Trifluoroacetate Complexes of Cobalt(II), Nickel(II), and Copper(II) with Pyridine-type ligands. Part II.¹ Preparation, Vibrational and Electronic Spectral Properties of Cobalt(II) and Nickel(II) Complexes

By (Mrs.) Christina A. Agambar, Patrick Anstey, and Keith G. Orrell,* Chemistry Department, The University, Stocker Road, Exeter EX4 4QD

Pyridine, β - and γ -picoline, and β - and γ -ethylpyridine complexes of cobalt(II) and nickel(II) trifluoroacetates have been prepared and fully characterised by spectroscopic methods. All the complexes in the solid state were octahedral and of stoicheiometry ML_xT₂ where L = pyridine-type ligand, T = CF₃CO₂, and x = 2 or 4, with the CF₃CO₂ group being either mono- or bi-dentate. Definitive distinction between these two modes of co-ordination was sought by vibrational and electronic spectroscopy.

WE have earlier reported 1 the preparation of some new trifluoroacetate complexes of copper(II) with pyridine-type ligands and have now extended the work to include paramagnetic complexes of cobalt(II)

¹ Part I, C. A. Agambar and K. G. Orrell, *J. Chem. Soc.* (A), 1969, 897.

and nickel(II). These transition metals were purposely chosen in order that the complexes might be amenable to high resolution n.m.r. studies.² The present paper

² Part III, P. Anstey and K. G. Orrell, following paper; Part IV, P. Anstey and K. G. Orrell, *J.C.S. Dalton*, 1974, accepted for publication. describes the preparations, thermal decompositions, and both the electronic and vibrational spectra of these complexes with particular interest being placed on the nature of the co-ordination of the trifluoroacetate ligands.³

EXPERIMENTAL

Preparations.-The general method of preparation was to mix a solution of either the hydrated metal trifluoroacetate in 2,2'-dimethoxypropane or the anhydrous metal trifluoroacetate in dry ether solution with the appropriate molar amount of freshly distilled heterocyclic ligand required for the formation of an ${\rm L}_4$ or ${\rm L}_2$ complex. The resulting mixture was very gently warmed. Excessive heating was avoided particularly when isolation of an L_4 complex was required. The complexes generally precipitated immediately but in a few cases prolonged cooling in ice-water was required. Recrystallisation was often found to be ineffective in improving the purity of the complexes. When increased purity was required the reaction was usually repeated under slightly different conditions, e.g. variation of temperature and/or relative amounts of starting materials. The analytical and magnetic susceptibility data are given in Table 1. The pyridine complexes and the tetrakis $\gamma\text{-picoline}$ complexes have been prepared previously 4,5 by similar methods. The magnetic data in Table 1 were obtained by Evans' method.6 No values are available for the pyridine complexes due to solubility difficulties.

