vs	2390 vs, p	1730 w	1726 vs	$1727 \mathrm{vs}, \mathrm{p}$
$2 \mathrm{v}_{2}$		1947 w			ca. 1516 vw	
$2 \nu_{3}$		ca. 1384 vw				
$2 v_{3}$		ca. 1353 vw				
$\nu_{2}+\nu_{4}$		ca. 1250				
$\nu_{8}+\nu_{11}$		ca. 1200				
$2 \nu_{10}$	1070vw *	1071 m	$1070 \mathrm{~m}, \mathrm{dp}$			
ν_{8}	$1052 \mathrm{w}^{*}$	1048 m	$1050 \mathrm{~m}, \mathrm{dp}$	760m	760 m	765 m
	982 m	977m	$976 \mathrm{~m}, \mathrm{p}$	760 m		
$\gamma_{9}\left({ }^{10} \mathrm{~B}\right)$	722m,sh	\} 722 w			678w	ca. 665
$\nu_{9}\left({ }^{11} \mathrm{~B}\right)$	ca. 700 m , sh	\}			633w	
$\nu_{3}\left({ }^{10} \mathrm{~B}\right)$	ca. 695 m , sh	$\} 690 \mathrm{~m}$	$685 \mathrm{mbr}, \mathrm{p}$?	650 m	\} 640	ca. 640
$\nu_{3}\left({ }^{11} \mathrm{~B}\right)$	682 m	\}	685mbr, p?	634 m	f	
ν_{10}	529 m	530 m	$531 \mathrm{~m}, \mathrm{dp}$	431 m	428 m	$430 \mathrm{~m}, \mathrm{dp}$
ν_{4}	281w	282 m	282s, p	278 m	278 s	280s, p
v_{5}		183w	181vw, p		182 m	$181 \mathrm{~m}, \mathrm{p}$
v_{11}		160w	160vw, dp		150 m	$150 \mathrm{w}, \mathrm{dp}$
ν_{12}		ca. $116 \mathrm{br}, \mathrm{w}$	$c a .112 \mathrm{w}, \mathrm{dp}$		112w	112w, dp

Table 4
Observed i.r. and Raman frequencies $/ \mathrm{cm}^{-1} \pm 3 \mathrm{~cm}^{-1}$ of solid phosphine-boron tri-iodide, with Raman polarization data taken from MeI and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solutions

	$\underbrace{\mathrm{PH}_{3}, \mathrm{BI}_{3}}$			$\underbrace{\mathrm{PD}_{3}, \mathrm{BI}_{3}}$		
	Ir (Csi)	Raman (s)	(Sol)	Ir (Csi)	Raman (s)	(Sol)
v_{7}	2398w	2397s	2402s, dp	1750 vw	1752s	1755s, dp
v_{1}	ca. 2365w	2362 vs	2368 vs , p	1709vw	1709s	1709vs, p
$2 \nu_{2}$		1945vw			1515 vw	
$2 v_{9}$		1345 vw			1180 vw	
$2 \nu_{3}$		1275 vw			ca. 1282 vw	
$v_{8}+v_{11}$		1150 vw			ca. 880 vw	
$\nu_{2}+\nu_{4}$		1100 vvw		978vw	970 vw	
$2 \mathrm{v}_{10}$		ca. 960 vvw			ca. 830 vw	
ν_{8}	1058 m	1056 s	$1060 \mathrm{~m}, \mathrm{dp}$	ca. 762 s	760 m	ca. $762 \mathrm{~m}, \mathrm{dp}$?
	981 s	981 m	$980 \mathrm{w}, \mathrm{p}$	ca. 760 s	760 m	ca. $760 \mathrm{~m}, \mathrm{p}$?
$\nu_{9}\left({ }^{10}{ }^{10}\right)^{1}$	700sh	ca. 705 w	ca. $700 \mathrm{w}, \mathrm{dp}$?	615 sh	614 sh	
$v_{9}\left({ }^{11} \mathrm{~B}\right)$	670 m	680 m	$680 \mathrm{~m}, \mathrm{dp}$?	598m	596 m 587 m	$597 \mathrm{~m}, \mathrm{dp} ?$
$\nu_{3}\left({ }^{10} \mathrm{~B}\right.$ B		680 m	ca. $690 \mathrm{w}, \mathrm{p}$?	655 sh	657 w	
$v_{3}\left({ }^{11} \mathrm{~B}\right)$		ca. 660sh	$665 \mathrm{~m}, \mathrm{p}$	642 s	642 m	$641 \mathrm{~m}, \mathrm{p}$
ν_{10}	491s	492s	$496 \mathrm{~m}, \mathrm{dp}$		${ }_{29}^{418 \mathrm{~s}}$	
${ }^{1 / 4}$	232 m	229m	$230 \mathrm{~m}, \mathrm{p}$ $133 \mathrm{~m}, \mathrm{p}$		220 vs 134 s	$222 \mathrm{~s}, \mathrm{p}$ 132 m ,
ν_{5} v_{11} v^{\prime}		135 m	ca. $127 \mathrm{sh}, \mathrm{dp}$?		134 s 123 m	132 mp ,
y_{12}		89 s	ca. 87 sh		89 s	89 w , dp

