Metal Complexes of Sulphur Ligands. Part VI. ${ }^{1,2}$ Studies of Facile Optical Isomerism Reactions in Dimethylphosphinodithioato-complexes of Ruthenium(II)

By David J. Cole-Hamilton and T. Anthony Stephenson,* Department of Chemistry, University of Edinburgh Edinburgh EH9 3JJ

Rate constants and associated activation parameters for the optical isomerisation reactions of cis- $\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{~L}_{2}\right]$ $\left[\mathrm{L}=\mathrm{PPh}_{3}, \mathrm{PMePh}_{2}, \mathrm{PMe}_{2} \mathrm{Ph}, \mathrm{P}(\mathrm{OMe})_{3} . \mathrm{P}(\mathrm{OPh})_{3}\right]$, cis $-\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{P}\{\mathrm{OPh}\}_{3}\right)\right]$ and $\operatorname{cis}-\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2^{-}}\right.$ $\left(\mathrm{PPh}_{3}\right) \mathrm{CO}$] have been determined by line-shape analyses of their temperature-dependent ${ }^{1} \mathrm{H}$ n.m.r. spectra. Consideration of various bond-rupture and twist mechanisms for this inversion process strongly suggests that the only mechanism compatible with the overall experimental data is one involving a solvent-assisted cleavage of a ruthenium-sulphur bond trans to L .

For the analogous cis- $\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2} \mathrm{~L}_{2}\right] \quad\left[\mathrm{L}=\mathrm{PPh}_{3}\right.$. $\left.\mathrm{PM} \mathrm{e}_{2} \mathrm{Ph}, \mathrm{P}(\mathrm{OPh})_{3}\right]$ and cis $-\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)\right.$ $\left.\left(\mathrm{P}\{\mathrm{OPh}\}_{3}\right)\right]$ complexes, line shape studies suggest that their temperature dependent ${ }^{1} \mathrm{H}$ n.m.r. spectra arise from restricted rotation about the CN bonds and not a facile inversion process.

In Part V of this series, ${ }^{1}$ the preparation, reactions, and spectroscopic properties of the compounds cis$\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2} \mathrm{~L}_{2}\right]$ ($\mathrm{L}=$ tertiary phosphine or phosphite) were presented and discussed. In that paper, the variation with temperature of the ${ }^{1} \mathrm{H}$ n.m.r. spectra of these compounds and some of their derivatives was noted and ascribed to rapid interconversion of the two possible optical enantiomers, rather than a reversible cis-trans isomerism. A great deal of interest has been shown in recent years in the mechanism of interconversion of optical isomers of metal complexes and, in particular, of the nature of the first step in the reaction. However, most of the publications on this topic have been confined to studies of tris-chelate complexes ${ }^{3 a}$ and relatively few have discussed detailed mechanisms of optical isomerism in complexes of type cis-[M(chelate) $\left.{ }_{2} \mathrm{X}_{2}\right]^{3 b}$ Furthermore, with the exception of a very recent note on variable temperature ${ }^{1} \mathrm{H}$ n.m.r. studies of $\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNRR}^{1}\right)_{3}\right] \quad\left(\mathrm{R}=\mathrm{Me}, \mathrm{R}^{1}=\mathrm{PhCH}_{2}\right),{ }^{4}$ this paper represents the only other published work on the facile interconversion of optical isomers in ruthenium chemistry.

Two main first-step mechanisms involving either a twist of the molecule or rupture of a metal-ligand bond have been postulated. In this paper, presentation of the kinetic results is followed by a consideration of these various methods of optical inversion in an attempt to determine which mechanism is most energetically feasible for these compounds.

[^0]type $c i s\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{~L}_{2}\right]$ are illustrated in Figure 1 (Part V) for cis-[Ru($\left.\left.\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ and the proton resonance positions in the fast and slow exchange limits for other compounds of this type are given in Table 5 (Part V). These spectra all show two $-\mathrm{S}_{2} \mathrm{PMe}_{2}$ methy] doublets at low temperatures and a single doublet at higher temperatures. Thus, these n.m.r. changes, which are independent of complex concentration, are amenable to a detailed kinetic line-shape analysis and some of the results obtained from this are presented graphically (Figure 1) and the rates and calculated activation parameters at 298 K listed in Table 1.

For the mixed ligand complexes cis $\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{LL} L^{\prime}\right]$ ($\mathrm{L}=$ tertiary phosphine, $\mathrm{L}^{\prime}=$ tertiary phosphite) and cis-[$\left.\left.\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}\right)_{2}\right)_{2} \mathrm{~L}(\mathrm{CO})\right]$, four methyl doublets are expected although in some instances, two of the doublets are accidentally superimposed. For cis $\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)\right.$ ($\mathrm{P}\{\mathrm{OPh}\}_{3}$)] (where four methyl doublets are observed at low temperatures) inversion rates and activation parameters were determined by separate line shape analysis on the exchange of the inner methyl doublets g and f and the outer doublets e and h (see Figure 3, Part V , for stereochemical assignment of these methyl groups). The close similarity of the calculated values for these rates and activation parameters (see Table 1) indicates that the same kinetic process is probably responsible for the interchange of the chemical environments of these two sets of methyl protons. For cis- $\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{CO}\right]$, the activation parameters given in Table 1 were calculated by using rate data obtained from the exchange of both the inner and outer doublets respectively which again suggests that a common kinetic process is in operation.