TABLE 1

Analytical data Analytical data

	Re	equire	d	I	ound	the#		
Complex "	0%C	%N	%H	%C	%N	%H	μ _B	
$Co(py)_{4}T_{2}$	47.90	9.30	3.30	47.1	9.5	$3 \cdot 2$	d	
$Co(py)_{2}T_{2}$	37.90	6.32	2.30	36.8	$6 \cdot 8$	2.35	d	
$Co(\beta-pic)_{2}T_{2}$	40.76	5.95	2.97	40.9	6.45	$2 \cdot 9$	$5 \cdot 0$	
$Co(\gamma - pic)_{2}T_{2}^{b}$	40.76	5.95	2.97	39.0	5.75	$2 \cdot 9$		
$Co(\gamma - pic)_{T}$	51.20	8.50	4.26	51.2	8.65	$4 \cdot 3$	$5 \cdot 1$	
Co(3-Etpy), T.	43.30	5.60	3.60	41.8	5.8	3.7	4.8	
$Co(\gamma - Etpy)_{,T}$	43.30	5.60	3.60	42.6	5.95	3.80	5.0	
$Co(\gamma-Etpy),T$	53.90	7.90	$5 \cdot 10$	53.0	8.05	$5 \cdot 1$	5.0	
Ni(py),T,	37.90	6.32	2.30	37.15	6.4	$2 \cdot 6$	d	
Ni(py) ₄ T ₂	47.90	9.30	3.30	47.2	9.25	3.45	d	
Ni(β-pic),T,	40.76	5.95	2.97	40.05	6.85	3.15	$2 \cdot 9$	
Ni(y-pic), T, o	40.76	5.95	2.97	39.85	$6 \cdot 1$	2.95	$3 \cdot 6$	
() I / I I							(306·5 K)	
$Ni(\gamma-pic)_{1}T_{2}$	51.20	8.50	4.26	51.15	8.55	$4 \cdot 2$	`3·2 ´	
							(306·5 K)	
Ni(β-Etpy) ₄ T.	54.05	7.86	5.05	53.95	8.05	4.85	3.2	
							(306·5 K)	
Ni(y-Etpy), T.	54.05	7.86	5.05	53.35	8.0	$5 \cdot 1$	3.3	

 o Prepared by the addition of the ligand to the metal trifluoroacetate except where otherwise stated. b Prepared by thermal decomposition of the corresponding tetrakis ligand complex. ^c Values measured at 278 K except where otherwise stated. ^d Insufficiently soluble.

Thermal Decompositions.-These studies were performed on a number of L_4 complexes using both the vacuum line technique described previously 1 and using a Stanton MF L5 thermobalance. Heating programmes available allowed the furnace temperature to be raised from ambient to ca. 1000 °C linearly with time over a period varying from 4 to 24 h.

Analysis.--C, H, and N analyses were carried out using a Hewlett-Packard F & M 185 analyser.

Spectra.-I.r. spectra were recorded in the range 4000-650 cm⁻¹ with a Hilger and Watts 'Infrascan' H 900 spectrometer and in the range 850-420 cm⁻¹ using a Grubb-Parsons 'Spectromaster' H 2000 spectrometer. The complexes were examined as Nujol and/or hexachlorobutadiene mulls or as potassium bromide discs. No appreciable breakdown of the complexes was detected during disc preparation. Far-i.r. spectra in the range 500-120 cm⁻¹ were obtained with a Grubb-Parsons/N.P.L. Cube Mk II interferometer which incorporated a polyethylene terephthalate beam splitter of thickness $3.75 \ \mu m$ and a silicon window Golay detector. Black polyethylene was used to filter out all radiation $> ca.550 \text{ cm}^{-1}$. Spectra were computed to a resolution of 5 cm⁻¹ using a standard Fourier cosine transformation programme. All complexes were examined as polyethylene discs. Electronic spectra were recorded in the range 190-850 nm on a Pye Unicam SP 1800 spectrophotometer and in the range 800-1300 nm using an Optica CF4NI double beam grating instrument. 1 cm Silica cells were used throughout.

RESULTS AND DISCUSSION

Thermal Decompositions.—A number of the L_4 complexes in Table 1 were thermally decomposed by the vacuum line technique previously described¹ in order to isolate the L₂ complexes. It was generally found that heating ca. 2 g of complex for 1 h at 100 $^{\circ}$ C resulted in a mass loss equivalent to ca. 2 pyridine-type ligands per molecule of complex. However, it proved to be most difficult to obtain microanalytically pure samples of L₂ complexes by this method. Further insight into the difficulties were sought by using a thermobalance apparatus for the thermogravimetric studies. Detailed studies were performed on a representative set of four L_4 complexes, namely Ni(py)₄T₂, $Ni(\gamma-pic)_4T_2$, $Co(\gamma-pic)_4T_2$, and $Ni(\beta-Etpy)_4T_2$. Previous studies on these complexes had led to Ni(py)₂T₂ being obtained pure both by the direct (non-thermal) method and by thermal decomposition from the L_4 complex, $Co(\gamma-pic)_2T_2$ and $Ni(\gamma-pic)_2T_2$ being obtained with difficulty by thermal decomposition on the vacuum line and $Ni(\beta$ -Etpy)₂T₂ not being obtained pure by either method.

