Chemistry of Soil Minerals. Part XIV.[†] Action of Some Basic Solutions on Metakaolinite and Kaolinite

By Richard M. Barrer,* (Mme) Réjane Beaumont, and Carmine Collela, Physical Chemistry Laboratories, Chemistry Department, Imperial College, London SW7 2AY

Some reactions have been studied at 80 °C between aqueous alkaline media and metakaolinite with and without added silica. The bases employed were TIOH, Ba(OH)₂ + TIOH, Ba(OH)₂ + LiOH, and Ba(OH)₂ + NaOH. A similar study was made of kaolinite with aqueous $Ba(OH)_2 + LiOH$. Kaolinite was less reactive than metakaolinite and yielded different reaction products. Non-zeolites formed included a barium silicate hydrate, barium aluminate, and a phase similar to cymrite. Three unidentified TI-bearing species were also formed in minor yields. Zeolites of the following kinds were grown: those of edingtonite type containing Ba2+ + TI+ or Ba2+ + Li+; variants of zeolite L, containing Ba2+ + TI+, Ba2+ + Li+, or Ba2+ + Na+; harmotome- or phillipsite-types containing Ba²⁺ + Li⁺ or Ba²⁺ + Na⁺; and zeolites like gismondite with Ba²⁺ + Na⁺, like gmelinite and containing Ba²⁺ + Na+, and like yugawaralite containing Ba²⁺ + Li+. A lithium-bearing zeolite with no natural counterpart and in which the cations were Ba2+ + Li+ was also grown.

Properties of a number of these phases have been examined. From the present and earlier work, it appears that an important factor in promoting growth of chabazite-, edingtonite-, and phillipsite-type zeolites and of zeolite L is the presence of a sufficient amount of at least one of the cations K^+ or Ba^{2+} . On the other hand a sodic environment favours gismondite-, gmelinite-, and faujasite-type zeolites, and Linde A.

SEVERAL recent papers have given an account of the hydrothermal chemistry of kaolinite¹ and of metakaolinite with and without added silica,2-4 under lowtemperature alkaline conditions. The single bases LiOH, NaOH, KOH, RbOH, CsOH, and Ba(OH), have been used; and also, in syntheses of salt-bearing sodalites and cancrinites, NaOH with added salts of diverse kinds. In addition reactions with a number of mixed bases have been examined $[Ba(OH)_2 +$ KOH; $Ba(OH)_2 + TMAOH$; NaOH + LiOH; NaOH+ KOH; KOH + LiOH; NaOH + TMAOH, where TMAOH denotes tetramethylammonium hydroxide]. This work has established conditions for ready production of numerous zeolites and non-zeolites under mild conditions. It has also shown, as with crystallisations of aluminosilicate gels in presence of mixed bases,⁵⁻¹⁰ that the resultants of reactions with such mixed bases are not always predictable from the reactions with each base separately. These observations, and the notable variety of the hydrothermal products, have led us to examine further the reactions between kaolinite, metakaolinite, metakaolinite fortified with silica, and alkaline aqueous media. In the present work we have partially explored the behaviour with aqueous TlOH, $Ba(OH)_2 + TlOH$, $Ba(OH)_2 + LiOH$, and $Ba(OH)_2 + NaOH$.

EXPERIMENTAL

Syntheses were effected at 80 °C in sealed polypropylene bottles containing the reaction mixtures and rotated in a thermostatted oven. The usual time allowed for recrystallisation was 7 days. The mixtures were prepared from weighed amounts of solutions of alkali with appropriate amounts of metakaolinite (MTK) or kaolinite with or without measured additions of amorphous silica. Because of its limited solubility in water at room temperature

† Part XIII is ref. 12.

¹ R. M. Barrer, J. F. Cole, and H. Sticher, J. Chem. Soc. (A), 1968, 2475.

 ² R. M. Barrer and J. F. Cole, J. Chem. Soc. (A), 1970, 1516.
 ³ R. M. Barrer and D. E. Mainwaring, J.C.S. Dalton, 1972, 1254.

