Crystal Structure of trans-Carbonyl(p-chlorophenyl)bis(triethylphosphine)platinum(I) Hexafluorophosphate \dagger

By John S. Field and Peter J. Wheatley,* Department of Physical Chemistry, Lensfield Road, Cambridge CB2 1EP

Abstract

Crystals of the title compound are orthorhombic with $a=12 \cdot 453(15), b=15 \cdot 282(17), c=14 \cdot 360(16) \AA, Z=4$, space group Pnam. 1872 Visually estimated intensities were used and the structure determined by Patterson and Fourier methods and refined by full-matrix least-squares to $R 14 \cdot 24 \%$. The co-ordination round the platinum is square planar: platinum, the carbonyl group, and the p-chlorophenyl group lie in a crystallographic mirror plane. The trans-influence of the σ-bonded organic ligand on the $\mathrm{Pt}-\mathrm{C}(\mathrm{CO})$ bond length (1.97 A) is discussed.

The trans-influence in square-planar $\mathrm{Pt}^{\mathrm{II}}$ complexes has been the subject of several experimental and theoretical studies. ${ }^{1}$ In particular, use has been made of ${ }^{195} \mathrm{Pt}^{-1} \mathrm{H}$ and ${ }^{195} \mathrm{Pt}{ }^{-13} \mathrm{C}$ n.m.r. coupling constants to investigate the trans-influences of various ligands. ${ }^{2-4}$ Somewhat surprisingly only two structure determinations of platinum(II) carbonyls have been reported: trans $-\mathrm{Pt}(\mathrm{MeO}-$ $\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NO}\right)(\mathrm{CO}) \mathrm{Cl}_{2}{ }^{5}$ and trans- $\left.\left[\mathrm{Pt}(\mathrm{CO}) \mathrm{Cl}\left(\mathrm{PEt}_{3}\right)_{2}\right]\left[\mathrm{SiF}_{5}\right]\right]^{6}$ Additional information concerning the structural details of a $\mathrm{Pt}^{\mathrm{II}}$ square-planar carbonyl would therefore be of some value in complementing conclusions drawn from n.m.r. and other studies of the trans-influence, and we have accordingly determined the crystal structure of $\left[\mathrm{Pt}(\mathrm{CO})\left(p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$.

experimental

Crystal Data. $-\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{ClF}_{6} \mathrm{OP}_{3} \mathrm{Pt}, \quad M=\mathbf{7 1 5} \cdot 9$, Orthorhombic, $a=12 \cdot 453(15), b=15 \cdot 282(17), c=14 \cdot 360(16) \AA$, $U=2733.2 \AA^{3}, D_{\mathrm{m}}=1.72$ (by flotation $\mathrm{CCl}_{4} / \mathrm{EtI}$), $Z=4$, $D_{\mathbf{c}}=1.73 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=1400$. Space group $P_{n a 2_{1}}$ or Pnam (from absences). $\mathrm{Cu}-K_{\alpha}$ radiation, $\lambda=1-5418 \AA$, $\mu\left(\mathrm{Cu}-K_{\alpha}\right)=127.8 \mathrm{~cm}^{-1}$.

White air-stable crystals were prepared ${ }^{7}$ and grew as thin plates with the form $\{010\}$ dominant. Cell dimensions were obtained from oscillation photographs. Weissenberg photographs showed few well-defined and intense reflexions at high values of θ, suggesting disorder and/or high thermal factors. Intensities were collected from equi-inclination Weissenberg photographs of the $0-10 k l$ and $h k 0-11$ layers with Ni -filtered $\mathrm{Cu}-K_{\alpha}$ radiation and the multiple-film technique. The crystals decompose in the X-ray beam, and four crystals were used to collect all the layers. Intensities were estinated visually. Some difficulty was encountered because allowance had to be made for the large variance in spot size, and for deterioration of the crystals, which caused the reflexions to become diffuse. Absorption corrections were made by a method which approximates the crystal to a pseudo-ellipsoid. Lorentz and polarisation corrections were applied, and the data placed on the same scale through common reflexions. ${ }^{8} 1872$ Independent reflexions were assigned non-zero intensities.