Thermograms for ${\rm Ni}({\rm py})_4T_2$ and ${\rm Ni}(\beta\text{-}Etpy)_4T_2$ are shown in Figure 1. The exact shapes of the graphs are dependent on the conditions of the particular run (e.g. the heating programme and amount of sample used). However, the main features of distinction between the two thermograms may be clearly seen. For a complete sequential decomposition of an L_4 complex via an L_2 species three maxima (maximum rates of mass loss) are expected on the thermograms corresponding to loss of the first pair of pyridine-type ligands, then the second pair and finally decomposition of the metal trifluoroacetate. This sequence was clearly seen only for $Ni(py)_4T_2$ where at one stage a

⁵ S. Ainasa, D. H. Brown, and D. W. A. Sharp, J. Chem. Soc. (A), 1969, 2892.
⁶ D. F. Evans, J. Chem. Soc., 1959, 2003.

³ C. Oldham, Progr. Inorg. Chem., 1968, 10, 223.

⁴ A. B. P. Lever and D. Ögden, J. Chem. Soc. (A), 1967, 2041.

near-zero rate of ligand loss occurred enabling Ni(py)₂T₂ to be easily isolated. The thermogram of Ni(β -Etpy)₄T₂ may be taken as fairly typical of the other complexes where isolation of the pure L₂ complex was either difficult or impossible. In these cases the minimum rates of ligand loss are still appreciable and it would appear very fortunate that pure samples of Co(γ -pic)₂T₂ and Ni(γ -pic)₂T₂ were obtained by thermal decomposition methods.

Despite the preliminary nature of these thermal decomposition studies no strong evidence was obtained

FIGURE 1 (a), Thermogram of $Ni(py)_4T_2$ using a 12 h heating programme; (b), thermogram of $Ni(\beta$ -Etpy)₄T₂ using a 4 h heating programme

for complexes of other stoicheiometry, e.g. L_1 complexes.¹ The present work suggests that the decompositions might proceed according to the scheme:

- (i) $ML_4T_2 = ML_2T_2 + 2L$
- (ii) $ML_2T_2 = MT_2 + 2L$
- (iii) $ML_4T_2 = MT_2 + 4L$
- (iv) $MT_2 = Residue + volatile products^7$

In the decomposition of Ni(β -Etpy)₄T₂, Ni(γ -pic)₄T₂, and Co(γ -pic)₄T₂, reaction (ii) may be commencing before (i) has been completed and (iii) may be occurring throughout at a slower rate. The decomposition of Co(γ -pic)₄T₂, although performed with a much slower heating programme than the other complexes, showed a significant rate of ligand loss at all times indicating that reaction (iii) may be particularly important in this case. However, for Ni(py)₄T₂, where the rate of ligand loss is virtually zero at one stage, it is suggested that (iii) is negligibly slow and that reactions (i) and (ii) occur approximately sequentially.

⁷ M. J. Baillie, D. H. Brown, K. C. Moss, and D. W. A. Sharp, *J. Chem. Soc.* (A), 1968, 3110.

Vibrational Spectra.—Near i.r. region. The i.r. data for the trifluoroacetate group vibrations are given in Table 2. The vibrations of the CF_3CO_2 group are distinctly different for the L_2 and L_4 complexes in the following respects.

(i) The difference between the antisymmetric and symmetric C–O vibrations, $(v_8 - v_3)$, is ca. 20–30 cm⁻¹ larger for L₄ complexes compared to L₂ complexes. The $(v_8 - v_3)$ values are comparable with those found by Sharp *et al.*⁵ for tetrakispyridine complexes but differ from those of Lever⁴ for bispyridine complexes. The source of the discrepancy lies in the assignment of the v_3 vibrations. Whereas Lever assigned v_3 around 1350 cm⁻¹ we observed no band in this region but assigned v_3 to a band in the 1455–1450 cm⁻¹ region which is absent in the free heterocyclic ligand.

