Square-planar Complexes of Pentane-2,4-dithione (Dithioacetylacetone): Crystal Structures of the Cobalt(II) and Nickel(II) Derivatives

By Ronald Beckett and Bernard F. Hoskins,* Department of Inorganic Chemistry, University of Melbourne, Victoria, Australia 3052

Abstract

The crystal and molecular structure of the cobalt(II) and nickel(II) derivatives of dithioacetylacetone (sacsacH) have been determined by X-ray diffraction methods. Both crystals, being isomorphous, are orthorhombic, with space group $C m c a$ and $Z=4$. For $\mathrm{Co}(\mathrm{sacsac})_{2}: a=15 \cdot 64(2), b=14 \cdot 35(2)$, and $c=6 \cdot 05(1) \AA$: for $\mathrm{Ni}(\mathrm{sacsac})_{2}$: $a=15 \cdot 592(6), \quad b=14 \cdot 348(8)$, and $c=5 \cdot 950(3) A$. The cobalt(II) structure was solved by conventional Patterson and Fourier methods and was refined by a least-squares method to $R 0.11$ for 437 independent reflections derived by photographic methods. For the nickel structure, 585 independent reflections, collected by counter methods, were used and the structure refined, by least squares, to $R 0.044$. The crystals are molecular with discrete monomeric molecular units of composition $M(s a c s a c))_{2}$. Each metal atom, located a site of symmetry $2 / m$, is precisely coplanar with the four sulphur atoms bonded to it and, with an $\mathrm{S}-\mathrm{M}-\mathrm{S}$ intraligand bond angle of ca. 97°, the metal environment is conveniently described as square planar. However, the molecule as a whole is not planar being folded so that the dihedral angle between the MS_{4} and the ligand planes is $c a .6^{\circ}$. The metal-sulphur bond distance is $c a .2 \cdot 17 \AA$.

The bivalent metal complexes of acetylacetone (pentane-2,4-dione, as acacH) and other related 1,3-diketones have been studied extensively because of their remarkable ability to form polymeric species in the solid state and in solutions of non-co-ordinating solvents. For example, the anhydrous nickel(II) ${ }^{\mathbf{1}}$ and cobalt(II) ${ }^{2}$ derivatives of acacH are trimeric and tetrameric respectively with the metal atoms achieving an octahedral co-ordination in each case. Recently Martin and Stewart ${ }^{3}$ reported the synthesis of a number of bivalent metal derivatives of the dithio-analogue of acacH, dithioacetylacetone (pent-ane-2,4-dithione, $\operatorname{sacsacH}$). For the complexes (Co(sacsac) $)_{2}$ and $\mathrm{Ni}(\mathrm{sacsac})_{2}$ the evidence, derived from a variety of physical measurements, suggested both to be simple monomeric square-planar complexes. This has been confirmed by single-crystal structure determinations, by use of X-ray diffraction methods, for each of the isomorphous pair $\mathrm{Co}(\mathrm{sacsac})_{2}$ and $\mathrm{Ni}(\mathrm{sacsac})_{2}$. A preliminary account of one of these structures has been published: ${ }^{4}$ we report here a detailed account of both crystal structures.

EXPERIMENTAL

Data Collection.-(i) $\mathrm{Co}(\mathrm{sacsac})_{2}$. Black needle crystals separated from a saturated solution in hot benzene.