4 R. M. Barrer and D. E. Mainwaring, J.C.S. Dalton, 1972, 1259.

Ba(OH)₂,8H₂O was added as a solid, with care to avoid contact with atmospheric carbon dioxide. TIOH was prepared by the reaction.

$$\text{Tl}_2\text{SO}_4 + \text{Ba(OH)}_2 \longrightarrow 2\text{TlOH} + \text{BaSO}_4 \downarrow$$

The weight ratio MTK: H₂O was maintained at 1:25, with an equivalent ratio when kaolinite was employed (1 g MTK \equiv 1.16 g kaolinite). Where silica was added these additions were in the proportions 1, 2, or 4 mol SiO₂ per mol MTK (Al₂O₃,2SiO₂). Experimental runs were normally arranged on the basis of 1 g of MTK.

Reaction products were separated from mother liquors by centrifugation, washed, and dried overnight at 80 °C. They were then stored over saturated Ca(NO3)2 at 20 °C (R.H. = 56%) before X-ray, chemical, thermal, and microscopic analyses. Guinier X-ray powder photographs were subjected to densitometer measurements and cell constants were calculated, where possible, with the aid of a computer program. Chemical analyses were made using standard procedures for Si and Al. Atomic absorption photometry served for analyses of Li and Ba. Tl was determined as chromate. Differential thermal analyses (d.t.a.) and thermogravimetric analyses (t.g.a.) were made with a DuPont 900 thermoanalyser and a Stanton thermobalance respectively. Stereoscan photomicrographs of crystals were made with a Jeol JSM-2 electron microscope.

RESULTS

The main phases produced at 80 °C are given in Table 1. The crystallisation fields with TlOH, Ba(OH)₂ + LiOH, and $Ba(OH)_2$ + NaOH as the bases are shown in Figures 1, 2, and 3 respectively. In each figure the products are those obtained by the action of the alkaline solutions on metakaolinite (MTK) with and without added silica. In Figures 2 and 3 the quadrants 1, 2, 3, and 4 refer respectively to aluminosilicate compositions in the molar proportions MTK, MTK + SiO_2 , MTK + $2SiO_2$, and MTK + $4SiO_2$.

Experiments with $Ba(OH)_2 + LiOH$ as the bases, and ⁵ R. M. Barrer, J. W. Baynham, F. W. Bultitude, and W. M.

- Meier, J. Chem. Soc., 1959, 195.
 ⁶ R. M. Barrer and P. J. Denny, J. Chem. Soc., 1961, 983.
 ⁷ D. W. Breck and N. Acara, U.S.P. 2,950,952/1960.
 ⁸ Union Carbide, B.P. 909,624/1962.

 - R. Aiello and R. M. Barrer, J. Chem. Soc. (A), 1970, 1470.
 Mobil Oil, Dutch Pat. Appln. 6,805,355/1968.

	Designation			
Base	of product	Nature	\mathbf{Y} ield	Reproducibility
TIOH	Tl-A	Unidentified	Minor	
	TI-B	Unidentified	Minor	Moderate
	TI-C	Unidentified	Minor	
	TI-F	Like K-F ^a	Major	Good
		(edingtonite type)	5	
TlOH + Ba(OH)	(Ba,Tl)-B	Like Tl-B	Minor	Poor
	(Ba,Tl)-G.L	Like zeolite L ^b	Moderate	Moderate
	(Tl.Ba)-F	Like K-F	Moderate	Moderate
$Ba(OH)_{a} + LiOH$	(Li, Ba) - A(BW)	Like Li-A(BW) ^c	Minor	Good
	(Ba.Li)-E	Edingtonite	Major	V. Good
	(Ba.Li)-F	Like K-F	Major	V. Good
	(Ba,Li)-G,L	Like zeolite L	ca. 100%	V. Good
	(Ba.Li)-M	Like K-M "	Minor	Moderate
		(phillipsite type)		
	(Ba,Li)-N	Unidentified d	Minor	Moderate
	(Ba,Li)-P*	Like cymrite ^{e, f}	Minor	Moderate
	(Ba,Li)-Q	Like Sr-Q a	Minor	Moderate
		(yugawaralite type)		
	(Ba,Li)-T	Like Ba-T ^a	Major	Moderate
	(· ·)	(barium silicate hyd ra te)	2	
$Ba(OH)_{2} + NaOH$	(Ba, Na)-G,L	Like zeolite L	Major	Good
	(Ba,Na)-M	Like K-M	Major	Good
	(Ba,Na)-P	Like Na-P ^h	Major	Good
	(· ·)	(gismondite type)	·	
	(Ba,Na)-P*	Like cymrite	Minor	Moderate
	(Ba,Na)-S	Like Na-S ^h	Minor	Poor
		(gmelinite type)		
	(Ba,Na)-T	Like Ba-T ^d	Major	Moderate
• Ref. 15.	^b Ref. 19. • Ref. 11.	⁴ Ref. 4. • Ref. 20. ^f Ref. 21	I. Ref. 22. * Ref.	5.