(ii) Probably the most reliable distinctive feature between L_2 and L_4 complexes lies in the changes in the C-F stretching region, 1200-1150 cm⁻¹. For a bidentate CF_3CO_2 group with C_s symmetry, three C-F stretching modes, $\nu_1,~\nu_2,~\text{and}~\nu_{12}~\text{occur}^{\ 8}$ with $\nu_7~\text{and}~\nu_{12}$ degenerate. The occurrence of only two distinct C-F stretching modes assumes the absence of (i) restricted rotation of the CF₃ groups about the C-C bond, (ii) internal coupling with other CF₃CO₂ groups or other ligands in the complex, and (iii) any asymmetry in the complex. For monodentate CF₃CO₂, the degeneracy of v_7 and v_{12} is removed and three bands are expected. This feature was consistently observed for the copper(II) complexes and is further reproduced in all the present cobalt(II) and nickel(II) complexes. Unfortunately, this method of distinction between mono- and bidentate carboxylate groups is limited to halogenoacetates. Higher acid ligands (e.g. $C_2F_5CO_2$ and $C_{3}F_{7}CO_{2}$) ⁹ give complex absorption in the C-F stretching region and prevent it from being a diagnostically useful region. For such complexes one must have recourse to far-i.r. spectra for detecting M-O and M-N vibrations.

(iii) One of the CF₃-deformation modes at *ca*. 600 cm⁻¹ is consistently larger by 5—15 cm⁻¹ for the L₂ complexes compared to the corresponding L₄ complexes.

All the above observations are taken from spectra of solid complexes, either as mulls or potassium bromide discs. A number of L_4 complexes were also examined as solutions in chloroform and some distinct changes were observed. These were explicable in terms of a partial or near complete breakdown of these complexes to the corresponding L_2 complexes. Figure 2 illustrates the change observed for Ni(γ -pic)₄T₂ in the C-F stretching region. Less drastic changes were observed for the L_2 complexes but these were thought to be due either to the differing extents of association in the solid and solution states as suggested by Lever ⁴ or to different *cis-trans* isomeric equilibria in the two states. Evidence for such equilibria in solution will be presented when the n.m.r. studies are discussed.²

⁸ R. E. Robinson and R. C. Taylor, Spectrochim. Acta, 1962, 18, 1093.

⁹ S. M. Crabtree, R. K. Patient, and K. G. Orrell, unpublished work.

Far-i.r. region (500—120 cm⁻¹). Although spectra were computed to 120 cm⁻¹ interpretations were restricted to the main absorption bands which occurred above 200 cm⁻¹.

L₄ Complexes L₂ Complexes Ligand C-Fasym, st CF₃ def $v_8 - v_3$ C-Fasym, st CF₃ def v_{s} ν₃ v₃ -- v₃ ν_8 ν_3 Cobalt(II) trifluoroacetate complexes ру β-pic γ-pic 1685sh γ-Etpy β-Etpy Nickel(II) trifluoroacetate complexes ру 1680sh β-pic 1693sh $1460 \mathrm{sh}$ y-pic β-Etpy γ-Etpy

" All band positions in cm⁻¹.