not particularly suited to Raman work, thereby hampering these studies to some extent. I.r. band intensities are used to corroborate assignments based on the Raman data. The Raman spectra of the solid adducts gives no clear evidence of free BX_{3}. The solution spectra contain low-intensity bands, attributable to the presence of some free boron trihalide in $\mathrm{PH}_{3}, \mathrm{BCl}_{3}$ and, to a lesser
2) are provided as representative examples of the various spectra listed in Tables $2-4$ of $\mathrm{PH}_{3}, \mathrm{BCl}_{3}$ and $\mathrm{PD}_{3}, \mathrm{BCl}_{3}$, $\mathrm{PH}_{3}, \mathrm{BBr}_{3}$ and $\mathrm{PD}_{3}, \mathrm{BBr}_{3}$, and $\mathrm{PH}_{3}, \mathrm{BI}_{3}$ and $\mathrm{PD}_{3}, \mathrm{BI}_{3}$ respectively.

The Phosphine Vibrations.--The asymmetric, v_{7}, and symmetric, ν_{1}, PH_{3} stretching vibrations are readily
${ }^{17}$ J. E. Drake and B. Rapp, J.C.S. Dalton, 1972, 2341.
assigned in all six adducts. However, the assignment of the asymmetric, v_{g}, and symmetric, $\mathrm{v}_{2}, \mathrm{PH}_{3}$ deformation modes is not so readily made. It is tempting to suggest that the more intense band in the Raman spectrum [Figure $3(\mathrm{~A})$] is probably v_{2}; the assignment made in the recent work on $\mathrm{PH}_{3}, \mathrm{BCl}_{3}{ }^{12}$ However, we choose to reverse the previous assignment so that the higher-frequency band ($1059 \mathrm{~cm}^{-1}$ in $\mathrm{PH}_{3}, \mathrm{BCl}_{3}$ and $c a$.
SiH_{3} derivatives; ${ }^{20}$ (v) the natural consequences of the Teller-Redlich product rule [for a_{1} modes $v(i) / v$ for PH_{3} is 0.515 observed, 0.50 calc.; for $\mathrm{PH}_{3}, \mathrm{BBr}_{3}$ is 0.515 obs., 0.50 calc.; for $\mathrm{PH}_{3}, \mathrm{BI}_{3}$ is 0.527 obs., 0.50 calc.; while for e modes $v(\mathrm{i}) / \mathrm{v}$ for $\mathrm{PH}_{3}, \mathrm{BCl}_{3}$ is 0.39 obs., 0.37 calc.; for $\mathrm{PH}_{3}, \mathrm{BBr}_{3}$ is 0.38 obs. 0.36 calc.; and for $\mathrm{PH}_{3}, \mathrm{BI}_{3}$ is 0.38 obs., 0.36 calc.? requires that both ν_{2} and ν_{8} be placed close together, in all spectra, at $c a$.

Figure 1 Raman spectrum of solid $\mathrm{PH}_{3}, \mathrm{BBr}_{3}$.
the same value in the other PH_{3} adducts) is the e mode, ν_{8}, and the lower-frequency band (ca. $980 \mathrm{~cm}^{-1}$ in all of the phosphine adducts) is the a_{1} mode v_{2}, because: (i) in the closely related compound $\mathrm{NH}_{3} \mathrm{BF}_{3},{ }^{18}$ the asymmetric deformation mode is in fact the more intense in the Raman spectrum and at higher frequency;

Figure 2 I.r. spectrum of $\mathrm{PH}_{3}, \mathrm{BBr}_{3}$ in iodomethane
(ii) the corresponding e and a_{1} modes in free phosphine ${ }^{13}$ are at $1122 \mathrm{~cm}^{-1}$ and $992 \mathrm{~cm}^{-1}$ respectively; (iii) as with $\mathrm{PH}_{3}, \mathrm{BH}_{3},{ }^{19}$ the lower-frequency band is clearly polarized; (iv) the dipole moment changes are greater for the a mode so it should be more intense in the i.r. spectrum (Figure 2) as is generally true for comparable
${ }^{18}$ R. C. Taylor, H. S. Gabelnick, K. Aida, and R. L. Amster, Inorg. Chem., 1969, 8, 605.