The observed systematic absences were consistent with either space groups $C m c a$ or $C 2 c b ;{ }^{5}$ a satisfactory solution was obtained for Cmca. Cell dimensions were obtained from Weissenberg photographs, taken about all three axes, calibrated by sodium chloride powder lines. Intensity data were estimated visually for the layers $0-6 \mathrm{kl}$ and $h k 0-4$, approximate crystal dimensions being $0 \cdot 1 \times$ $0.1 \times 0.15 \mathrm{~mm}$ for each case. Structure amplitudes for 437 observed independent reflections were corrected for Lorentz and polarization factors, but not for absorption or extinction effects.
${ }^{1}$ J. C. Bullen, R. Mason, and P. Pauling, Inorg. Chem., 1965, 4, 456.
${ }_{2}^{2}$ F. A. Cotton and R. C. Elder, Inorg. Chem., 1965, 4, 1145.
${ }^{3}$ R. L. Martin and I. M. Stewart, Nature, 1966, 210, 522.
${ }^{4}$ R. Beckett and B. F. Hoskins, Chem. Comm., 1967, 909.
5 'International Tables for X-Ray Crystallography,' vol. I, Kynoch Press, Birmingham, 1952.
(ii) $\mathrm{Ni}(\mathrm{sacsac})_{2}$. Suitable crystals were obtained similarly and shown to be isomorphous with those of Co(sacsac) ${ }_{2}$. The data for refinement were obtained by use of a Siemens automatic single-crystal diffractometer, the crystal, of dimensions $0.06 \times 0.08 \times 0.50 \mathrm{~mm}$, being mounted with its long direction coincident with the diffractometer ϕ axis. Accurate cell dimensions were obtained from the θ values determined for 12 strong and well-resolved high-angle reflections, the cell parameters being refined by a leastsquares procedure. ${ }^{6}$ Intensity measurements were made, by a 'five-values ' $\theta--2 \theta$ scan method, ${ }^{7}$ to a Bragg angle of 70° with $\mathrm{Cu}-K_{\alpha}$ Ni-filtered radiation, this gave, on the basis of the 3σ criterion, 585 independent statistically significant reflections. Structure amplitudes were corrected for Lorentz and polarization factors, and absorption effects, ${ }^{8}$ but not for extinction.

Crystal Data.-(i) $\mathrm{Co}(\mathrm{sacsac})_{3}: \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{CoS}_{4}, M=321 \cdot 4$, Orthorhombic, $a=15.64(2), \quad b=14.35(2), \quad c=6.05(1) \AA$, $U=1358 \AA^{3}, \quad D_{\mathrm{m}}=1.57, \quad Z=4, \quad D_{\mathrm{c}}=1.57 \mathrm{~g} \mathrm{~cm}^{-3}$. Space group Cmca ($D_{2 h}^{18}$, No, 64). Cobalt unfiltered radiation, $\lambda=1.7902 \AA, \mu\left(\mathrm{Co}-K_{\alpha}\right)=107.2 \mathrm{~cm}^{-1}$. Single-crystal oscillation and Weissenberg photographs.
(ii) Ni (sacsac) $)_{2} . \quad \mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NiS}_{4}, M=321 \cdot 2$, Orthorhombic, $a=15 \cdot 592(6), b=14 \cdot 348(8), c=5 \cdot 950(3) \AA, U=1331 \AA^{3}$, $D_{\mathrm{m}}=1 \cdot 60, Z=4, D_{\mathrm{c}}=1.60 \mathrm{~g} \mathrm{~cm}^{-3}$. Space group Cmca $\left(D_{2 h}^{18}\right.$, No. 64). Cu- K_{α} radiation, $\lambda=1.5418 \AA ; \mu\left(\mathrm{Cu}-K_{\alpha}\right)=$ $73.2 \mathrm{~cm}^{-1}$. Single-crystal oscillation and Weissenberg photographs, Siemens automatic diffractometer.

Structure Determination.-(i) Co(sacsac) ${ }_{2}$. The cobalt atoms were assigned to special positions of the type ($0,0,0$; etc.) and the co-ordinates for the sulphur atom determined from the Patterson map. These positions were used to phase a three-dimensional electron-density distribution from which the remaining non-hydrogen atoms were located.

Refinement was achieved by the method of least squares, the function minimized being $\Sigma w \Delta^{2}$, where Δ is $\Sigma w\left(\left|F_{0}\right|-\right.$ $\left.\left|F_{\mathrm{c}}\right|\right)^{2}$, and w is the weight applied to each reflection by use of the weighting scheme: $w=F^{*} /\left|F_{o}\right|$ for $\left|F_{\mathrm{c}}\right|>F^{*}$ and $w=\left|F_{\mathrm{o}}\right| / F^{*}$ for $\left|F_{\mathrm{o}}\right|<F^{*}, F^{*}$ being taken as four times
${ }^{6}$ W. R. Busing, R. D. Ellison, H. A. Levy, S. P. King, and R. T. Roseberry, Oak Ridge National Laboratory, Report ORNL 4143, 1968.
${ }^{7}$ 'W. Hoppe, Angew. Chem. Internat. Edn., 1965, 6, 508 ; Automatic Single-Crystal Diffractometer AED According to W. Hoppe,' users manual for Siemens Automated Diffractometer.
${ }^{8}$ G. W. Cox, personal communication; W. R. Busing and H. A. Levy, Acta Cryst., 1957, 10, 180.
the minimum observable structure amplitude, i.e. $F^{*}=\mathbf{3 \cdot 2}$. In the final stages of the refinement individual anisotropic temperature factors were assigned to the atoms and the refinement was continued until $\Sigma \Delta w^{2}$ was constant and the largest change in any parameter was $<0.01 \sigma$. At this stage R was 0.11 and the weighted residual R^{\prime} was 0.15 .