Although the characteristic metal-oxygen vibrations have been comprehensively reviewed,¹⁰ co-ordinated carboxylato-ligands do not appear to have been in-

FIGURE 2 I.r. spectra of $Ni(\gamma$ -Etpy)₄T₂ (a), in CHCl₃ solution; (b), as KBr disc

 ML_4T_2 and ML_2T_2 complexes (Table 3). As a first step to interpreting the spectra of the complexes, the spectra of the metal trifluoroacetates were considered. In the region below 450 cm⁻¹ there are three main bands which can be unambiguously assigned to δ (C-CF₃) and v(M-O) vibrations (Table 4). Assuming that (a) the δ (C-CF₃) vibration is fairly insensitive to a variation of M and L throughout the series of complexes, (b) the v(M-N) and v(M-O) are sensitive to the nature of M, and (c) the expected range of v(Co-N) is 200—220 cm⁻¹ and of v(Ni-N) is 210—240 cm^{-1,11} the tentative i.r. assignments are given in Table 4.

vestigated in the far-i.r. region apart from a study of

the metal salts themselves.⁷ The numbers of i.r. active M-N and M-O vibrations were calculated on the

basis of the point groups for cis- and trans-isomers of

The L_4 complexes (and the bis β -picoline complex) all produce spectra consisting basically of two multiple bands. The higher wavenumber band is readily assigned to $\delta(C-CF_3)$ and the other is considered to be due to both v(M-O) and v(M-N). Band shoulders are thought to be due to a minor isomer (probably the *cis*isomer) being present. The L_2 complexes, except the β -picoline complex, produce a complex band envelope possessing at least four maxima. The $\delta(C-CF_3)$ vibration can be assigned with some confidence but the other assignments are very tentative. The assignments

¹⁰ J. R. Ferraro, 'Low Frequency Vibrations of Inorganic and Co-ordination Compounds,' Plenum Press, New York, 1971, ch. 5. ¹¹ Ref. 9. ch. 7, section 7.5.

	TABLE 2	
Near-i.r.	(4000-420 cm ⁻¹) data	u

TABLE 3

I.r. active vibrations in $\mathrm{ML}_4\mathrm{T}_2$ and $\mathrm{ML}_2\mathrm{T}_2$ octahedral complexes

Type	Stereochemistry	Symmetry group	ν(MN)	Number I.r. active	ν(M -O)	Number I.r. active
$\begin{array}{c} \mathrm{ML}_4\mathrm{T}_2\\ \mathrm{ML}_4\mathrm{T}_2\\ \mathrm{ML}_2\mathrm{T}_2\\ \mathrm{ML}_2\mathrm{T}_2 \end{array}$	trans-oct cis-oct trans-oct cis-oct	$D_{4h} \\ C_{2v} \\ D_{2h} \\ C_{2} \\ * \\ C_{2} \\ *$	$\begin{array}{c} A_{1g}+B_{1g}+E_{u}\\ 2A_{1}+B_{1}+B_{2}\\ A_{g}+B_{1u}\\ A+B \end{array}$	$1 \\ 4 \\ 1 \\ 2$	$\begin{array}{l} A_{1g} + A_{1u} \\ A_1 + B_1 \\ A_g + B_{1g} + B_{2u} + B_{3u} \\ SA + 2B \end{array}$	$egin{array}{c} 1 \\ 2 \\ 2 \\ 4 \end{array}$

* Applies to both monomeric and polymeric forms.