Structure Determination and Refinement.-No initial assumption was made about the space group. The x and

[^0]y co-ordinates of the Pt atom were determined from a Patterson synthesis; the z co-ordinate was assigned a value of $\frac{1}{4}$. Successive Fourier syntheses yielded positions for the phosphorus atoms, the p-chlorophenyl group, the carbonyl group, and two fluorine atoms: all but the phosphorus atoms bonded to Pt had z co-ordinates of $\frac{1}{4}$. The platinum, chlorine, and phosphorus atoms were assigned anisotropic thermal factors and the remaining atoms individual isotropic thermal factors. Four cycles of refinement in space group Pnam reduced R to $\mathbf{1 6} \cdot 27 \%$. A difference synthesis phased on the refined positions for the above atoms showed prominent peaks in likely positions for the carbon atoms of the ethyl groups. This synthesis would show, in Pnam or $P n a 2_{1}$, peaks which reflected across the mirror plane (or pseudo-mirror plane) at $z=\frac{1}{4}$. Thus a careful search was made for alternative positions of the carbon atoms of the ethyl groups: none was located. The region of electron density around P (anion) showed four very diffuse peaks which could be assigned to the remaining four fluorine atoms. The shape of the peaks suggested rotational disorder around the $\mathrm{F}(1)-\mathrm{P}(2)-\mathrm{F}(2)$ axis. The ethyl-group carbon atoms were assigned individual isotropic thermal factors, and a secondary extinction coefficient introduced as a refineable parameter. The six fluorine atoms were assigned an overall temperature factor and subjected to the following constraints: the $\mathrm{P}-\mathrm{F}$ distances were made equal and the cis- $\mathrm{F}-\mathrm{F}$ distance was set equal to $\sqrt{ } 2$ times the $P-F$ distance. After four cycles of full-matrix least-squares refinement in Pnam, all variable parameters had converged, except U for $\mathrm{C}(31)$. A re-examination of the earlier difference synthesis confirmed the position of $\mathrm{C}(31)$, so U was fixed at $0 \cdot 12 \AA^{2}$, and the refinement completed. R Converged to $14 \cdot 24 \%$. Complex neutral scattering factors ${ }^{9}$ were used, and the weighting scheme was $w=\left(a+\left|F_{0}\right|+b\left|F_{0}\right|^{2}\right)^{-1}$ with a and b set to $2 F_{\text {min }}$ and $2 / F_{\text {max }}$ after each cycle. A final difference synthesis showed no features $> \pm 1.5 \mathrm{e}^{-3}$.

The high temperature factors for ethyl groups 2 and 3 ($U 0 \cdot 16 \AA^{2}$) suggest that either these atoms are disordered, or that they do not reflect across the mirror plane. In the latter case the correct space group would be Pna2. However, difference syntheses gave no indication of alternative positions for the ethyl groups, and examination of the temperature factors of the phenyl carbon atoms does not suggest that the phenyl group is twisted out of the mirror plane. Despite this, several attempts were made to break
${ }^{5}$ M. Orchin and P. J. Schmidt, Co-ordination Chem. Rev., 1968, 3, 345.
${ }^{6}$ H. C. Clark, P. W. R. Corfield, K. R. Dixon, and J. A. Ibers, J. Amer. Chem. Soc., 1967, 89, 3360 .
${ }_{7}$ W. J. Cherwinski and H. C. Clark, Inorg. Chem., 1971, 10, 2263.
${ }_{8}^{8}$ A. D. Rae and A. B. Blake, Acta Cryst., 1966, $20,586$.
${ }^{9}$ D. T. Cromer, Acta Cryst., 1965, 18, 17; D. T. Cromer and J. T. Waber, ibid., p. 104.
the mirror symmetry and refine the structure in $P n a 2_{1}$, but none was successful. In conclusion, the space group cannot be unambiguously assigned, but any departure from Pnam must be slight, and the course of the refinement in Pnam indicates that the bonding parameters should be reliable within the standard deviations quoted.