TABLE 1The phases formed at 80 °C

with kaolinite as the sole source of alumina and silica, are summarised in Table 2. There is a notable difference between the species of Table 2 and those of Figure 2, quadrant 1. When MTK was a component of the reaction mixture the first six (Ba,Li)-aluminosilicates of Table 1 were obtained; with kaolin the last three entirely different (Ba,Li)-aluminosilicates of Table 1 resulted. The nature of the starting materials, even for the same overall oxide composition of the reaction mixture, can thus decisively determine the nature of the products.

The compositions containing metakaolinite were, under the conditions employed (80 °C, *ca.* 1 week), always more reactive than compositions containing kaolinite. The species in Table 2 normally contained some non-crystalline material, and experiments (not recorded in the Table) in which much extra silica was added often yielded only an amorphous product. The addition of extra silica also reduced the reactivity of compositions containing metakaolinite. This is seen in Figures 2 and 3 by the progressively increasing extent of the regions (labelled "Am" in the diagrams) in which there is no crystallisation.

For a large mol fractions BaO/(BaO + Li₂O) and BaO/ (BaO + Na₂O) Figures 2 and 3 show that the products are typically baric [the species $G_{,L}$ and N for $Ba(OH)_2$ + LiOH and $G_{,L}$, P*, and T for $Ba(OH)_2$ + NaOH], although in the latter case $G_{,L}$ can persist as a co-crystallisate with species M down to low mol fractions of BaO. When Li⁺ is in excess and when the ratio SiO_2/Al_2O is 2 the lithic zeolite A(BW) ^{11,12} appears [quadrant 1 of Figure 2 where A(BW) is labelled A for simplicity]. In the other quadrants there are two phases ascribable to the presence of Ba²⁺ but not obtained in an exclusively baric environment. These are (Ba,Li)-E and (Ba,Li)-F. For zeolite S (gmelinite-type) and zeolite P (gismondite-type) a large mol

R. M. Barrer and E. A. D. White, J. Chem. Soc., 1951, 1267.
 R. M. Barrer and D. E. Mainwaring, J.C.S. Dalton, 1972, 2534.

fraction $Na_2O/(BaO + Na_2O)$ appears to be important (Figure 3).

Although not tabulated, experiments in which the mixed bases were $Ba(OH)_2 + TIOH$ showed similar behaviour. The mol fraction BaO/(BaO + TIOH) was varied between

0.1 and 0.8 and the total hydroxide molality between 0.1 and 0.878. MTK alone and MTK $+ nSiO_2$ (n = 1, 2, and 4) were the sources of alumina and silica. The most siliceous compositions did not crystallise at 80 °C and even aluminous compositions did not crystallise well. The main products were the zeolites (Ba,Tl)-G,L and (Ba,Tl)-F (Table 1). For mol fractions BaO/(BaO + Tl₂O) above 0.4 G,L was dominant while below 0.3 zeolite F and more rarely (Tl,Ba)-B were formed.

Among the products of Table 2 the presence of LiOH

in the initial mixture may be important only for the synthesis of the yugawaralite-type zeolite (Ba,Li)-Q. The yield of (Ba,Li)-G,L increased as the mol fraction BaO/(BaO + Li_2O) increased. With high molality of the solution of mixed bases and especially with large mol

fractions of BaO the (Ba,Li)-G,L was increasingly replaced by the non-zeolite (Ba,Li)-P*.

Properties of some Crystalline Phases.—Most of the phases of Table 1 were characterised as described in the Experimental section. Some of the results are given below.