TABLE 4 r-i r_bands/cm⁻¹

Far-1.r. bands/cm
r ar-i.r. Danus/cm

							1 al -1	. 1 . Da	nusjo										
	Ring deformation																		
NiT-	v(M-N) and/or v(M-O)		$\nu(M-O)$ $\delta(C-CF_3)$		3)	Complexed			Free ligand			Other bands							
$Ni(py)_4T_2$		228		242	t	268		278	404	285		432		407			$\frac{149}{440}$	$174 \\ 460$	423
$Ni(\gamma$ -Etpy) ₄ T ₂				234					277			5 00		492	4 00	422	$\frac{139}{455}$	327	410
$Ni(\beta-Etpy)_4T_2$ $Ni(\gamma-pic)_4T_2$			225	222	231				$\frac{282}{276}$			$\begin{array}{c} 422 \\ 489 \end{array}$		$\begin{array}{c} 400\\ 486 \end{array}$	$\begin{array}{c} 420\\ 428 \end{array}$	487	$\frac{143}{153}$	$\begin{array}{c} 496 \\ 405 \end{array}$	460
$Ni(\beta-pic)_2T_2$				236		200		281		295		415		399	454	485	359	435	
$N_1(py)_2 I_2$ $N_1(\gamma - pic)_2 T_2$		$\frac{228}{215}$		$\frac{246}{240}$		268			$\frac{285}{287}$		432	484	436	$\begin{array}{c} 407 \\ 486 \end{array}$	428		$\frac{160}{441}$	$\frac{173}{460}$	467
CoT_2 $Co(\gamma-pic)_4T_2$		207		$\frac{223}{213}$		$\begin{array}{c} 320 \\ 256 \end{array}$			$\frac{285}{271}$		488		495	486	428		149	400	445
$Co(\gamma - Etpy)_4 T_2$ $Co(\beta - pic)_5 T_5$		207		$\frac{216}{220}$					$\frac{272}{278}$		$\begin{array}{c} 500 \\ 407 \end{array}$	413	456	$\frac{492}{399}$	400 454	$\begin{array}{c} 422 \\ 485 \end{array}$		$\begin{array}{c} 456 \\ 449 \end{array}$	
$Co(\gamma - Etpy)_2T_2$		201		$\frac{230}{230}$	*	024			285		445	499	400	422	400	492		475	
$Co(\gamma-pic)_2T_2$ $Co(\gamma-pic)_2T_2$	194	208	203	$\frac{242}{227}$	236	794	251		$\frac{287}{282}$		415	$\frac{433}{492}$	408	400 486	$\frac{420}{428}$	487	409	44 5	471

* Poor quality spectrum, evidence of other bands in this region. \dagger Amasa *et al.* (ref. 5) found ν (M–N) for this complex at 248 cm⁻¹.

TABLE 5

Electronic spectra of the cobalt complexes ($\lambda/nm,~\sigma/cm^{-1})$

				σ1	σ_3		a	$\beta' = 1115$
Solvent	Notes	λ ₁	λ_3	${}^{4}T_{2g} \checkmark {}^{4}T_{1g}$	${}^{4}\overline{T_{1g}(P)} \checkmark {}^{4}\overline{T_{1g}}$	Dq/cm^{-1}	B/cm^{-1}	cm ⁻¹)
CHCl _a		1250	512	8000	$19\ 531$	915	844	0.76
$CHCl_3 + \beta$ -pic	a	1176	501	8500	19 960	964	846	0.76
CHCl ₃		1149	507	8700	19 724	988	813	0.73
Inadequately so	oluble							
CHCl ₃		1227	507	8150	19 724	933	848	0.76
y-Etpy		1152	501	8680	19 960	986	828	0.74
CHCl ₃		1152	504	8680	19841	982	818	0.73
CHCl ₃		1155	510	8658	$19\ 608$	987	806	0.72
Me ₂ CO	b	1157	518	8643	$19\ 305$	972	784	0.70
CHCl ₃		1227	510	8150	$19\ 608$	934	842	0.76
CHCl ₃		1170	508	8547	$19\ 685$	972	820	0.74
$CHCl_3 + \beta$ -Etp	y a	1169	500	8550	20000	977	842	0.76
	Solvent $CHCl_3$ $CHCl_3 + \beta$ -pic $CHCl_3$ Inadequately so $CHCl_3$ γ -Etpy $CHCl_3$	SolventNotes $CHCl_3$ $CHCl_3 + \beta$ -pic a $CHCl_3$ Inadequately soluble $CHCl_3$ γ -Etpy $CHCl_3$ $CHCl_3$ $CHCl_3$ b $CHCl_3$ b $CHCl_3$ $CHCl_3$ $CHCl_3$ $CHCl_3$ $CHCl_3$ $CHCl_3$	Solvent Notes λ_1 CHCl ₃ 1250 CHCl ₃ + β-pic a 1149 Inadequately soluble CHCl ₃ 1149 Inadequately soluble CHCl ₃ 1227 γ-Etpy 1152 CHCl ₃ 1155 Me ₂ CO b 1157 CHCl ₃ 1227 CHCl ₃ 1227 CHCl ₃ 1227 CHCl ₃ 1277 CHCl ₃ 1270 CHCl ₃ 1170	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