From Table 1, several other points of importance emerge which must be considered when contemplating possible mechanisms of inversion. For example, Table 1 reveals

[^1]Table 1
Rates and activation parameters obtained by line shape analysis for the inversion process cis－$\Delta \Longrightarrow$ cis－Λ in some ruthen－ ium（II）dimethylphosphinodithioate complexes

Compound	Solvent	$\log _{10} R_{298}$ a	$E_{a}{ }^{\text {b }}$	$\Delta H^{*}{ }_{298}{ }^{\text {b }}$	$\Delta S^{*}{ }_{298}{ }^{\text {c }}$	$\Delta G^{*}{ }_{298}{ }^{\text {b }}$
cis $-\left[\mathrm{TRu}\left(\mathrm{S}_{2} \mathrm{PME}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$	CDCl_{3}	3.53 ± 0.02	$49 \cdot 6 \pm 1$	$47 \cdot 1 \pm 1$	-19 －上 3	$52 \cdot 8 \pm 0 \cdot 1$
$c i s-\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMCPh}_{2}\right)_{2}\right]$	CDCl_{3}	2.78 ± 0.02	$60 \cdot 5 \pm 2$	$58 \cdot 0 \pm 2$	3 ± 7	$57 \cdot 1 \pm 0 \cdot 2$
$c i s-\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{P}(\mathrm{OME}\}_{3}\right)_{2}\right]$	CDCl_{3}	$2 \cdot 23$ 上 0.34	67.8 ± 2	$65 \cdot 3 \pm 2$	17 ± 13	$60 \cdot 3 \pm 2$
$c i s-\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$	CDCl_{3}	1.61 ± 0.12	$62 \cdot 0$ 士 1	$59 \cdot 6=1$	-15 ± 4	$63 \cdot 8 \pm 0 \cdot 1$
	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$	1.01 ± 0.01	$69 \cdot 7$ 土 1	$67 \cdot 2 \pm 1$	0 － 4	$67 \cdot 2 \pm 0 \cdot 1$
	$\mathrm{C}_{6} \mathrm{H}_{6}$	0.04 ± 0.12	126 ± 4	$123 \cdot 5 \pm 4$	170 ± 11	$72 \cdot 7 \pm 0 \cdot 1$
	CDCl_{3}	0.41 ± 0.01	$73 \cdot 7 \pm 2$	$71 \cdot 2 \pm 2$	2 ± 8	$70 \cdot 6=0 \cdot 1$
cis－$\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{P}^{\mathrm{Me}}\right)_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{P}\{\mathrm{OPh}\}_{3}\right)\right]$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$1.69 \pm 0.05{ }^{\text {a }}$	$47 \cdot 3 \pm 4^{d}$	$44 \cdot 8 \pm 4^{d}$	-62 ± 15^{d}	${ }^{63 \cdot 3} \pm 0.3{ }^{\text {d }}$
cis－$\left[\mathrm{Pru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{CO} j f\right.$	$\mathrm{C}_{6} \mathrm{H}_{5}$	1.62 ± 0.03^{e} $-1.90 \pm 0.08{ }^{\text {g }}$	42.5 ± 30 $121.8+20$	$40 \cdot 0 \pm 3^{8}$ $119 \cdot 3 \pm 2^{\circ}$	-80 ± 9 119 ± 79	$63 \cdot 7 \pm 0 \cdot 2^{\circ}$ 83.8 ± 0.40
cis－ $\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMC}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{CO}_{1} \mathrm{~s}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	I	$1218 \pm$	1193 ± 2	119.	

${ }^{a}$ Units of $k, \mathrm{~s}^{-1}$ ．${ }^{b}$ Units， $\mathrm{kJ} \mathrm{mol}^{-1}$ 。 ${ }^{c}$ Units， $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ ．${ }^{a}$ Obtained from analysis of exchange of inner doublets g and f ．$\cdot \mathrm{Ob}-$ tained from analysis of exchange of outer doublets e and h ．${ }^{f}$ For $c i s-\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{\mathbf{2}}(\mathrm{CO})_{\mathbf{2}}\right]$ ，no scrambling of methyl groups at 330 K ． g Obtained from analysis of exchange of inner and outer doublets．
that the rate and the associated activation parameters are dependent on the solvent media in which the measure－ ments are made．For cis－$\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ ， measurements in $\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ ，and CDCl_{3} respectively （Figure 2）show an increasing inversion rate accompanied by a substantial decrease in ΔH^{*} and ΔS^{*} values，par－ ticularly on changing from $\mathrm{C}_{6} \mathrm{H}_{6}$ to $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$（or CDCl_{3} ）． In addition，measuring the inversion rate（by line－shape analysis）at 301 K for $\mathrm{CS}_{2}-\mathrm{CDCl}_{3}$ solutions of cis－［Ru－ $\left.\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMc}_{2} \mathrm{Ph}\right)_{2}\right]$ ，in which the CDCl_{3} component is increased from 0 to $c a .40 \%$ reveals a first order dependence