19 J. Davis and J. E. Drake, J. Chem. Soc. (A), 1970, 2959.
$760 \mathrm{~cm}^{-1}$. [The accidental degeneracy is not without precedent since in $\mathrm{SiH}_{3} \mathrm{Me}$ both the symmetric and asymmetric SiH_{3} deformations are placed at ca. 945 cm^{-121} and it is on deuteriation that they become separated]. The alternative assignment ${ }^{12}$ does not allow as good a fit of the product rule when all the modes are considered. In $\mathrm{PD}_{3}, \mathrm{BI}_{3}$ the band at $760 \mathrm{~cm}^{-1}$ shows some evidence of splitting in the solution spectra in both effects as does the solution i.r. spectrum of $\mathrm{PH}_{3}, \mathrm{BCl}_{3}$. The asymmetry alters in the polarization run in the Raman spectrum of $\mathrm{PD}_{3}, \mathrm{BI}_{3}$ as would be expected for two almost coincident bands [Figure $3(\mathrm{~B})$]. The Raman spectrum of $\mathrm{PH}_{3}, \mathrm{BBr}_{3}$ (Figure 1) shows three bands in the PH_{3} deformation region. The split band centred at $1059 \mathrm{~cm}^{-1}$ provides an excellent example of Fermi resonance ($2 \nu_{10}=1060 \mathrm{~cm}^{-1}$).
The PH_{3} rocking mode, v_{10}, is a distinct band of medium intensity, depolarized in the Raman spectra of the adducts. The feature is very similar to that noted in $\mathrm{PH}_{3}, \mathrm{BD}_{3}{ }^{19}$ and for the SiH_{3} rocking mode in the isoelectronic $\mathrm{SiH}_{3} \mathrm{Me}$. ${ }^{21}$ The PH_{3} rocking modes show a shift to lower frequency with increasing acidity of the acceptor species that parallels a similar trend in the PH_{3} stretching modes. The trend to lower frequencies may indicate a progressive drift of charge away from the PH_{3} group as the acceptor ability of the Lewis acid increases.

The Boron Trihalide Vibrations.-Deuteriation of phosphine causes only slight changes in the BX_{3} fundamental frequencies.

[^0]

Figure: 3 selected regions of the Raman spectra of $\mathrm{PH}_{3}, \mathrm{BCl}_{3}$ in $\left(\mathrm{H}_{2} \mathrm{Cl}_{2}(\lambda)\right.$ and (C), and of $\mathrm{PD}_{3}, \mathrm{BI}_{3}$ in Mel (B)

Figure 4 Raman spectruin of solid $\mathrm{PD}_{3} \cdot \mathrm{BI}_{3}$. In A the intensity has been multiplied by 100 , in B the intensity has been doubled in C the intensity has been multiplied by 10 , and in D it has been multiplied by unity

The BX_{3} symmetric stretch, v_{4}, is a very intense Raman band fully polarized in all six species. Its position is consistently at a slightly lower frequency than the corresponding mode in the free boron trihalide, ${ }^{22}$ a feature which has been noted for other BX_{3} adducts. ${ }^{4,5}$ The asymmetric BX_{3} stretch ν_{9}, is less readily assigned since it occurs in a 'crowded' region of the spectrum ($550-750 \mathrm{~cm}^{-1}$). However, by comparison with other BX_{3} adducts, ${ }^{3,5}$ very strong absorptions in the i.r. spectra are matched by relatively weak features in the Raman spectra and assigned to v_{9}. Further, as the calculations confirm, there is considerable separation between $v_{9}\left({ }^{10} \mathrm{~B}\right)$ and $v_{9}\left({ }^{11} \mathrm{~B}\right)$ which aids the assignments. In $\mathrm{PD}_{3}, \mathrm{BI}_{3}$ (Figure 4) there is some evidence that the degeneracy of this mode is lifted.

The BX_{3} deformation bands v_{5} and v_{11} occur in close proximity to one another in the spectra of all adducts but especially in those of $\mathrm{PH}_{3}, \mathrm{BCl}_{3}$ and $\mathrm{PH}_{3}, \mathrm{BI}_{3}$ (Figure 4, of $\mathrm{PD}_{3}, \mathrm{BI}_{3} 150-100 \mathrm{~cm}^{-1}$). The Raman spectrum of a solution of the former [Figure 3(C)] clearly shows the polarized nature of the band at higher frequency which is therefore assigned to the symmetric mode, v_{5}. (This is again in direct contrast with the recent assignment of $\mathrm{PH}_{3}, \mathrm{BCl}_{3} .{ }^{12}$) Further, a comparison of these bands in the spectrum of solid $\mathrm{PH}_{3}, \mathrm{BBr}_{3}$ (Figure 1) shows the band at $183 \mathrm{~cm}^{-1} v_{5}$ is rather sharp $\left(a_{1}\right)$ and that at $161 \mathrm{~cm}^{-1}, v_{11}$, somewhat broader (e) providing additional evidence for our assignment. ${ }^{23}$ Finally, this order is consistent with observations in other boron trihalide adducts. $2,4,5$
The BX_{3} rocking modes, ν_{12}, are seen as the lowestfrequency fundamentals in the solution spectra of all the adducts where they are clearly depolarized bands. In the recent study of $\mathrm{PH}_{3}, \mathrm{BCl}_{3}$ a band at $154 \mathrm{~cm}^{-1}$ was apparently assigned as a lattice vibration and one at $179 \mathrm{~cm}^{-1}$ as the fundamental. ${ }^{12}$ However, in the solution spectrum we observe a single peak at $148 \mathrm{~cm}^{-1}$ and none in the $180 \mathrm{~cm}^{-1}$ region. The $148 \mathrm{~cm}^{-1}$ band, assigned as ν_{12}, exhibits some splitting in the spectrum of solid $\mathrm{PH}_{3}, \mathrm{BCl}_{3}$. This partial lifting of degeneracy can be attributed to lattice effects and is also evident, but less so, in the corresponding band of the spectrum of solid $\mathrm{PH}_{3}, \mathrm{BBr}_{3}$ (Figure 1). The presence of other bands in the region of the spectrum below $85 \mathrm{~cm}^{-1}$ are also attributed to lattice effects.