FIGURE 2 Crystallisation field in the system Ba(OH)₂, LiOH, MTK, SiO₂, H₂O; quadrant 1: MTK with no added SiO₂; quadrant 2: SiO₂/MTK = 1 (molar ratio); quadrant 3: SiO₂/MTK = 2; quadrant 4: SiO₂/MTK = 4

FIGURE 3 Crystallisation field in the field $Ba(OH)_2$, NaOH, MTK, SiO_2 , H_2O ; quadrant 1: MTK with no added SiO_2 ; quadrant 2: $SiO_2/MTK = 1$ (molar ratio); quadrant 3: $SiO_2/MTK = 2$; quadrant 4: $SiO_2/MTK = 4$

TABLE 2 Results in the system kaolinite + $Ba(OH)_2$ + LiOH + H_2O Total hydroxide molality

BaO		1000111301		
$\overline{\text{BaO} + \text{Li}_2\text{O}}$	0.1	0.3	0.5	$\overline{1 \cdot 0}$
0.1	Mod ^a (Ba,Li)-Q	Mod (Ba,Li)-Q	Poor (Ba, Li)-Q	Mod (Ba,Li)-G,L
0.2	Mod (Ba,Li)-Q	Poor ($\mathbf{B}_a, \mathbf{L}_i$)-Q	Mod (Ba,Li) -G,L	Mod (Ba,Li) -F [*]
	Poor (Ba,Li)-G,L	Poor (Ba,Li) -G,L		Poor (Ba,Li)-P*
$0{\cdot}4$	Mod (Ba,Li)-Q Poor (Ba,Li)-G,L	Mod (Ba,Li)-G, L	Mod ($\mathbf{B}a, \mathrm{Li}$)- G, L	Mod (Ba,Li)-P*
0.6	Poor (Ba,Li)-Q Poor (Ba,Li)-G,L	Mod (Ba,Li)-G,L	Mod (Ba,Li)-G,L Mod (Ba,Li)-P*	Mod (Ba,Li)-P*
0.8	Poor (Ba,Li) -Q Poor (Ba,Li) -G,L	Mod (Ba,Li)-G, L	Mod (Ba,Li)-P*	Mod (Ba,Li)-P*

^a Mod = moderate yield.

Tl-A, Tl-B, (Tl,Ba)-B, Tl-C. Because none of these phases was obtained free of non-crystalline material meaningful chemical analyses were not possible. d-Spacings are however recorded in Table 3.

TABLE 3

d-Spacings in Å of the products Tl-A, Tl-B, and Tl-C

TI-A		Т	l-B	Tl-	TI-C		
d	Int	\overline{d}	Int	d	Int		
11.90	vvw (b r)	7.40	mw	6.15	w		
8.22	w (br)	6.15	mw	4.62	vs		
5.58	w	4.70	w (v br)	4.09	m		
5.05	mw (b r)	4.33	mw	3.23	ms		
4.69	vs	3.68	w	3.08	vs		
4.34	w	3.43	mw	2.93	mw		
3.76	VW	3.12	m	2.90	w		
3.71	vw	3.11	ms	2.83	mw		
3.66	vw	3.05	m	2.68	ms		
3.62	vw	3.00	ms	2.24	mw		
3.56	vw	2.97	mw	$2 \cdot 15$	w		
3.42	w	2.87	m	2.07	w		
3.18	w (br)	$2 \cdot 80$	mw	2.05	mw		
3.12	w (br)	2.75	vvw	2.02	w		
3.14	w (br)	2.65	w	1.97	mw		
2.92	s	2.59	m (b r)	1.87	mw		
2.88	w	2.54	m	1.81	vw		
2.79	w	$2 \cdot 45$	vvw	1.76	vw		
2.67	w	2.36	w	1.68	w		
2.60	s	2.27	vw	1.66	w		
2.31	w (br)	2.21	vvw	1.63	w		
2.05	ms	2.10	m	1.61	w		

TABLE 4

Indexing of (Ba,Li)-E

Ŧ	1/8 (aba)	7/8 (apla)	7.2.7
1	a/A (obs.)	a/A (carc.)	nri
vvw	6.770	6.767	110
ms	6.541	6.540	001
ms	5.406	5.400	101
ms	4.794	4.785	200
ms	4.712	4.703	111
w	4.271	4.280	210
vvw	3.859	3.862	201
S	3.585	3.581	211
w	3.387	3.384	220
w	3.271	3.270	002
w	3.094	3.094	102
m	3.021	3.026	310
w	3.006	3.002	221
mw	2.945	2.944	112
vvw	2.865	2.867	301
s	2.745	2.747	311
vvw	2.695	2.700	202
vw	2.653	2.654	320
ms	2.599	2.598	212
vw	$2 \cdot 460$	$2 \cdot 460$	321
vvw	2.391	$2 \cdot 393$	400
vvw	2.354	2.351	222
vvw	2.325	2.321	410
m	2.283	2.284	302
m (br)	$2 \cdot 256$	$2 \cdot 256$	330
		$2 \cdot 247$	401
vvw	$2 \cdot 220$	2.221	312
m (br)	2.186	2.187	411
		2.180	003
		$2 \cdot 140$	420
mw (v br)	2.133	$2 \cdot 132$	331
. ,		$2 \cdot 126$	103
w	2.075	2.075	113
w	2.061	2.061	322