Figure 1 Arrhenius plots $\left(\log _{10} k\right.$ vs． $\left.1 / T\right)$ for various cis－ $\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{~L}_{2}\right]$ compounds in $\mathrm{CDCl}_{3}: \quad \square, \mathrm{L}=\mathrm{PPh}_{\mathrm{a}}$ ； $\mathrm{L}=\mathrm{PMePh}_{2} ; \triangle, \mathrm{L}=\mathrm{P}(\mathrm{OMe})_{3} ; \quad \mathrm{O}, \mathrm{L}=\mathrm{PMe}_{2} \mathrm{Ph} ; \quad, \mathrm{L}=$ $\mathrm{P}(\mathrm{OPh})_{3}$
on CDCl_{3} concentration（Figure 3）．In a given solvent $\left(\mathrm{CDCl}_{3}\right)$ ，the inversion rate is also dependent on the group L ， the relative order being $\mathrm{PPh}_{3}>\mathrm{PMePh}_{2}>\mathrm{P}(\mathrm{OMe})_{3}>$ $\mathrm{PMe}_{2} \mathrm{Ph}>\mathrm{P}(\mathrm{OPh})_{3} \gg \mathrm{CO}$ ．It is also of interest that the rate of oxidation of $c i s-\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{~L}_{2}\right]$ as a function of L and solvent composition（see Part V）parallels these in－ version rates in a semi－quantitative manner．

Finally，for the compounds cis－$\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ （ $\mathrm{R}=\mathrm{Me}, \mathrm{Ph}$ ）the two pseudo－triplets arising from the PMe 2 Ph methyl groups at low temperature in CDCl_{3} are separated by 13 and 8 Hz ，and these coalesce at ca． 278 and 273 K respectively．From this data，the free energies
of activation for this averaging process are estimated to be 57.4 and $58.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively．${ }^{5}$ Comparison with

Figure 2 Arrhenius plots $\left(\log _{10} k\right.$ vs． $\left.1 / T\right)$ for $c i s-\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}-\right.$ （ $\left.\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$ ］in various solvents： O ，in $\mathrm{CDCl}_{3} ; \triangle$ ，in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ ； \square ，in $\mathrm{C}_{6} \mathrm{H}_{6}$

Figure 3 Rate of inversion of cis－［Ru（ $\left.\left.\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ （ $0.015 \mathrm{~g} \mathrm{ml}^{-1}$ ）in $\mathrm{CS}_{2}-\mathrm{CDCl}_{3}$ solution at 301 K as a function of CDCl_{3} concentration
${ }^{5}$ For method see J．A．Pople，W．G．Schneider，and H．J． Bernstein，＇High Resolution Nuclear Magnetic Resonance，＇ McGraw－Hill，New York，1959，p． 223.
ΔG^{*} obtained from the ${ }^{-} \mathrm{S}_{2} \mathrm{PMe}_{2}$ signals of cis $-\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ by line shape analysis at $273 \mathrm{~K}\left(63 \cdot 4 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ indicates that these $\mathrm{PMe}_{2} \mathrm{Ph}$ methyl protons are not averaged by the inversion process, since the observed ΔG^{*} is lower than that of the inversion process. Therefore, the only reasonable explanation for these n.m.r. changes is to postulate rapid rotation at higher temperatures about the ruthenium-phosphorus bonds.
(ii) NN-Dimethyldithiocarbamato-complexes.-For cis$\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2} \mathrm{~L}_{2}\right] \quad\left[\mathrm{L}=\mathrm{PMe}_{2} \mathrm{Ph}, \mathrm{PPh}_{3}, \mathrm{P}(\mathrm{OPh})_{3}\right]$, the low temperature ${ }^{1} \mathrm{H}$ n.m.r. spectra consists of two ${ }^{-} \mathrm{S}_{2} \mathrm{CNMe}_{2}$ methyl singlets which coalesce at higher temperatures
signals are independent of each other and the best explanation of this that we can offer is that these n.m.r. changes are produced by fast rotation about the -CN bonds of the $-\mathrm{S}_{2} \mathrm{CNMe}_{2}$ groups syn to the PPh_{3} and $\mathrm{P}(\mathrm{OPh})_{3}$ groups respectively and not by a facile inversion process. In support of this conclusion, the two sets of activation parameters found for the $\mathrm{PPh}_{3}-\mathrm{P}(\mathrm{OPh})_{3}$ complex are reasonably similar to those found for the bis- PPh_{3} and bis- $\mathrm{P}(\mathrm{OPh})_{3}$ compounds respectively. The large difference in ΔS^{*} values for the -CN bond rotation process is tentatively attributed to substantial differences in the degree of solvation of the PPh_{3} and $\mathrm{P}(\mathrm{OPh})_{3}$ complexes, which might