The Phosphorus-Boron Stretching Frequency. The P-B stretch, v_{3}, is assigned to a band which is a partially polarized, medium intensity peak in the Raman spectra. As with v_{9}, there is evidence of a separation of $v_{3}\left({ }^{10} \mathrm{~B}-\mathrm{P}\right)$ and $v_{3}\left({ }^{11} \mathrm{~B}-\mathrm{P}\right)$. This places the $\mathrm{P}-\mathrm{B}$ stretch at an appreciably higher frequency than in $\mathrm{PH}_{3}, \mathrm{BH}_{3},{ }^{8,10}$ (Tables 2-4) and at a fairly consistent value for all of the phosphine adducts. The rather large shift on deuteriation is not surprising in ${ }^{\text {r }}$ view of the degree of participation by the PH_{3} group indicated by the calculations.

[^1]The difficulty of obtaining good polarization data is demonstrated by the spectrum of $\mathrm{PD}_{3}, \mathrm{BI}_{3}$ in the 630 $830 \mathrm{~cm}^{-1}$ region [Figure $3(\mathrm{~B})$] where the $\mathrm{P}-\mathrm{B}$ stretching mode appears as an apparently polarized shoulder on a solvent peak. Extensive mixing involving the donor-acceptor bond has been observed for the adduct $\mathrm{H}_{3} \mathrm{~N}, \mathrm{BF}_{3}$ where the similar masses of the NH_{3} moiety and the fluorine atoms produces appreciable mixing of the $\mathrm{N}-\mathrm{B}$ stretching mode. ${ }^{2}$

Normal Co-ordinate Analysis.-Normal co-ordinate analysis was carried out using a computer programme written by one of us. ${ }^{24}$ The normal equations were expressed in mass-weighted Cartesian co-ordinates by a method similar to that recently described by Gwinn. ${ }^{25}$ A set of trial force constants were refined by the usual least-squares criterion to produce the best agreement between the observed and calculated frequencies.

Table 5
Assumed structures of $\mathrm{PH}_{3}, \mathrm{BX}_{3}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$

	$\mathrm{X}=\mathrm{Cl}$	Br	I
$\gamma(\mathrm{P}-\mathrm{H}) / \AA$	1.40	1.40	1.40
$\angle \mathrm{HPB}{ }^{c}$	111.5°	$111 \cdot 2^{\circ}$	$110 \cdot 7^{\circ}$
$\angle \mathrm{HPH}$	$105 \cdot 5^{\circ}$	106°	105°
$\gamma(\mathrm{P}-\mathrm{B}) / \AA^{\circ}{ }^{\circ}$	1.90	1.90	1.90
$\gamma(\mathrm{~B}-\mathrm{X}) / \AA^{b}$	1.84	$2 \cdot 02$	$2 \cdot 265$
$\angle \mathrm{PBX}$	$109 \cdot 5$	110.1°	$110 \cdot 7^{\circ}$
$\angle \mathrm{XBX}{ }^{\circ}$	109.5°	108.3°	$108 \cdot 2^{\circ}$

${ }^{a}$ J. R. Durig, Y. S. Li, L. A. Carriera, and J. D. Odom, J. Amer. Chem. Soc., 1973, 95, 2491. ${ }^{b}$ Ref. 4. ' See text.