RESULTS AND DISCUSSION

Final co-ordinates and temperature factors are listed in Tables 1 and 2. The abnormally high overall temperature factor for the fluorine atoms ($U 0 \cdot 182 \AA^{2}$) confirms the disorder of the anion. No correction has been applied to the lengths and angles for thermal motion. A table of observed and calculated structure factors is available in Supplementary Publication No. SUP 20906 (12 pp., 1 microfiche).*

Table 1
Final fractional co-ordinates ($\times 10^{4}$)

Atom	x / a	y / b	z / c
Pt	2664(2)	836(1)	2500
Cl	6180(20)	-2354(14)	2500
$\mathrm{P}(1)$	2686(11)	741 (8)	4095(9)
$\mathrm{P}(2)$	3385(17)	4009(11)	2500
$\mathrm{F}(1)$	3531 (39)	3046 (33)	2500
$\mathrm{F}(2)$	3239(38)	4972(34)	2500
$\mathrm{F}(3)$	4221 (58)	4093(49)	3230(59)
$\mathrm{F}(4)$	2549(61)	393(52)	3230 (60)
O(0)	1034(37)	2299(29)	2500
C(0)	1667(46)	1833(39)	2500
C(1)	3756(36)	-176(29)	2500
C (2)	3443(43)	-1058(32)	2500
C(3)	4182(42)	- 1715(34)	2500
C(4)	5252(45)	- 1526(36)	2500
C(5)	5690 (40)	-692(30)	2500
C(6)	4912(41)	--27(35)	2500
C(11)	1732(38)	1623(32)	4644(37)
C(12)	1755(46)	1405(38)	5683(41)
C(21)	4081 (67)	961(51)	4866 (65)
C(22)	4522(65)	1889(5)	4416(62)
C(31)	2195(51)	-414(49)	4342(53)
C (32)	1029(68)	-507(54)	3706 (66)

Table 2
(a) Anisotropic vibrational amplitudes $\left(\AA^{2} \times 10^{3}\right)$ in the form $\exp -2 \pi^{2}\left(h^{2} a^{* 2} U_{1}+\ldots+2 h k a^{*} b^{*} U(A \times 1)\right.$

Atom	U_{11}	U_{29}	U_{33}	U_{12}
Pt	51(1)	59(1)	31(1)	2(1)
Cl	143(18)	96(13)	123(16)	-51(13)
$\mathrm{P}(2)$	126(16)	95(13)	42 (8)	10(11)
$\mathrm{P}(1)$	103(9)	83(7)	46(6)	-9(6)

(b) Isotropic vibrational amplitudes

Atom	U	Atom	U	Atom	U
O	$86(12)$	$\mathrm{C}(5)$	$52(11)$	$\mathrm{C}(21)$	$160(29)$
$\mathrm{C}(1)$	$47(10)$	$\mathrm{C}(6)$	$57(12)$	$\mathrm{C}(22)$	$161(29)$
$\mathrm{C}(3)$	$60(12)$	$\mathrm{C}(0)$	$66(13)$	$\mathrm{C}(31)$	120
$\mathrm{C}(4)$	$64(13)$	$\mathrm{C}(11)$	$87(13)$	$\mathrm{C}(32)$	$164(30)$
$\mathrm{C}(5)$	$52(11)$	$\mathrm{C}(12)$	$105(16)$	$\mathrm{F}(1)-\mathrm{F}(4)$	$182(11)$

The crystal structure of $\left[\mathrm{Pt}(\mathrm{CO})\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ consists of monomeric ions, with a closest contact between two platinum atoms of $8.04 \AA$ and between a platinum and a fluorine atom of $3.55 \AA$. The platinum, p-chlorophenyl, and carbonyl atoms lie in a crystallographic mirror plane with the p-chlorophenyl and carbonyl groups trans to each other. The phosphorus atoms

[^1]bond to platinum above and below the mirror plane with $\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}(1)^{\prime} 186^{\circ}$. The $\mathrm{P}-\mathrm{Pt}-\mathrm{C}(0)$ angle is 93° and this increase from the ideal 90° may be attributed to repulsion between the electrons in the $\mathrm{Pt}-\mathrm{C}(0)$ and $\mathrm{Pt}-\mathrm{P}(1)$ bonds. ${ }^{10}$ Greater electron density is associated with the $\mathrm{Pt}-\mathrm{C}(0)$ rather than the $\mathrm{Pt}-\mathrm{C}(1)$ bond because

Figure 1 A view of the cation, showing the atom labelling system

Figure 2 A projection of the structure down c
of $d_{\pi}-p_{\pi}$ bonding between the platinum atom and the carbonyl ligand. Figure 1 gives a view of the cation showing the labelling of the atoms, and Figure 2 shows a projection of the structure down c. Bond lengths and angles are listed in Table 3 and significant contacts in Table 4.
${ }^{10}$ R. J. Gillespie and R. S. Nyholm, Progr. Stereochem., 1958, 2, 261.