Table 2
Rates and activation parameters obtained by line shape analysis for the interchange of methyl groups in some ruthenium(II) NN -dimethyldithiocarbamato-complexes

Solvent
CDCl_{3}
CDCl_{3}
CDCl_{3}
CDCl_{3}
$\log _{10} k_{298}{ }^{a}$
0.71 ± 0.01
0.22 ± 0.02
0.01 ± 0.02
$0.23 \pm 0.01{ }^{d}$
0.15 ± 0.05

$E_{a}{ }^{b}$	$\Delta H^{*}{ }_{28}{ }^{b}$
$94 \cdot 0 \pm 2$	$91 \cdot 5 \pm 2$
$105 \cdot 7 \pm 2$	$103 \cdot 2 \pm 2$
$79 \cdot 2 \pm 3$	$76 \cdot 7 \pm 3$
$109 \cdot 9 \pm 2{ }^{d}$	$107 \cdot 4 \pm 2$
$57 \cdot 8 \pm 3{ }^{e}$	$55 \cdot 3 \pm 3$

$\Delta S^{*}{ }_{298}{ }^{c}$	$\Delta G^{*}{ }_{298}{ }^{b}$
75 ± 7	$69 \cdot 0 \pm 0.02$
105 ± 6	$71 \cdot 7 \pm 0.2$
12 ± 9	$73 \cdot 0 \pm 0.07$
$120 \pm 5{ }^{d}$	$71.7 \pm 0.07{ }^{a}$
$-60 \pm 11 e$	$73 \cdot 2 \pm 0.7{ }^{d}$

${ }^{a}$ Units of $k, \mathrm{~s}^{-1}$. ${ }^{b}$ Units, $\mathrm{kJ} \mathrm{mol}^{-1}$. ${ }^{c}$ Units, $\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$. ${ }^{d}$ Obtained from exchange of high field pair of singlets. ${ }^{e}$ Obtained from exchange of low field pair of singlets.

Table 3
 Methyl group stereochemistries ${ }^{\text {b }}$

For cis- Δ isomer ${ }^{a}$ Established experimentally ${ }^{c}$ for cis $-\Delta \rightleftharpoons$ cis- Λ

Operation ${ }^{d}$ (on cis- Δ)
(a) $i-C_{3}(1)^{+}$ $i-C_{3}(1)^{-}$
(b) $i-\mathrm{C}_{3}(2)^{+}$ $i-\mathrm{C}_{3}(2)^{-}$
(c) $i-C_{3}(3)^{+}$ (d) $i-C_{3}^{5}(3)^{-}$
(d) $i-C_{3}(4)^{+}$ $i-C_{3}(4)^{-}$
Bond rupture
mechanism
(Figure 6)
cis- Λ
cis- Λ
$\stackrel{*}{*}$
cis- Λ
cis- Λ

Product
trans-isomer

syn (to L)	anti (to L)	syn (to L')	anti (to L')
e,h	\underline{g} g,	$\underset{f}{\mathrm{f}, \mathrm{f}}$	$\mathrm{e}, \mathrm{~h}$

e	$\stackrel{\mathrm{g}}{\mathrm{g}}$	$\stackrel{\mathrm{f}}{\mathrm{f}} \mathrm{f}$	h
f	h		

f
h g e
f

e	g
e	g

h
h
f
g
e
the three atoms comprising one face of these octahedral complexes are rotated through 120° about the imaginary three-fold axis ($i-C_{3}$) whilst keeping the opposite face fixed. In the complexes cis- $\left[\mathrm{Ru}\left(\mathrm{S}_{2}-\right.\right.$ $\left.\left.\mathrm{PMe}_{2}\right)_{2} \mathrm{LL}{ }^{\prime}\right]$, there are four such axes as illustrated in Figure 4 and diagrams of the complex as viewed along these axes are given in Figure 5. The positions of the methyl groups e, f, g, and h shown in these Figures are

Figure 4 Labelling of the four imaginary thrce-fold axes $\left(i-C_{3}\right)$ for the $c i s-\Delta-\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{LL}\right]$ complex: $i-C_{3}(1)$, axis through plane of atoms $S_{1}, L, S_{2} ; i-C_{3}(2)$, axis through plane of atoms $\mathrm{L}^{\prime}, \mathrm{L}, \mathrm{S}_{1} ; i-C_{3}(3)$, axis through plane of atoms $\mathrm{S}_{4}, \mathrm{~L}, \mathrm{~L}^{\prime} ; i-C_{3}(4)$, axis through plane of atoms $\mathrm{S}_{2}, \mathrm{~L}, \mathrm{~S}_{4}$
consistent with the detailed assignments made in Part V for $\mathrm{L}=\mathrm{PPh}_{3}, \mathrm{~L}^{\prime}=\mathrm{P}(\mathrm{OPh})_{3}$ and the starting configuration arbitrarily chosen is designated cis- Δ on the basis of rules suggested by the recent I.U.P.A.C. commission. ${ }^{7}$