^a Indicates that the L_4 complex is predominant when an excess of L is present. ^b Indicates that L_4 complex is retained in acetone, contrary to Lever's contention of breakdown to L_2 (ref. 4).

			· · · · · · · · · · · · · · · · · · ·		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~)				
	σ1	σ2	σ_3	σ					$\beta (B' = 1084)$	$\begin{pmatrix} \beta' \\ = 4831 \end{pmatrix}$
Solvent	³ T ₂ g - ³ A ₂ g	$^{3}\overline{T}_{1g}(F) \overset{3}{\overset{3}{\overset{3}{\overset{3}{\overset{3}{\overset{3}}}} A_{2g}$	${}^{3}T_{1g}(P) \longrightarrow {}^{3}\overline{A}_{2g}$	$^{1}E_{g} \leftarrow ^{3}A_{2g}$	σ,*	Dq/cm^{-1}	B/cm^{-1}	C/cm ⁻¹	cm ⁻¹)	cm ⁻¹)
CHCl	9174	15723	25 974	13 106	$13 \ 351$	1005	863	3446	0.80	0.71
CH ₃ NO ₂		15823	26 110			1010	867		$() \cdot 80$	
CHCl ₃	9389	15.823	25 974	13.089	13323	1033	861	3433	0.79	0.71
CHCl ₃	9541	15823	26.042	$13\ 106$	13342	1020	864	3435	0.80	0.71
CHCl	9389	15674	25 840	$13\ 158$	13412	1004	858	3494	0.79	0.72
CHCl ₃	9514	15898	26 110	$13\ 158$	$13\ 392$	1030	866	3450	0-80	0.71
CHCl ₃	9578	15.873	26596	$13\ 228$	13470	992	886	3428	0.82	0.71
CHCI,	9842	$15\ 924$	26 247	13.158	13389	1020	871	3434	0.80	0.71
CH ₃ NO ₂		16 129	26 455			1052	877		0-81	
CCI4		15 873	26.178			1017	869		0.80	
	Solvent CHCl ₃ CHCl ₃	$\begin{array}{c c} \sigma_1 \\ \hline Solvent & {}^3T_{2g} & {}^{3}A_{2g} \\ CHCl_3 & 9174 \\ CH_3NO_2 \\ CHCl_4 & 9589 \\ CHCl_4 & 9544 \\ CHCl_4 & 9514 \\ CHCl_2 & 9514 \\ CHCl_4 & 9514 \\ CHCl_1 & 9578 \\ CHCl_1 & 9842 \\ CH_3NO_2 \\ CCl_4 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

TABLE 6

Electronic spectra of the nickel complexes (σ/cm^{-1})

* Corrected for spin-orbit coupling with σ_2 .

in Table 4 are based on a single isomer being present but, in view of the n.m.r. studies, it is quite possible that both cis- and trans-isomers will be present in appreciable amounts as well as the possibility of both monomeric and polymeric species. Thus, according to Table 3, up to six $\nu(M-O)$ and three $\nu(M-N)$ bands might be expected. The observed complex absorption is therefore no surprise but it does make detailed assignments very difficult. The anomalous behaviour of the β -picoline complex may be due to dominance of one isomeric species in the solid state. N.m.r. studies have shown that this is certainly the case in solution.

Whilst further work is necessary on a wider range of complexes before band assignments can be more definitive, the present work does show that the L_4 and L_2 complexes have distinctly different spectral characteristics in the 500–-200 cm⁻¹ region.