Average $\mathrm{Pt}-\mathrm{P}$ distances (\AA) in several square-planar $\mathrm{Pt}^{\mathrm{II}}$ complexes are: $2 \cdot 247$ cis $-\mathrm{PtCl}_{2}\left(\mathrm{PMe}_{3}\right)_{2},{ }^{11}{ }_{2} \cdot 268$ trans $-\mathrm{Pt}(\mathrm{H}) \mathrm{Cl}\left(\mathrm{PPh}_{2} \mathrm{Et}\right)_{2},{ }^{12} \quad 2 \cdot 26$ trans $-\mathrm{Pt}(\mathrm{H}) \mathrm{Br}^{2}\left(\mathrm{PEt}_{3}\right)_{2}{ }^{13}$ $2 \cdot 296 \quad(+)$-trans $-\left[\mathrm{PtCl}\left\{\mathrm{SiMe}\left(1-\mathrm{C}_{10} \mathrm{H}_{7}\right) \mathrm{Ph}\right\}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]{ }^{14}$ $2 \cdot 300$ trans $-\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)_{2},{ }^{15} \quad 2 \cdot 315$ trans $-\mathrm{PtBr}_{2}\left(\mathrm{PEt}_{3}\right)_{2},{ }^{15}$ and 2.345 in trans $-\mathrm{Pt}(\mathrm{CO}) \mathrm{Cl}\left(\mathrm{PEt}_{3}\right)_{2}{ }^{+} .{ }^{6} \quad$ Several

Table 3
Bond lengths (\AA) and angles (${ }^{\circ}$)

(a) Distances			
$\mathrm{Pt}-\mathrm{P}(1)$	$2 \cdot 30(1)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 40(6)$
$\mathrm{Pt}-\mathrm{C}(0)$	$1 \cdot 97(5)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1 \cdot 36(7)$
$\mathrm{Pt}-\mathrm{C}(1)$	$2 \cdot 06(4)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1 \cdot 36(7)$
$\mathrm{C}(0)-\mathrm{O}$	$1 \cdot 06(6)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1 \cdot 39(7)$
$\mathrm{Cl}-\mathrm{C}(4)$	$1 \cdot 71(7)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1 \cdot 40(7)$
$\mathrm{P}(2)-\mathrm{F}$	$1 \cdot 49(6)$	$\mathrm{C}(6)-\mathrm{C}(1)$	$1 \cdot 46(7)$
$\mathrm{P}(1)-\mathrm{C}(11)$	$1 \cdot 96(5)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1 \cdot 53(7)$
$\mathrm{P}(1)-\mathrm{C}(21)$	$2 \cdot 08(9)$	$\mathrm{C}(21)-\mathrm{C}(22)$	$1 \cdot 65(10)$
$\mathrm{P}(1)-\mathrm{C}(31)$	$1 \cdot 90(7)$	$\mathrm{C}(31)-\mathrm{C}(32)$	$1 \cdot 72(10)$
(b) Angles			
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{C}(0)$	$93(1)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$121(5)$
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{C}(1)$	$87(1)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$120(5)$
$\mathrm{P}(1)-\mathrm{Pt}-\mathrm{P}\left(1^{\prime}\right)$	$186(1)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$125(5)$
$\mathrm{Pt}-\mathrm{C}(0)-\mathrm{O}$	$171(5)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$113(4)$
$\mathrm{Pt}-\mathrm{C}(1)-\mathrm{C}(2)$	$123(6)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$125(4)$
$\mathrm{Pt}-\mathrm{C}(1)-\mathrm{C}(6)$	$122(7)$	$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	$115(4)$
$\mathrm{Pt}-\mathrm{P}(1)-\mathrm{C}(11)$	$111(2)$	$\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	$103(3)$
$\mathrm{Pt}-\mathrm{P}(1)-\mathrm{C}(21)$	$121(2)$	$\mathrm{P}(1)-\mathrm{C}(21)-\mathrm{C}(22)$	$102(4)$
$\mathrm{Pt}-\mathrm{P}(1)-\mathrm{C}(31)$	$104(2)$	$\mathrm{P}(1)-\mathrm{C}(31)-\mathrm{C}(32)$	$105(4)$
$\mathrm{Cl}-\mathrm{C}(4)-\mathrm{C}(3)$	$120(5)$	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(21)$	$100(3)$
$\mathrm{Cl}-\mathrm{C}(4)-\mathrm{C}(5)$	$115(5)$	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(31)$	$112(3)$
		$\mathrm{C}(21)-\mathrm{P}(1)-\mathrm{C}(31)$	$109(3)$