(Ba,Li)-E. This zeolite gave an X-ray powder pattern very close to that of a natural edingtonite. As with

† The water content cited in ref. 13 is high. Edingtonites rich in Ba usually contain ca. 14% by weight of H₂O referred to the hydrated crystals.

natural edingtonite, among the h00 reflections only those with h = 2n appeared (Table 4). The zeolite was formed only by treatment of $1MTK + 4SiO_2$ with mol fractions $BaO/(BaO + Li_2O)$ between 0.1 and 0.2 and with total hydroxide molality between 1.5 and 2.0 (Figure 2, quadrant 4). The d-spacings in Table 4 refer to the crystals obtained with total molality 1.5. Tetragonal unit cells of both preparations are given in Table 5. The slight differences in the cell parameters (a decreases and c increases

TABLE 5

Tetragonal unit cells of (Ba,Li)-E, Tl-F, and (Ba,Li)-F

Zeolite	$a/ m \AA$	$c/{ m \AA}$
(Ba,Li)-E [from 1.5 m $Ba(OH)_{0} + LiOH$]	$9{\cdot}571 \pm 0{\cdot}002$	$6{\cdot}540\pm0{\cdot}002$
(Ba,Li)-E [from 2.0 m $Ba(OH)_{2} + LiOH$]	$9{\cdot}520\pm0{\cdot}002$	6.570 ± 0.003
TI-F	9.95.	6.60.
(Ba,Li)-F	9.870 ± 0.002	6.560 + 0.004
Èdingtonite ^a	a = 9.54	c = 6.50
(orthorhombic)	b = 9.65	
a	Ref. 13.	

with total hydroxide molality) may arise from small differences in chemical composition. The unit cell volumes

FIGURE 4 DTA diagrams, heating rate 15 °C min⁻¹, weight of sample 20 mg, atmosphere : air; a, (Ba,Li)-E; b, (Ba,Li)-F; c, (Ba,Li)-M; d, (Ba,Na)-M

of 599 \pm 0.5 and 595 \pm 0.5 Å³ decrease with increasing molality of the contact solution.

An initial chemical analysis of part of a sample of (Ba,Li)-E suggested the presence of a certain amount of amorphous silica and a considerable excess of LiOH. After washing another part at 80 °C the rinse water contained some silica and LiOH, both of which were determined and used to correct the original analysis. The corrected oxide composition was 0.45 BaO, 0.52 Li₂O, Al₂O₃, 3.21 SiO₂, $3.8 H_2O$ compared with BaO, Al₂O₃, $3 SiO_2$, $4 H_2O$ for an ideal[†] edingtonite.¹³ The ratio Li⁺/Ba²⁺ is 2.3 in the zeolite as compared with 18.0 in the parent mixture so that the crystals are strongly selective for Ba^{2+} .

The t.g.a. curve of the crystals washed as above, dried, and conditioned at R.H. = 56% showed an endothermic water loss of 15.1%. After dehydration at temperatures rising to 600 °C the sample was amorphous. In the t.g.a. curve of Figure 4a the asymmetrical exothermal peak ca. 930 °C is associated with the appearance of a phase like (Ba,Li)-P* or Ba-P¹⁴ and of a phase similar to the ignition

13 W. M. Meier in ' Moecular Sieves,' Soc. Chem. Ind., London, 196, p. 10.
 ¹⁴ R. M. Barrer and D. J. Marshall, J. Chem. Soc., 1964, 2296.

product of Ba-A.14 These relations are indicated by the d-spacings given in Table 6, and for (Ba,Li)-P* and Ba-P in Table 9.