Final atomic co-ordinates and temperature factor parameters, together with their estimated standard deviations, are given in Table 1.
(ii) $\mathrm{Ni}(\text { sacsac })_{2}$. The co-ordinates and individual isotropic temperature factors determined during the course of the refinement of $\mathrm{Co}(\mathrm{sacsac})_{2}$ were used as a starting
is parallel to the b axis of the crystal. The packing of the molecules in the unit cell is shown in projections in Figures 1 and 2. There are no abnormally short contacts, all distances being compatible with the accepted values for non-bonded interactions between various groups, ${ }^{12}$ the shortest of the non-hydrogen contacts for the nickel structure being $3 \cdot 68 \AA$ between the nickel atom of one molecule, of centre $(0,0,0)$ and two carbon atoms [both $\mathrm{C}(2)$] of molecules with centres $(0,0, \pm 1)$.

The molecular structure of $\mathrm{Ni}(\mathrm{sacsac})_{2}$ is shown in Figure 1 which also gives the atomic labelling and the

Table 1
Final atomic co-ordinates and thermal parameters * $\left(\AA^{2} \times 10^{4}\right)$, with estimated standard deviations in parentheses
(a) $\mathrm{Ni}(\text { sacsac })_{2}$

Atom	x / a	y / b	z / c	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Ni	$0 \cdot 00000(0)$	$0 \cdot 00000(0)$	$0 \cdot 00000(0)$	292(6)	307(6)	329(6)	0	0	-22(3)
S	$0 \cdot 10373(4)$	$0 \cdot 06593$ (5)	$0 \cdot 17934(13)$	353(6)	495(6)	432(6)	-66(2)	$-15(2)$	-102(3)
C(1)	$0.07984(20)$	$0 \cdot 12748(17)$	$0 \cdot 41233(48)$	456(16)	366(13)	380 (15)	$-66(10)$	$-37(12)$	36(10)
$\mathrm{C}(2)$	$0 \cdot 00000(0)$	$0 \cdot 14949(36)$	$0 \cdot 49777(68)$	$455(20)$	457(18)	433(20)	0	0	0
C(3)	$0 \cdot 15722(25)$	$0 \cdot 16168(28)$	$0.53786(59)$	$500(19)$	656(20)	412(17)	$-153(15)$	$-73(14)$	$-86(15)$
H	$0 \cdot 00000$	$0 \cdot 1960$	$0 \cdot 6529$	1544	1612	1006	0	0	-616
(b) $\mathrm{Co}(\mathrm{sacsac})_{2}$									
Atom	$x!a$	y / b	z / c	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Co	$0 \cdot 0000(0)$	$0 \cdot 0000(0)$	$0 \cdot 0000(0)$	184(20)	234(18)	$350(22)$	0	0	-15(13)
S	$0 \cdot 1036(2)$	$0 \cdot 0630(2)$	$0 \cdot 1846(5)$	233(16)	361 (17)	571 (21)	81(11)	-4(12)	-109(12)
C(1)	0.0795 (8)	$0 \cdot 1287(8)$	$0 \cdot 4132(20)$	445(73)	337 (63)	360 (62)	$26(51)$	$-53(58)$	55(49)
$\mathrm{C}(2)$	$0 \cdot 0000(0)$	$0 \cdot 1534(28)$	$0 \cdot 4913(9)$	440(114)	268(85)	498(107)	0	0	$-105(72)$
C.(3)	$0 \cdot 1583(10)$	$0 \cdot 1626(11)$	$0 \cdot 5367(23)$	477(86)	$752(100)$	482(76)	$-286(78)$	$-87(66)$	$-76(70)$