The problem is now to consider the effect of a trigonal twist around each axis in turn (clockwise and anticlockwise) in order to determine if such a process gives the optical isomer and also interchanges only the chemical environments of the methyl groups e,h and g,f respectively. Examination of Figure 5a and Table 3 shows that rotation about the $i-C_{3}(1)$ axis in a clockwise direction gives the trans isomer whereas an anticlockwise twist gives the $c i s-\Lambda$ isomer. However, the $-\mathrm{S}_{2} \mathrm{PMe}_{2}$ methyl groups will finish in the same chemical environment as they started and hence this twisting motion predicts inversion without any scrambling of methyl resonances. Rotation about $i-C_{3}(2)$ or $i-C_{3}(3)$ in a clockwise direction is impossible because it leads to a configuration in which a $-\mathrm{S}_{2} \mathrm{PMe}_{2}$ group would have to span trans positions. Anticlockwise rotation about these axes gives the optical isomer together with scrambling of all methyl groups. Hence, if this were the inversion mechanism, a single methyl resonance should be observed at elevated temperatures and careful experiments with cis- $\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)\right.$ $\left.\left(\mathrm{P}\{\mathrm{OPh}\}_{3}\right)\right]$ and $c i s-\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{CO}\right]$ (see Part V) show that this is not the case. Finally, rotation about

[^2]

Figure 5 Bailar (trigonal) twists for a cis- $\Delta-\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{LL}^{\prime}\right]$ compound about the four $i-C_{3}$ axes in clockwise $(+)$ and anticlockwise (-) directions. For ease of interpretation, the direction of the $\mathrm{P}-\mathrm{Me}$ bonds are drawn as the same as those of the $\mathrm{Ru}-\mathrm{L}$ (or L^{\prime}) bonds to which they are syn or anti
$i-C_{3}(4)$ is sterically impossible in an anticlockwise direction but in a clockwise direction gives the cis- Λ isomer and only partial scrambling of methyl groups. Thus, groups e,f and g,h respectively are interchanged (Figure 5d and Table 3). However, examination of Figure 4 shows that for $L=L^{\prime}$, groups e and f and groups g and h are chemically equivalent and, therefore, if this were the inversion mechanism, the ${ }^{1} \mathrm{H}$ n.m.r. spectra of the compounds cis- $\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{~L}_{2}\right]$ should be temperature invariant. This is not the case and therefore a mechanism involving a trigonal twist about this axis is also rejected.
(ii) Ray-Dutt (or rhombic) twist. ${ }^{8}$ For cis- $\left[\mathrm{Ru}\left(\mathrm{S}_{2}-\right.\right.$ $\left.\mathrm{PMe}_{2}\right)_{2} \mathrm{~L}_{2}$], this inversion mechanism may be visualised as follows. The two L groups remain fixed while the two chelate rings rotate in their planes in different directions through an angle of 90° about axes which are perpendicular to their respective planes and pass through the ruthenium ion. For cis- $\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{~L}_{2}\right]$ this does not produce any scrambling of the methyl resonances and so this twisting mechanism can also be discarded.

Final rejection of a trigonal or rhombic twist mechanism comprising rotation about one or several of these axes is based on a consideration of steric effects on the expected trigonal prismatic transition state. If a twisting mechanism is important, the activation energy for the process should be dependent on the size of L, being higher the bulkier the ligand. ${ }^{9}$ However, the results given in Table 1 reveal no apparent correlation with the size of L e.g. the bis- $\mathrm{PPh}_{\mathbf{3}}$ complex has a smaller activation energy than the bis- $\mathrm{PMe}_{2} \mathrm{Ph}$ complex which is smaller than the bis- $\mathrm{P}(\mathrm{OPh})_{\mathbf{3}}$ compound. The large dependence of rate and associated activation parameters on solvent composition is also not compatible with a twist mechanism.

Therefore, it is necessary next to consider inversion mechanisms arising from initial cleavage of a rutheniumligand bond.
(iii) Cleavage of a ruthenium-phosphorus bond. Since the activation energies for the optical isomerism of the compounds cis- $\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{~L}_{2}\right]$ depend on the ligand L , it seems reasonable, at first sight, to postulate that the inversion mechanism might involve dissociation of a phosphorus ligand to give a square pyramidal or trigonal bipyramidal intermediate followed by recombination as the optical isomer. However, if this were the mechanism, then a ${ }^{1} \mathrm{H}$ n.m.r. spectrum of a mixture of two complexes containing different L groups should show scrambling of all the methyl resonances of the $-\mathrm{S}_{2} \mathrm{PMe}_{2}$ groups. This is not the case for a mixture of cis-[$\left.\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \quad$ and $\quad c i s-\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ in CDCl_{3} which shows only the unchanged