The Cartesian co-ordinates were calculated from the sets of geometric parameters given in Table 5 according to the Euclidean construction devised by Hilderbrandt. ${ }^{26}$
A total of 22 observed frequencies were available (11 for each isotopic species) but since the deuterium substitution affected mainly the PH_{3} group this was of little practical value as far as the $-\mathrm{PBX}_{3}$ skeleton was concerned. Moreover, anharmonicity corrections were not obtainable and the assignment of v_{2} in $\mathrm{PD}_{3}, \mathrm{BX}_{3}$ was uncertain. Thus the force field for the $\mathrm{PH}_{3}, \mathrm{BX}_{3}$ species was calculated and tested by using the same values of the force constants to calculate frequencies for $\mathrm{PD}_{3}, \mathrm{BX}_{3}$. The modified valence force field approximation was not expected to give unambiguous results owing to the impossibility of selecting a unique set of force constants; therefore a modified Urey-Bradley ${ }^{27}$ force field was adopted. The 11 force constants thus calculated are labelled according to the formulation given by Shimanouchi. ${ }^{28,29}$ The modification consisted of neglecting the non-bonded interaction constants involving hydrogen and including two valence force constants as follows: the stretch-bend interaction $F_{\mathrm{HPB} / \mathrm{Pb}}$ (which was needed to provide good agreement with ν_{3} of $\mathrm{PD}_{3}, \mathrm{BX}_{3}$), and the bend-bend interaction

[^2]$F_{\mathrm{XBX} / \mathrm{PBX}}$ (which was needed to ensure that v was greater than v_{11}). These were determined by trial and error and constrained. Following the usual procedure, ${ }^{\mathbf{2 8}, 29}$ the linear non-bonded force constants, $F_{i j}^{\prime}$ were approximated by $F_{i j}^{\prime}=-\left(\frac{1}{10}\right) F_{i j}$, where $F_{i j}$ is the quadratic force constant for the repulsive potential between atoms i and j.

The $-\mathrm{BX}_{\mathbf{3}}$ group structures (Table 5) were taken directly from the trimethylamine adducts. The PB bond length was estimated to be $1.90 \AA$; a value comparable with that in $\mathrm{MePH}_{2}, \mathrm{BH}_{3} \cdot{ }^{30}$ Although the geometrical parameters initially assumed for the PH_{3}
s-character in the $\mathrm{P}-\mathrm{H}$ bond, has the values of 182 Hz for $\mathrm{PH}_{3},{ }^{33} 366 \mathrm{~Hz}$ for $\mathrm{PH}_{3}, \mathrm{BH}_{3},{ }^{8} 420,430$, and 436 Hz for $\mathrm{PH}_{3}, \mathrm{BCl}_{3}, \mathrm{PH}_{3}, \mathrm{BBr}_{3}$ and $\mathrm{PH}_{3}, \mathrm{BI}_{3}$ respectively ${ }^{17}$ and 548 Hz for $\mathrm{PH}_{4}{ }^{+} .{ }^{34}$ This trend is of course consistent with an increase in s-character as the bond angle 'opens up' from its $c a .93^{\circ}$ in PH_{3} through to $c a$. 109° in $\mathrm{PH}_{4}{ }^{+}$. The relatively large changes in J_{PH} presumably reflect changes in s-character related to significant changes in bond angles. The smaller changes in the sequence $\mathrm{PH}_{3}, \mathrm{BX}_{3}, \mathrm{X}=\mathrm{Cl}, \mathrm{Br}$, and I , may be related less to angle changes than to the increasing electron-withdrawing power of the stronger
'Table 6
Calculated frequencies and potential energy distribution ${ }^{a}$ of $\mathrm{PH}_{3}, \mathrm{BCl}_{3}$ and $\mathrm{PD}_{3}, \mathrm{BCl}_{3}$

group were those from $\mathrm{PH}_{3}, \mathrm{BH}_{3}$, they were later modified as indicated below. The calculations were not sensitive to the values assumed for the $-\mathrm{PBX}_{3}$ skeleton.

In the course of the least-squares analysis, it was observed that the standard deviation depended significantly on the value assumed for the HPB angle. Refinement to give a minimum standard deviation gave an average value of $c a .111 .5^{\circ}$. This makes the angle HPH about 105.5° which is larger than in $\mathrm{PH}_{3}, \mathrm{BH}_{3}$ and $\mathrm{MePH}_{2}, \mathrm{BH}_{3}\left(99 \cdot 4 \pm 0 \cdot 4^{\circ}\right)$. As expected, the trend in $H_{\text {HH }}\left(0.644 \mathrm{erg} \mathrm{rad}^{-1}\right.$ in phosphine, ${ }^{31} 0.528 \mathrm{erg} \mathrm{rad}^{-1}$ in $\mathrm{PH}_{3}, \mathrm{BH}_{3},{ }^{10,32}$ and $0.5 \mathrm{erg} \mathrm{rad}{ }^{-1}$ in $\mathrm{PH}_{3}, \mathrm{BX}_{3}$) follows the increase in angle.

The suggestion of a bond angle at HPH of $c a .105 \cdot 5^{\circ}$ is also consistent with conjectures made on the basis of n.m.r. parameters, ${ }^{17}$ The J_{PH} coupling constant, presumably strongly dependent on the degree of

[^3]Lewis acids. Thus BI_{3}, with the greatest effective electronegativity, presumably uses more p-character from the phosphorus orbital ${ }^{35}$ and hence leaves more s-character in the $\mathrm{P}-\mathrm{H}$ bond.