* The temperature factor expression is $T=\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+2 \mathrm{U}_{12} h k a^{*} b^{*}+e t c.\right)\right]$
point in the refinement. Data were weighted according to the scheme described by Killean et al., ${ }^{9}$ so that each reflection was assigned a weight (w) according to the scheme:
$w=\left[\sigma_{\mathrm{cs}}{ }^{2}+A\left|F_{0}\right|^{2}+B \sum_{i=1}^{m} f_{i}{ }^{2}\right]^{-1}$, where $A=0.005$ and $B=$
$0 \cdot 0001$. Anisotropic temperature factors were introduced and the refinement continued until there were no further changes in any of the parameters, when R was 0.044 and $R^{\prime} 0.076$. The only hydrogen atom position indicated in a difference map was that bonded to $\mathrm{C}(2)$, and this was included in the final structure-factor calculations. Refinement terminated at $R 0.044$ and $R^{\prime} 0.067$.

Final atomic co-ordinates and thermal parameters, together with their estimated standard deviation, are also in Table 1.

Scattering factors for $\mathrm{Ni}^{2+}, \mathrm{Co}^{2+}, \mathrm{C}$, and S were taken from ref. 10, with the nickel, cobalt, and sulphur values corrected for anomalous dispersion. ${ }^{11}$ Observed and calculated structure factors, for both compounds, are listed in Supplementary Publication No. SUP 20921 (7 pp., 1 microfiche).*

RESULTS AND DISCUSSION \dagger

Crystals of $\mathrm{Ni}(\text { sacsac })_{2}$ and $\mathrm{Co}\left(\right.$ sacsac $_{2}$ are both composed of discrete neutral molecules held together by van der Waals forces. The molecules are approximately planar and arranged so that the plane of the molecules

[^0]bond lengths and angles, together with their estimated standard deviations are given in Tables 2 and 3. The

Table 2
Comparison of interatomic distances (\AA) in $\mathrm{Ni}(\text { sacsac })_{2}$ and $\mathrm{Co}(\mathrm{sacsac})_{2}$

Bond	$\mathrm{Ni}(\text { sacsac })_{2}$	$\mathrm{Co}(\mathrm{sacsac})_{2}$
$\mathrm{M}-\mathrm{S}$	$2 \cdot 156(1)$	$2 \cdot 166(3)$
$\mathrm{S}-\mathrm{C}(1)$	$1 \cdot 685(3)$	$1 \cdot 716(13)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 381(4)$	$1 \cdot 376(15)$
$\mathrm{C}(1)-\mathrm{C}(3)$	$1 \cdot 510(5)$	$1 \cdot 521(19)$
$\mathrm{C}(2)-\mathrm{H}$	$1 \cdot 14$	
$\mathrm{~S} \cdots \mathrm{~S}(1)$	$3 \cdot 235(2)$	$3 \cdot 242(6)$
$\mathrm{S} \cdots \mathrm{S}(2)$	$2 \cdot 852(2)$	$2 \cdot 874(6)$

Table 3
Comparison of the bond angles (deg.) in $\mathrm{Ni}(\text { sacsac })_{2}$ and $\mathrm{Co}(\text { sacsac })_{2}$

Angle	$\mathrm{Ni}(\text { sacsac })_{2}$	$\mathrm{Co}(\mathrm{sacsac})_{2}$
$\mathrm{~S}-\mathrm{M}-\mathrm{S}(1)$	$97 \cdot 20(4)$	$96 \cdot 9(2)$
$\mathrm{S}-\mathrm{M}-\mathrm{S}(2)$	$82 \cdot 80(4)$	$83 \cdot 1(2)$
$\mathrm{M}-\mathrm{S}-\mathrm{C}(1)$	$118 \cdot 1(1)$	$118 \cdot 7(5)$
$\mathrm{S}-\mathrm{C}(1)-\mathrm{C}(2)$	$128 \cdot 4(3)$	$128 \cdot 1(11)$
$\mathrm{S}-\mathrm{C}(1)-\mathrm{C}(3)$	$113 \cdot 8(3)$	$113 \cdot 2(10)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(11)$	$128 \cdot 7(4)$	$129 \cdot 2(16)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3)$	$117 \cdot 8(3)$	$118 \cdot 7(12)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}$	$115 \cdot 6$	