[^3]${ }^{1} \mathrm{H}$ n.m.r. spectral patterns of the two components. Furthermore, the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of a mixture of cis $-\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ and free $\mathrm{PMe}_{2} \mathrm{Ph}$ in CDCl_{3} at $c a .330 \mathrm{~K}$ indicates no exchange of free and bound phosphine. Thus, cleavage of a rutheniumphosphorus bond may be eliminated as a possible first step in the inversion process.
(iv) Complete dissociation of a dithioacid group. If this was an important process, then a mixture of the two compounds cis- $\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2} \mathrm{~L}_{2}\right]$ and cis- $\left[\mathrm{Ru}\left(\mathrm{S}_{2}{ }^{-}\right.\right.$ $\left.\mathrm{PR}_{2}{ }^{\prime}\right)_{2} \mathrm{~L}_{2}$] should give some of the mixed species cis$\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)\left(\mathrm{S}_{2} \mathrm{PR}_{2}{ }^{\prime}\right) \mathrm{L}_{2}\right]$ under exchange conditions. This does not occur and therefore, the racemisation mechanism cannot involve complete dissociation of a dithioacid ligand.
(v) Cleavage of a ruthenium-sulphur bond. In the symmetrical complexes cis- $\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PR}_{2}\right)_{2} \mathrm{~L}_{2}\right]$, there are two types of ruthenium-sulphur bond; those which are trans to another sulphur atom and those trans to a phosphorus ligand. If optical isomerism occurred via cleavage of a ruthenium-sulphur bond trans to another sulphur atom, then the activation energy for the reaction would be relatively insensitive to changes in L. Thus, if this mechanism is correct, it must involve cleavage of a ruthenium-sulphur bond which is trans to a phosphorus ligand. This statement can be rationalised on the basis that the larger trans influence * of the phosphorus ligands, compared to the ${ }^{-} \mathrm{S}_{2} \mathrm{PR}_{2}$ groups, should preferentially weaken the ruthenium-sulphur bonds trans to them. This suggestion is supported by the bond lengths found in cis- $\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PEt}_{2}\right)_{2}\left(\mathrm{PMe}_{2}-\right.\right.$ $\left.\mathrm{Ph})_{2}\right]$ where the $\mathrm{Ru}-\mathrm{S}$ bonds trans to the $\mathrm{PMe}_{2} \mathrm{Ph}$ groups are ca. $0 \cdot 2 \AA$ longer than those trans to another sulphur atom. ${ }^{10}$

A possible mechanism of inversion of the compounds cis- $\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{LL}^{\prime}\right]$ which involves two rutheniumsulphur bond cleavage sub-steps is outlined in Figure 6. It now remains to examine this mechanism to see if it is consistent with the experimental results presented earlier.

First, it is important to note that this overall mechanism not only leads to optical isomerism but also interchanges the chemical environments of methyl groups e, h and f, g respectively. Also, the mechanism as written is symmetrical (since cis- $\Delta \rightleftharpoons$ cis- Λ) and it obeys the Principle of Microscopic Reversibility. Furthermore, the solvent-assisted bond rupture step (1) is consistent with the observed first order dependence on CDCl_{3} concentration in $\mathrm{CS}_{2}-\mathrm{CDCl}_{3}$ solutions. \dagger On changing to a less solvating medium such as benzene, step (l) should be slower and the overall inversion rate should decrease as is observed experimentally (Table 1). Although there is no obvious correlation of rate
${ }^{8}$ P. Rây and N. K. Dutt, J. Indian Chem. Soc., 1943, 20, 81.
${ }^{9}$ E. L. Muetterties, J. Amer. Chem. Soc., 1968, 90, 5097.
${ }_{10}$ J. D. Owen and (in part) D. J. Cole-Hamilton, Part VII to be published.
${ }_{11}$ See A. Pidcock, R. E. Richards, and L. M. Venanzi, J. Chem. Soc. (A), 1966, 1707.
${ }^{12}$ For method see A. A. Frost and R. G. Pearson, ' Kinetics and Mechanism,' 2nd edn., Wiley, 1961, ch. 8.
with the size of L, there is a good correlation between rate and the trans influence of L as established independently by ${ }^{1} \mathrm{H}$ n.m.r. and i.r. studies ${ }^{13}$ viz. $\mathrm{PPh}_{3}>$ $\mathrm{PMePh}_{2}>\mathrm{PMe}_{2} \mathrm{Ph}>\mathrm{P}(\mathrm{OMe})_{3} \simeq \mathrm{P}(\mathrm{OPh})_{3}>\mathrm{CO}$.
This provides a reasonable explanation of the observed rate dependence if either sub-step (l) and/or sub-step (2) are contributing to the overall rate. The anomalous position of $\mathrm{P}(\mathrm{OMe})_{3}$ compared with trans influence predictions could perhaps be explained by its small steric size having different effects in sub-steps (1) and (2) which we tentatively suggest below are associative and dissociative processes respectively.