workers ${ }^{16-18}$ have suggested that the $\mathrm{Pt}-\mathrm{P}$ bond length will depend on the π-acceptor properties of the other ligands; the presence of a ligand with such a property will reduce the amount of $d_{\pi}-d_{\pi}$ bonding possible between the platinum and phosphorus atoms, and hence the $\mathrm{Pt}-\mathrm{P}$ distance should be increased. Thus it is not surprising to find the longest $\mathrm{Pt}-\mathrm{P}$ bonds (2.34 and $2.35 \AA$) in $\mathrm{Pt}(\mathrm{CO}) \mathrm{Cl}\left(\mathrm{PEt}_{3}\right)_{2}{ }^{+}, \mathbf{6}$ since CO has strong π-acceptor properties. The $\mathrm{Pt}-\mathrm{P}$ distance in the present anion $(2 \cdot 30 \AA)$ falls within the range shown, possibly because there is a minimum π-bonding between the platinum atom and the carbonyl group in this species.

The trans-influence of a ligand is defined as its tendency to weaken the bond trans to it, and is generally accepted to operate through a σ-bonding mechanism. ${ }^{2,19}$ Strong σ-donor ligands with weak π-acceptor properties are expected to exert strong trans-bond-weakening effects. ${ }^{20}$ Such a ligand is the p-chlorophenyl group. The $\mathrm{Pt}-\mathrm{C}(0)$ bond length $(\mathbf{1} \cdot 97 \AA$) is considerably longer than that in $\mathrm{Pt}(\mathrm{CO}) \mathrm{Cl}\left(\mathrm{PEt}_{3}\right)_{2}{ }^{+}(\mathrm{I} \cdot 78 \AA) .{ }^{6}$ In the latter complex the $\mathrm{Pt}-\mathrm{Cl}$ bond has considerable ionic character,
${ }^{11}$ G. G. Messmer, E. L. Amma, and J. A. Ibers, Inorg. Chem., 1967, 6, 725.
${ }^{12}$ R. Eisenberg and J. A. Ibers, Inorg. Chem., 1965, 4, 773.
${ }^{13}$ P. G. Owston, J. M. Partridge, and J. M. Rowe, Acta Cryst., 1960, 13, 246.
${ }^{14}$ C. Eaborn, P. B. Hitchcock, D. J. Tune, and D. R. M. Walton, J. Organometallic Chem., 1973, 54, Cl.

15 G. G. Messmer and E. L. Amma, Inovg. Chem., 1966, 5, 1775.
${ }^{16}$ V. G. Albano, P. L. Bellon, and G. Ciani, J. Organometallic Chem., 1972, 38, 155.
${ }_{17}$ D. M. P. Mingos and J. A. Ibers, Inorg. Chem., 1971, 10, 1035.
${ }^{18}$ G. G. Messmer and G. J. Palenik, Inorg. Chem., 1969, 8, 7250.
and thus the chlorine ligand exerts little or no transinfluence. The $\mathrm{C}-\mathrm{O}$ distance $(1 \cdot 06 \AA)$ is shorter than that $(1 \cdot 14 \AA)$ in $\mathrm{Pt}(\mathrm{CO}) \mathrm{Cl}\left(\mathrm{PEt}_{3}\right)_{2}{ }^{+}$but not significantly so. Indeed, the high standard deviations usually associated with $\mathrm{C}-\mathrm{O}$ bond lengths limit their use as a guide to the relative trans-influences of various ligands. The $\mathrm{Pt}-\mathrm{C}-\mathrm{O}$ bond angle ($\mathbf{1 7 1 ^ { \circ }) \text { deviates from linearity, }}$ but again the high standard deviation (5°) precludes quantitative discussion.