${ }^{9}$ R. C. G. Killean, Acta Cryst., 1967, 23, 54; R. C. G. Killean, Acta Cryst., 1967, 23, 1109; D. F. Grant, R. C. G. Killean, and J. L. Lawerence, ibid., 1969, B, 25, 374.
${ }^{10}$ Ref. 5. vol. III, 1962, p. 201, et seq.
11 Ref. 10, p. 214.
12 L. Pauling, 'The Nature of the Chemical Bond,' 3rd edn., Cornell University Press, 1960, p. 260; A. Bondi, J. Phys. Chem., 1964, 68, 441.
molecule is not precisely planar, being folded, or ' hinged', about two lines, one passing through S and $S(1)$ and the other through $S(2)$ and $S(3)$, to give a stepped structure

Figure 1 Projection of the crystal structure of $\mathrm{Ni}(\text { sacsac })_{2}$ on the (001) plane. The labelling of the atoms is given for the molecules at $(0,0,0)$
(Figure 2). The dihedral angle between the NiS_{4} plane and the plane of best fit through the ligand atoms is 8.6°, the nickel atom being $0 \cdot 209 \AA$ out of the plane of the ligand.

The Metal Environment.-Each nickel atom is covalently bonded to four sulphur atoms and since each metal atom is situated on a site of symmetry $2 / \mathrm{m}$, all five atoms are required to be exactly coplanar. Since the angle subtended at the nickel atom by sulphur atoms of the same ligand is $97 \cdot 20(4)^{\circ}$, which is not too different from 90°, the nickel stereochemistry is conveniently described as distorted square planar.

The $\mathrm{Ni}-\mathrm{S}$ bond length of $2 \cdot 156(1) \AA$ is within the range of previously reported distances $(2 \cdot 15-2 \cdot 16 \AA)$ for square-planar nickel(II) complexes containing nickel to sulphur bonds. ${ }^{13}$ However, it is considerably shorter than the $\mathrm{Ni}-\mathrm{S}$ distances found for octahedral nickel(II) complexes which fall in the range $2 \cdot 4-2 \cdot 6 \AA ;{ }^{14}$ this effect also appears to occur in nickel(II) complexes involving first-row donor atoms.

In the cobalt complex, the metal atom has an environment identical to that of the nickel complex. Square-

[^1]planar co-ordination is unusual for $\mathrm{Co}^{\mathrm{II}}$, only three examples having been substantiated: bis(tetra-n-butylammonium) bis(maleonitriledithiolato)cobaltate(II), ${ }^{15}$ trans-dimesitylbis(diethylphenylphosphine)cobalt(II), ${ }^{16}$ and cobalt(II) phthalocyanine. ${ }^{17}$ The preferred geometries of cobalt(II) are tetrahedral and octahedral: polymeric species are often formed giving rise to the higher co-ordination number. However, a few lowspin bis complexes are known, these too, are presumably square planar. ${ }^{18}$

The cobalt-sulphur distance $[2 \cdot 166(3) \AA$] is considerably less than the value ($c a .2 \cdot 3 \AA$) found for it in other stereochemistires. ${ }^{19}$ However, this distance is in good agreement with the only other Co^{-}-S distance $(2 \cdot 16 \AA)$, so far reported for a square-planar complex. ${ }^{15}$ This short distance may be due to an increased amount of metal-sulphur π-bonding, favoured for the planar case; the electrostatic theory, based on d orbital population

Figure 2 Projection of the crystal structure of $\mathrm{Ni}(\text { sacsac })_{2}$ on the (100) plane. The dotted lines on the molecule at ($0,0,0$) show the 'stepped' structure
for different metal geometries, ${ }^{14}$ and used to explain the short nickel-oxygen distance in bis(dipivaloylmethanido)nickel(II), may also be relevant here. ${ }^{20}$
${ }^{17}$ R. P. Linstead and J. M. Robertson, J. Chem. Soc., 1936, 1736.
${ }^{18} \mathrm{~F}$. A. Cotton and G. Wilkinson, 'Advanced Inorganic Chemistry: A Comprehensive Treatise,' 2nd edn., Interscience, New York, 1966, pp. 866, 873.
${ }^{19}$ F. A. Cotton and D. L. Weaver, J. Amer. Chem. Soc., 1965, 87, 4189; S. Bruckner, M. Calligaris, G. Nardin, and L. Randaccio, Chem. Comm., 1969, 474.
${ }_{20}$ F. A. Cotton and J. J. Wise, Inorg. Chem., 1966, 5, 1200.