Figure 6 Proposed solvent-assisted bond rupture mechanism for the optical isomerisation reaction cis- $\Delta-\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{LL}{ }^{\prime}\right]$ \Longrightarrow cis- $\Lambda-\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2} \mathrm{LL}{ }^{\prime}\right] \quad\left(\mathrm{Y}=\mathrm{CDCl}_{3}\right.$ or $\left.\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}\right)$. [For clearer presentation, after step (2), the molecule is rotated by 90° in an anticlockwise direction about the $\mathrm{L}-\mathrm{Ru}-\mathrm{Y}$ axis]
Therefore, the overall mechanism depicted in Figure 6 is able to account for many of the experimental observations. However, there still remains the question of the relative importance of sub-steps (1) and (2) in the inversion rates of these bis- $\mathrm{L}_{2},-\mathrm{LL}^{\prime}$, and -LCO complexes [it can be assumed that sub-step (3) is always rapid] and the nature of the activation parameters for these sub-steps. An explanation for the large change in activation parameters, which occurs on changing from CDCl_{3} (or $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$) to $\mathrm{C}_{6} \mathrm{H}_{6}$ is also required. Although with the information at present available, it is impossible to provide completely satisfactory (or unambiguous) answers, we nevertheless feel that some speculation on these matters is justified in this instance.

From Table 1, the activation parameters for cis$\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{CO}\right]$ in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ are $\Delta H^{*}, 119 \cdot 3$ $\mathrm{kJ} \mathrm{mol}{ }^{-1} ; \Delta S^{*}, 119 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. In terms of the pro${ }^{13}$ M. J. Church and M. J. Mays, J. Chem. Soc. (A), 1968, 3074; H. C. Clark and J. D. Ruddick, Inorg. Chem., 1970, 9, 1226.
posed mechanism, step (1) must involve cleavage of the $\mathrm{Ru}-\mathrm{S}$ bond trans to PPh_{3} (highest trans influence ligand) and step (2), that of the $\mathrm{Ru}-\mathrm{S}$ bond trans to CO. Furthermore, it is reasonable to expect the rate of step (1) to be comparable to that in $c i s-\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}{ }^{-}\right.$ $\left(\mathrm{PPh}_{3}\right)_{2}$]. This compound has overall activation parameters of $47 \cdot 1 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}\left(\Delta H^{*}\right)$ and $-19 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ $\left(\Delta S^{*}\right)$ in CDCl_{3}. However, since the overall rate constant is considerably higher for the bis- PPh_{3} compound, compared to the phosphine carbonyl complex, this can only mean that the observed rate and activation parameters for cis- $\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{CO}\right]$ correspond mainly to the rate and activation parameters of step (2). Thus, in this instance, step (2) is characterised by large positive ΔH^{*} and ΔS^{*} values. For ligands of higher trans influence than CO , it is reasonable to infer much lower ΔH^{*} values for step (2) but ΔS^{*} should remain fairly insensitive to the nature of L (or L^{\prime}). These inferred values for ΔH^{*} and ΔS^{*} would be consistent with a dissociative mechanism ${ }^{14}$ for step (2) in which bondbreaking of the $\mathrm{Ru}-\mathrm{S}$ bond trans to L^{\prime} is the ratedetermining step.

However, because the ΔS^{*} term for (2) is probably fairly insensitive to the nature of L, this suggests that the inversion rates for all the bis- L_{2} compounds in CDCl_{3} (or $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$) must have an appreciable contribution from sub-step (l) since they all have activation parameters in the range 47 to $71 \mathrm{~kJ} \mathrm{~mol}^{-1}\left(\Delta H^{*}\right)$ and 17 to $-19 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\left(\Delta S^{*}\right)$. Thus, it seems reasonable to propose that in solvents such as CDCl_{3} and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CI}$, step (1) is characterised by relatively low ΔH^{*} values and negative ΔS^{*} values. These values are indicative of an associative process which is to be expected for a solvent-assisted bond rupture step.

For cis- $\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{P}\{\mathrm{OPh}\}_{3}\right)\right]$, the activation parameters are found to be $\Delta H^{*}, 44 \cdot 8 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta S^{*}$, $-62 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and again step (1) must involve cleavage of the $\mathrm{Ru}-\mathrm{S}$ bond trans to PPh_{3} and step (2) that of the $\mathrm{Ru}-\mathrm{S}$ bond trans to $\mathrm{P}(\mathrm{OPh})_{3}$. In this instance, the overall rates of inversion for the bis- PPh_{3} and bis$\mathrm{P}(\mathrm{OPh})_{3}$ compounds are more comparable than that estimated for the bis-CO compound (no exchange even at 330 K). Therefore, although step (2) is probably slower than (l), we propose that both steps contribute to the observed rate.