The $\mathrm{Pt}-\mathrm{C}(\mathbf{1})$ bond length ($2.06 \AA$) compares favourably with the $\mathrm{Pt}-\mathrm{C} \sigma$-bonds in the square-planar $\mathrm{Pt}^{\mathrm{II}}$ species $\left[\mathrm{Pt}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2} \mathrm{Cl}\right]^{-} \quad 2 \cdot 106,{ }^{21} \quad[\mathrm{PtCl}(\mathrm{OMe})($ dicyclopentadiene) $]_{2} 2 \cdot 07,{ }^{22}$ and $\mathrm{PtCl}(\mathrm{OMe})\left(1,5-\mathrm{C}_{8} \mathrm{H}_{12}\right)$ (pyridine) $2 \cdot 04 \AA .{ }^{23}$

Table 4
Shortest non-bonded distances of various types (\AA)

Roman superscripts refer to the following transformations of the co-ordinates of the second atom:

$$
\begin{array}{ll}
\text { I } x, y, z & \text { III } x, y, \frac{1}{2}-z \\
\text { II }-x,-y, \frac{1}{2}+z & \text { IV } \frac{1}{2}+x, \frac{1}{2}-y, z
\end{array}
$$

The bonding parameters in the p-chlorophenyl group are as expected. ${ }^{24}$ Mean bond lengths and angles for the triethylphosphine ligands are: $\mathrm{P}-\mathrm{C} 1.98, \mathrm{C}-\mathrm{C} 1.63 \AA$; $\mathrm{P} t-\mathrm{P}-\mathrm{C} 112, \mathrm{C}-\mathrm{P}-\mathrm{C} 107$, and $\mathrm{P}-\mathrm{C}-\mathrm{C} 103^{\circ}$. All these parameters have high standard deviations and are not significantly different from corresponding values found in triethylphosphine co-ordinated to platinum. ${ }^{15}$ The
${ }^{19}$ S. S. Zumdahl and R. S. Drago, J. Amer. Chem. Soc., 1968, 90, 6669 .

20 R. McWeeny, R. Mason, and A. D. C. Towl, Discuss. Faraday Soc., 1969, 47, 20.
${ }_{21}$ R. Mason, G. B. Robertson, and P. J. Pauling, J. Chem. Soc. $(A), 1969,485$.
${ }_{22}$ W. A. Whitla, H. M. Powell, and L. M. Venanzi, Chem. Comm., 1966, 310.
${ }^{23}$ C. Panattoni, G. Bombieri, E. Forsellini, B. Crociani, and U. Belluco, Chem. Comm., 1969, 187.
${ }^{24}$ Chem. Soc. Special Publ., No. 11, 1958.
mean P-F bond length ($1 \cdot 49 \AA$) is not significantly different from values previously reported for the anion. ${ }^{25}$ Intramolecular contacts (Table 4) are all as expected for the nearly ideal square-planar geometry. Apart from the $\mathrm{Pt} \cdots \mathrm{F}\left(\mathbf{1}^{\mathrm{I}}\right)$ distance $(3.55 \AA$) all other intermolecular contacts are at least $0.3 \AA$ greater than the sum of the van der Waals radii. ${ }^{26}$ This rather loose packing is no
${ }^{25}$ B. R. Davis and J. A. Ibers, Inorg. Chem., 1970, 9, 2768; A. Bianchi and C. A. Ghilardi, J. Chem. Soc. (A), 1971, 1096.
${ }^{26}$ L. Pauling, ' Nature of the Chemical Bond,' 2nd edn., Cornell University Press, Ithaca, New York, 1948.
doubt associated with the high average thermal factor for all the atoms ($U_{\mathrm{av}} 0 \cdot 10 \AA^{2}$) and with the presence of disorder in the crystal.

We thank Drs. M. J. Mays and A. Garner for the crystals, Dr. G. M. Sheldrick for the use of his computer programmes, the University Computer Laboratory for their facilities, the Elsie Ballot Foundation for financial support (to J. S. F.), and the S.R.C. for the provision of equipment.
[3/2038 Received, 4th October, 1973]

[^0]: \dagger Reprints not available.
 ${ }^{1}$ T. G. Appleton, H. C. Clark, and L. E. Manzer, Co-ordination Chem. Rev., 1973, 10, 335.
 ${ }_{2}$ A. Pidcock, R.E. Richards, and L. M. Venanzi, J. Chem. Soc. (A), 1966, 1707.

 3 M. J. Church and M. J. Mays, J. Chem. Soc. (A), 1968, 3074; 1970, 1938.
 4. M. H. Chisholm, H. C. Clark, L. E. Manzer, and J. B. Stothers, Chem. Comm., 1971, 1627.

[^1]: * For details see Notice to Authors No. 7 in J.C.S. Dalton, 1972, Index issue.