The calculated frequencies and potential-energy distributions (in Urey-Bradley space) are presented in Tables $6-8$. The ${ }^{10} \mathrm{~B}$ substituted frequencies are included in brackets. The excellent fit to the frequencies for the $\mathrm{PH}_{3}, \mathrm{BX}_{3}$ species, combined with the remarkably good transfer of the force constants to the $\mathrm{PD}_{3}, \mathrm{BX}_{3}$ analogues indicates that the force-field model is a reasonable one. The potential-energy distribution reveals that there is no pure $\mathrm{P}-\mathrm{B}$ bond stretching frequency. It is involved in all the symmetric modes except v_{1}, and the degree of this involvement differs in $\mathrm{PH}_{3}, \mathrm{BX}_{3}$ and $\mathrm{PD}_{3}, \mathrm{BX}_{3}$. The effect of deuteriation is very evident in v_{2} and v_{3}. In the hydrides v_{2} is predominantly PH_{3} symmetric bending and ν_{3} is symmetric

[^4]Table 7
Calculated frequencies and potential energy distribution ${ }^{a}$ of $\mathrm{PH}_{3}, \mathrm{BBr}_{3}$ and $\mathrm{PD}_{3}, \mathrm{BBr}_{3}$

${ }^{a}$ Contributions greater than 8%. ${ }^{b}$ P.E.D. for $\mathrm{PD}_{3}, \mathrm{BBr}_{3}$ in parentheses. ${ }^{c}$ [] gives value for ${ }^{10} \mathrm{~B}$. d Average of Fermi resonance doublet.

Table 8
Calculated frequencies and potential energy distribution ${ }^{a}$ of $\mathrm{PH}_{3}, \mathrm{BI}_{3}$ and $\mathrm{PD}_{3}, \mathrm{BI}_{3}$

		$\mathrm{PH}_{3}, \mathrm{BI}_{3}$		$\mathrm{PD}_{3}, \mathrm{BI}_{3}$		
		obs.	calc.	obs.	calc.	
A	ν_{1}	2362	2362	1709	1681	$100 K_{\text {PH }} \quad\left(100 K_{\text {PH }}\right)$
	ν_{2}	980	977	ca. 760	750	$\begin{aligned} & 51 H_{\mathrm{HH}}+46 H_{\mathrm{BH}} \\ & \left(24 K_{\mathrm{PB}}+35 H_{\mathrm{HH}}+32 H_{\mathrm{HB}}\right)^{6} \end{aligned}$
	ν_{3}	662 [680] ${ }^{\text {c }}$	662 [690]	641 [657]	632 [655]	$\begin{aligned} & 66 K_{\mathrm{PB}}+14 K_{\mathrm{BX}} \\ & \left(43 K_{\mathrm{PB}}+12 K_{\mathrm{BX}}+17 H_{\mathrm{HH}}+15 H_{\mathrm{BH}}\right) \end{aligned}$
	ν_{1}	229	230	222	222	$\begin{aligned} & 15 K_{\mathrm{PB}}+34 K_{\mathrm{BX}}+32 F_{\mathrm{PX}} \\ & \left(15 K_{\mathrm{PB}}+34 K_{\mathrm{BX}}+31 F_{\mathrm{PX}}\right) \end{aligned}$
	ν_{5}	133	133	133	132	$\begin{aligned} & 15 K_{\mathrm{BX}}+9 H_{\mathrm{PX}}+51 F_{\mathrm{XX}}+12 F_{\mathrm{XBX} / \mathrm{PBX}} \\ & \left(14 K_{\mathrm{BX}}+9 H_{\mathrm{PX}}+50 F_{\mathrm{XX}}+12 F_{\mathrm{XBX} / \mathrm{PBH}}\right) \end{aligned}$
E	ν_{7}	2397	2397	1752	1730	$100 K_{\text {PH }}\left(100 K_{\text {PH }}\right)$
	ν_{8}	1056	1057	762	754	$\begin{aligned} & 92 H_{\mathrm{HH}}+8 H_{\mathrm{BH}} \\ & \left(92 H_{\mathrm{HH}}+8 H_{\mathrm{BH}}\right) \end{aligned}$
	ν_{9}	ca. 780 [700]	679 [689	600 [614]	602 [614]	$\begin{aligned} & 19 K_{\mathrm{BX}}+69 H_{\mathrm{BII}} \\ & \left(52 K_{\mathrm{BX}}+31 H_{\mathrm{BH}}\right) \end{aligned}$
	ν_{10}	492	491	416	409	$\begin{aligned} & 65 K_{\mathrm{BX}}+23 H_{\mathrm{BH}} \\ & \left(32 K_{\mathrm{BX}}+61 H_{\mathrm{BH}}\right) \end{aligned}$
	ν_{11}	127	125	123	118	$\begin{aligned} & 41 H_{\mathrm{PX}}+53 F_{\mathrm{PX}} \\ & \left(41 H_{\mathrm{PX}}+53 F_{\mathrm{PX}}\right) \end{aligned}$
	ν_{12}	89	89	89	89	$\begin{aligned} & 24 H_{\mathbf{X X}}+74 F_{\mathbf{X x}} \\ & \left(23 H_{\mathbf{X X}}+73 F_{\mathbf{X X}}\right) \end{aligned}$