The Ligand.-All attempts to isolate the free ligand dithioacetylacetone have been unsuccessful and all its metal derivatives have been prepared in situ. The structure determinations of $\mathrm{Ni}(\text { sacsac })_{2}$ and $\mathrm{Co}(\text { sacsac })_{2}$ confirm the existence of the ligand with the structure predicted.

The crystal symmetry requires that the ligand has twofold symmetry, and hence that certain bond lengths and angles are equivalent. The $C-$ S bond lengths $[1 \cdot 685(3) \AA]$, are comparable to those observed for other compounds where extensive delocalization has been predicted. The $\mathrm{C}(1)-\mathrm{C}(2)$ distance $[1 \cdot 381(4) \AA]$ is almost identical to the value expected for an aromatic system, and the $\mathrm{C}(1)-\mathrm{C}(3)$ distance $[1 \cdot 509(5) \AA]$ is consistent with the usual values obtained for a single bond between $s p^{2}$ and $s p^{3}$ hybridized carbon atoms. ${ }^{21}$

The ligand moiety is perfectly planar, so that the condition for effective overlap of p orbitals and hence delocalization is satisfied, although the metal atom is not in this plane.

Two further features of the structure are: first, most of the internal bond angles in the chelate ring are larger than would be predicted by use of a simple hybridization scheme for each atom. This results in the external angles $\mathrm{S}-\mathrm{C}(1)-\mathrm{C}(3)$ and $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3)$ being depressed from their expected values, with the ligand ' bite ' being increased to the quite large value of $3 \cdot 235(2) \AA$. Secondly, this opening of the intraligand $\mathrm{S}-\mathrm{Co}-\mathrm{S}$ angle causes the interligand $S \cdots S$ distance to be decreased to $2 \cdot 852(2) \AA$, which is significantly less than twice the van
der Waals radius given for sulphur $(2 \times 1.76=3.52 \AA),{ }^{12}$ which suggests that there is some interaction between these two atoms.

A possible explanation for the deviation of the bond angles from their expected values can be made in terms of simple geometrical considerations. For any pianar six-membered ring structure the sum of the internal bond angles must total 720°. For a six-membered chelate ring, where the preferred valence angle of the metal atom is 90°, as in $\mathrm{Co}(\mathrm{sacsac})_{2}$, the sum of the valency angles will be only 690°. Therefore, in order to maintain planarity some of the bond angles within the ring must adopt values greater than those normally associated with them. This effect is enhanced in $\mathrm{Co}(\mathrm{sacsac})_{2}$ because of the much longer metal-sulphur (relative to carbon-carbon and carbon-sulphur) distances. This is in agreement with values obtained for all of internal angles of the chelate ring of $\mathrm{Ni}(\mathrm{sacsac})_{2}$, except for $\mathrm{Ni}-\mathrm{S}-\mathrm{C}(1)$, the angular strain being relieved to some extent by the slight folding along the $S \cdots S(1)$ line. One possible reason for the exception is that the lone pairs on the sulphur atom exert a stronger stereochemical influence than do the bonding pairs of electrons attached to the carbon and metal atoms. ${ }^{22}$

We thank the Australian Research Grants Committee for financial support.
[3/1327 Received, 22nd June, 1973]

[^2]
[^0]: * See Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issue.
 \dagger Except for the details of the cobalt environment in $\mathrm{Co}\left(\operatorname{sacsac}_{2}\right.$ the subsequent discussion will be restricted to the dimensions of the more accurately determined nickel complex.

[^1]: ${ }^{13}$ I. D. Brown, C. P. Weiss, and K. K. Wu, ' Bond Index to the Determinations of Inorganic Crystal Structures,' McMasters University, Hamilton, Ontario, 1969, 1970, and 1971; R. Beckett, Ph.D. Thesis, University of Melbourne, 1972, p. 60.

 14 A. Lopex-Casto and M. R. Truter, J. Chem. Soc., 1963, 1309.
 15 J. D. Forrester, A. Salkin, and H. Templeton, Inorg. Chem., 1964, 3, 1500.
 ${ }_{16}$ P. G. Owston and J. M. Rowe, J. Chem. Soc., 1963, 3411.

[^2]: ${ }^{21}$ Chem. Soc. Special Publ., No. 11, 1958 and No. 18, 1965.
 ${ }_{22}$ R. J. Gillespie and R. S. Nyholm, Quart. Rev., 1957, 11, 339.