Electronic Spectra.—The d-d spectra of a few of the present and related halogenoacetate complexes have been investigated by several groups.^{5,12} The present work is in broad agreement with earlier work and the relevant data are collected in Tables 5 and 6. The spectra are consistent with octahedral co-ordination. The Co^{II} complexes show two main absorptions (σ_1 , σ_3) with the σ_3 band *ca.* 20 000 cm⁻¹, possessing further structure. The transition ${}^4A_{2g} \longleftarrow {}^4T_{1g}$ (σ_2) was not unambiguously observed but could perhaps be assigned to one of the low energy shoulders of the σ_3 band. The Ni^{II} complexes exhibited the usual three main bands for octahedral complexes with the spin-forbidden transition ${}^{1}E_{g} \leftarrow {}^{3}A_{2g}$ (σ_{4}) also being observed in a number of cases. This transition energy was corrected for spin-orbital coupling with ${}^{3}T_{1g}(F) - {}^{3}A_{2g}(\sigma_{2})$ using the intermediate coupling factor.^{13,14} Dq and \tilde{B} Values for both series of complexes were obtained by the graphical ratio method of Lever.¹⁵

The complexes were studied in chloroform solution in an attempt to detect bands due to individual cisand trans-isomers which are known to exist² to approximately equal extents in L_2 complexes but with a preponderance of one isomer in solutions of L_4 complexes. The spectra did not reveal distinct bands due to individual isomers but band shoulders observed particularly on the σ_3 band in Co^{II} complexes and on the σ_2 band in Ni^{II} complexes might be considered to be due as much to isomeric distinction as to the previously suggested

 S. F. A. Kettle and A. J. Pioli, J. Chem. Soc. (A), 1968, 1243.
 O. Bostrup and C. K. Jørgensen, Acta Chem. Scand., 1957, **11**, 1223.

¹⁴ A. B. P. Lever, 'Inorganic Electronic Spectroscopy,' Elsevier, Amsterdam, 1968.

reasons.⁴ In view of the low values of extinction coefficients for the main visible bands (ε ca. 38 1 mol⁻¹ cm⁻¹) it seems probable that the *trans*-isomer is the dominant species for L_4 complexes in solution since *cis*octahedral complexes often give quite intense visible absorption ($\varepsilon > 100$ l mol⁻¹ cm⁻¹).¹⁶ Comparison of these solution studies with diffuse reflectance studies ¹⁷ of Co^{II} complexes shows that in the solid state the main visible absorption band (σ_3) is relatively sharp. This does suggest that the broad structured appearance of this band in solution studies may be due to more than one isomeric species each producing complex absorption due to factors such as spin-orbit coupling and lower symmetry ligand field splitting. Variation of solvent (Figure 3) did show an interesting trend in

FIGURE 3 Visible electronic spectra of $Co(\gamma-pic)_{4}T_{2}$ in (a), CCl₄; (b), CHCl₃; and (c), CH₂NO₂ solution

the change of shape of the σ_2 band of the complex, $Ni(\gamma\text{-}Etpy)_4T_2.$ For both Co^{II} and Ni^{II} complexes. the cis-isomer is expected to be increasingly favoured as the polarity of the solvent is increased. Figure 3 shows that the low energy shoulder of the band becomes more pronounced with increase in solvent polarity, suggesting that it may be associated with the cisisomer and the remainder of the absorption with the trans-isomer.

We thank the S.R.C. for a maintenance grant (to C. A. A.) and the University of Exeter for a research scholarship (to P. A.).

[3/1994 Received, 28th September, 1973]

 ¹⁵ A. B. P. Lever, J. Chem. Educ., 1968, 45, 711.
 ¹⁶ F. A. Cotton, D. M. Goodgame, and R. M. Soderberg, Inorg. Chem., 1963, 2, 1162.

¹⁷ C. A. Agambar, unpublished work.