The overall rate decrease, accompanied by substantial increases in ΔH^{*} and ΔS^{*}, which is observed when cis- $\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ is examined in $\mathrm{C}_{6} \mathrm{H}_{6}$ rather than CDCl_{3} (or $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$) is explicable on the basis that in such a poor solvating medium, step (1) not only becomes considerably slower because it is no longer a solventassisted process but it also becomes dissociative in nature. However, the similarity of the high temperature n.m.r. spectrum of cis- $\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{PMe}_{2}\right)_{2}\left(\mathrm{PPh}_{3}\right)\right.$ $\left.\left(\mathrm{P}\{\mathrm{OPh}\}_{3}\right)\right]$ in $\mathrm{C}_{6} \mathrm{H}_{6}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ (two methyl doublets) is consistent with retention of the same overall inversion mechanism.
${ }^{14}$ A. Y. Girgis and R. C. Fay, J. Amer. Chem. Soc., 1970, 92, 7061.

Finally, the apparent inability of the corresponding cis- $\left[\mathrm{Ru}\left(\mathrm{S}_{2} \mathrm{CNMe}_{2}\right)_{2} \mathrm{~L}_{2}\right]$ compounds to undergo inversion, even at elevated temperatures, is consistent with the stronger nucleophilicity of $-\mathrm{S}_{2} \mathrm{CNR}_{2}$ compared to $-\mathrm{S}_{2} \mathrm{PR}_{2}{ }^{15}$ which will lead to prohibitively high activation energies for sub-steps (1) and (2).

EXPERIMENTAL

All the compounds used in the line shape studies were prepared as described earlier. ${ }^{1}$

Kinetic Line Shape Analysis.- ${ }^{1} \mathrm{H}$ N.m.r. spectra were measured on a Varian Associates HA 100 Spectrometer with variable temperature attachment. Accurate temperatures were determined using the separation of the two resonances of methanol (low temperature) and ethylene glycol (high temperature). Spectra were simulated using a computer programme based on that of Nakagawa. ${ }^{16}$ The exchange process was considered for the purpose of computation as consisting of n two site exchanges where n is the multiplicity of the resonance being monitored. The single line simulated spectra were then superimposed with suitable weighting for intensities and the results plotted out on the line printer. Thus, in this work, a doublet is considered as two two-site exchanges of intensity ratio $\mathbf{1 : 1}$. The experimental spectra were fitted to the com-
puted spectra either by finding the best fit between the ratio of maximum to minimum heights in the doublets (above and below coalescence) or the width of the signal at half height (around coalescence). Spin-spin relaxation times (T_{2}) were obtained for each compound by measurement of peak width at half height under slow exchange conditions. The same value of T_{2} was used for all line-shape calculations on a given compound because, for $\mathrm{L}=$ $\mathrm{PMe}_{2} \mathrm{Ph}$ and $\mathrm{P}(\mathrm{OMe})_{3}$, the widths at half height in the slow and fast exchange limits differed by less than 0.25 Hz .

Lifetimes obtained by these fitting procedures were then used to construct Arrhenius plots $\left(\log _{10} k v s .1 / T\right)$ in which straight lines were fitted by the least squares method. Activation parameters at 298 K , calculated from standard equations are shown in Tables 1 and 2 together with assessed error limits.

We thank Johnson-Matthey Ltd., for loans of ruthenium trichloride, the University of Edinburgh for an award (to D. J. C.-H.), Mr. J. Miller for obtaining the variable temperature ${ }^{1} \mathrm{H}$ n.m.r. spectra, and the Atlas Computer Laboratory for a copy of their Shape Function programme.
[3/1496 Received, 16th July, 1973]
${ }^{15}$ See D. F. Steele and T. A. Stephenson, J.C.S. Dalton, 1973,
2124 and references therein.
${ }_{16}$ T. Nakagawa, Bull. Chem. Soc. Japan, 1966, 39, 1006.

[^0]: RESULTS
 (i) Dimethylphosphinodithioato-complexes.-.Typical "variable temperature ${ }^{1} \mathrm{H}$ n.m.r. spectra for compounds of
 ${ }^{1}$ Part V, D. J. Cole-Hamilton and T. A. Stephenson, preceding paper.
 ${ }_{2}$ Preliminary communication: D. J. Cole-Hamilton, P. W. Armit, and T. A. Stephenson, Inorg. Nuclear Chem. Letters, 1972, 8, 917 .

[^1]: ${ }^{3}$ For detailed references see N. Serpone and D. G. Bickley in Progr. Inorg. Chem., 1972, 17 (Part II) (a) pp. 416-500, (b) 500542.
 ${ }^{4}$ L. H. Pignolet, D. J. Duffy, and L. Que, jun., J. Amer. Chem. Soc., 1973, 95, 295.

[^2]: ${ }^{7}$ For details see Inorg. Chem., 1970, 9, 1.

[^3]: * The trans influence of a ligand is defined as the extent to which that ligand weakens the bond trans to itself in the equilibrium state of a substrate. ${ }^{11}$
 \dagger This does not necessarily mean that step (1) is rate-determining since for consecutive reactions of the type shown in Figure 6, (assuming steady state conditions), it can be shown that the overall rate expression involves a first order dependence on CDCl_{3} concentration irrespective of the size of the relative rate constants of sub-steps (1) and (2). ${ }^{12}$