Table 9
Urey-Bradley force constants for $\mathrm{PH}_{3}, \mathrm{BX}_{3}{ }^{a}$

${ }^{a}$ Force constants in mdyne \AA^{-1}. All bending constants weighted by $1 \AA$. Uncertainties in parentheses. ${ }^{b}$ Calculated for the

PBX_{3} stretching. The corresponding modes in the deuterides are mixtures of these motions. The interaction constant $F_{\mathrm{PB} / \mathrm{HPB}}$ has a considerably greater effect in the deuterides where it prevents the two modes of the same symmetry from having similar frequencies. The value of $F_{\mathrm{PB} / \mathrm{HPE}}$ was systematically adjusted so that satisfactory values were obtained for v_{3} and v_{10} of the deuteriated species. In each case v_{2} was calculated to be in the range $750-775 \mathrm{~cm}^{-1}$. A somewhat higher v_{2} frequency could be obtained by using a larger $F_{\mathrm{PB} / \mathrm{HPB}}$ but only if poorer agreement with ν_{3} and v_{10} were accepted. Attempts to assign ν_{2} in the range $600-700$ cm^{-1} failed because it was then impossible to calculate a reasonable value of v_{2} in the hydride.

The force constants of the modified Urey-Bradley force field and their calculated uncertainties are presented in Table 9 along with related constants of the CX_{4} and BX_{3} molecules. ${ }^{31}$ The values of K_{BX} in the $\mathrm{PH}_{3}, \mathrm{BX}_{3}$ molecules are much smaller than in BX_{3} as has been observed in the acetonitrile ${ }^{5}$ and trimethylamine ${ }^{4}$ adducts and are comparable with the $K_{\text {CX }}$ values. Although the F_{Xx} values in $\mathrm{PH}_{3}, \mathrm{BX}_{3}$ are uncertain, they are definitely smaller than in the CX_{4} molecules. In view of the known inverse relationship between F_{XX} and $r(\mathrm{X} \cdots \mathrm{X}),{ }^{31} r(\mathrm{~B}-\mathrm{X})$ must be longer than the corresponding $r(\mathrm{C}-\mathrm{X})$ if the structure at boron is tetrahedral. This is known to be the case in the trimethylamine adducts ${ }^{4}$ where $(\mathrm{B}-\mathrm{Cl})=1.8 \AA$ is larger than $(\mathrm{C}-\mathrm{Cl})=1.766 \AA$ found in CCl_{4}. The bromides and iodides exhibit the same effect. The values of K_{PB} increase in the sequence $\mathrm{PH}_{3}, \mathrm{BCl}_{3}<\mathrm{PH}_{3}, \mathrm{BBr}_{3}<$ $\mathrm{PH}_{3}, \mathrm{BI}_{3}$ which is consistent with the generally accepted order of increasing Lewis acidity of $\mathrm{BCl}_{3}<\mathrm{BBr}_{3}<\mathrm{BI}_{3}$. The F matrix elements calculated from the UreyBradley force field presented in Table 10 also follow this trend. The F matrix element for PB in $\mathrm{PH}_{3}, \mathrm{BCl}_{3}$, 1.83 mdyne \AA^{-1}, agrees reasonably well with the modified valence force field determination, 1.96 mdyne $\AA^{-1} .^{12}$ Both these values are smaller than those reported for $\mathrm{PH}_{3}, \mathrm{BH}_{3}$ (2.04 mdyne \AA^{-1}).

The value of $K_{\text {Pпा }}$ in all three molecules is greater than in phosphine for which it is $3 \cdot 11$ mdyne $\AA^{-1} .^{31}$ This is
the opposite trend from that observed in the ammonia adduct, $\mathrm{NH}_{3}, \mathrm{BF}_{3}$ where $K_{\mathrm{NH}}=5.85$ mdyne $\AA^{-1,18}$ is smaller than 6.467 mdyne \AA^{-1} calculated for $\mathrm{NH}_{3} \cdot{ }^{31}$ In the latter case it is assumed that the NH bond order decreases as the BN order increases. By contrast, the PH bonds in $\mathrm{PH}_{3}, \mathrm{BX}_{3}$ appear to be stiffer than in PH_{3}. The latter effect must be related to the much greater structural reorganization required to form the phosphine adducts ($\angle \mathrm{HPH}=93 \cdot 3^{\circ}$ in $\mathrm{PH}_{3}, 105^{\circ}$ in $\left.\mathrm{PH}_{3}, \mathrm{BX}_{3}\right)$. In ammonia $\angle \mathrm{HNH}$ is already $c a .107^{\circ}$. In the sequence $\mathrm{PH}_{3}, \mathrm{BCl}_{3}, \mathrm{PH}_{3}, \mathrm{BBr}_{3}, \mathrm{PH}_{3}, \mathrm{BI}_{3}$ there is

Table 10

Non-zero elements of the F matrix ${ }^{a, b}$			
	Cl	Br	I
PH	$3 \cdot 47^{\text {c }}$	$3 \cdot 41{ }^{\text {c }}$	$3 \cdot 34{ }^{\text {c }}$
$\angle \mathrm{HPH}$	$0 \cdot 492$	$0 \cdot 500$	$0 \cdot 483$
$\angle \mathrm{HPB}$	$0 \cdot 42$	0.407	$0 \cdot 471$
PB	1.83	1.92	$1 \cdot 92$
BX	$2 \cdot 63$	$2 \cdot 16$	1-59
$\angle \mathrm{PBX}$	$0 \cdot 46$	0.81	$0 \cdot 60$
$\angle \mathrm{XBX}$	1.05	$0 \cdot 61$	0.77
Interaction constants			
PB-BX	0.23	$0 \cdot 18$	$0 \cdot 13$
PB-PBX	$0 \cdot 24$	$0 \cdot 22$	$0 \cdot 17$
BX-BX	$0 \cdot 38$	$0 \cdot 21$	$0 \cdot 19$
BX-PBX	$0 \cdot 26$	$0 \cdot 22$	$0 \cdot 15$
BX-XBX	$0 \cdot 42$	$0 \cdot 26$	$0 \cdot 27$
PB-HPB	-0.114	-0.041	-0.016
PBX-XBX	-0.14	-0.12	-0.09

${ }^{a}$ Force constants in mdyne \AA^{-1}. All bending constants weighted by $1 \AA .{ }^{b}$ Calculated from the Urey-Bradley constants presented in Table 9. calculated for the deuteride.
no marked change in hybridization of the $-\mathrm{PH}_{3}$ group. The reduction of $K_{\text {PH }}$ through this sequence is therefore compatable with the normal effect of increased strength of the co-ordinate bond in ammonia adducts. ${ }^{36}$

We thank the National Research Council of Canada for financial support.
[3/1705 Received, 13th August, 1973]
${ }^{36} \mathrm{~K}$. Nakamoto, ' Infrared Spectra of Inorganic and Coordination Compounds,' Wiley, New York, 1963, pp. 143-145.

[^0]: ${ }^{20}$ W. L. Jolly, J. Amer. Chem. Soc., 1963, 85, 3083.
 ${ }_{21}$ D. F. Ball, T. Carter, D. C. McKean, and L. A. Woodward, Spectrochim. Acta, 1964, 20, 1721.

[^1]: ${ }_{22}$ T. Wentick and V. H. Tiensu, J. Chem. Phys., 1958, 28, 826.
 ${ }^{23}$ G. Herzberg, ref. 16, p. 491.
 ${ }_{24}$ J. L. Hencher, Ph.D. Thesis, McMaster University, 1965.

[^2]: ${ }^{25}$ W. D. Gwinn, J. Chem. Phys., 1971, 55, 477.
 ${ }^{26}$ R. L. Hilderbrandt, J. Chem. Phys., 1969, 51, 1654.
 27 H. C. Urey and C. A. Bradley, Phys. Rev., 1931, 38, 1969.
 ${ }_{28}$ T. Shimanouchi, J. Chem. Phys., 1949, 17, 245.
 ${ }_{29}$ T. Shimanouchi, Pure Appl. Chem., 1963, 1, 131.

[^3]: ${ }^{30}$ P. S. Bryan and R. L. Kuczkowski, Inorg. Chem., 1972, 11, 553.
 ${ }_{31}$ T. Shimanouchi, I. Nakagawa, J. Hiraishi, and M. Ishii, J. Mol. Spectroscopy, 1966, 19, 78.
 ${ }_{32}$ J. R. Bershied and K. F. Percell, Inorg. Chem., 1972, 11, 930.

[^4]: ${ }^{33}$ G. M. Whitesides, J. C. Beauchamp, and J. D. Roberts, J. Amer. Chem. Soc., 1963, 85, 2665.
 ${ }_{34}$ G. Mavel, Progress in Nuclear Magnetic Resonance Spectroscopy,' vol. 1, Interscience, New York, 1958, 46.
 ${ }_{35}$ A. D. Walsh, Discuss. Faraday Soc., 1947, 2, 18; H. A. Bent, Chem. Rev., 1961, 61, 275.