Tl-F, (Tl,Ba)-F, (Ba,Li)-F. As indicated in Table 1 all these zeolites are similar to K-F $^{\rm 16}$ which has been shown to have an edingtonite type of aluminosilicate framework.¹⁶ Edingtonite-type zeolites have now been

Table	6
-------	---

d Spacings in Å of ignition products of (Ba,Li)-E and of (Ba.Li)-F

(Ba,] (Ign	Li)-E ited)	Ba-A (Ignit	A " ed)	(Ba,] (Igni	Li)-F ted)
d	Int	d	Int	\overline{d}	Int
7.80	s			5.40	w
6.50	vvw	6.52	vs	4.52	w
5.80	vw	5.81	w	4.42	vw
4.60	ms	4.64	w	3.48	s
		4.54	vs	3.42	ms
3.95	vs	3.95	w	2.87	mw
3.90	m	3.91	w	2.68	w
		3.80	m	2.54	m
		3.63	w	2.47	vw
3.52	vw	3.56	m	2.37	vw
3.47	vs	3.48	ms	$2 \cdot 20$	m
3.34	vw	3.32	s	1.88	m
3.26	vw	3.28	s	1.86	mw
		3.02	m		
2.97	s	2.97	w		
		2.92	mw		
		2.796	s		
		2.751	s		
2.67	s				
2.59	vvw	2.580	s		
2.32	m	2.336	m		
2.24	w	2.277	mw		
2.21	ms	2.225	mw		
		2.176	w		
2.11	vw	2.126	s		
		2.023	w		
1.98	w				
		^a Ref.	14.		

prepared with a variety of cations, for example with $(K^+ + Li^+)$,¹² $(K^+ + Na^+)$,¹² Rb^+ ,¹² and Cs^+ ¹⁷ in addition to the preparations reported in this paper with Tl^+ , Tl^+ + Ba^{2+} , and $Ba^{2+} + Li^+$. A common feature is the presence of at least one sufficiently large uni- or di-valent cation $[K^+, Ba^{2+} (radius 1.33 Å); Rb^+, Tl^+ (1.48 Å); Cs^+ (1.69 Å)].$

The best yield of Tl-F at 80 °C was obtained from the initial composition 0.555 TlOH + 1.0 MTK + 308.5 H₂O. d-Spacings are given in Table 7. (Ba,Li)-F was obtained at low Ba/Li ratios in the contact solution and only two preparations were free of co-crystallisate. Its crystallisation field (Figure 2) shifted towards higher alkalinity of contact solution as the ratio SiO₂/Al₂O₃ in the initial mixture increased. Two compositions which yielded (Ba,Li)-F free of co-crystallisate were: $0.028 \text{ Ba}(OH)_2 +$ $0.50 \text{ LiOH} + 1.0 \text{ MTK} + 308.5 \text{ H}_2\text{O}; \text{ and } 0.14 \text{ Ba(OH)}_2 + 1.0 \text{ MTK} + 1.0 \text{$ $2.50 \text{ LiOH} + 1.0 \text{ MTK} + 1 \text{ SiO}_2 + 308.5 \text{ H}_2\text{O}.$

The *d*-spacings of the first of these two preparations are also given in Table 7. Both Tl-F and (Ba,Li)-F were indexed to the tetragonal unit cells given in Table 5. The cell dimensions for (Ba,Li)-F in particular are close to those of K-F(Cl), K-F(Br), and $\bar{\rm K}\mbox{-}{\rm F}({\rm I})\mbox{ }^{18}$ which are forms of K-F containing amounts of included KCl, KBr,

and KI respectively. Despite good agreement of calculated and observed spacings all the tetragonal unit

TABLE	7		

Indexing of Tl-F and (Ba,Li)-F

	Tl-	F	
I	d/Å (obs.)	d/Å (calc.)	hkl
w	7.030	7.041	110
vvw	6·60 4	6.602	001
w	4.974	4.979	200
m	4.818	4.816	111
8	3.981	3.975	201
5	3.391	3.319	300
w	3.301	3.301	002
w	3.151	3.149	310
w	3.127	3.133	102
ms	3.105	3.104	221
s	2.987	2.989	112
vw	2.964	2.966	301
5 VW	2.839	2.842	311 202
vw	2.650	2.652	212
vw	2.552	2.548	321
vvw	2.487	2.489	400
vw	$2 \cdot 406$	$2 \cdot 408$	222
mw	2.347	2.347	330
mw	2.279	2.278	312
w	2.207	2.268	411
v v w vvw	2.220	2.227	420
vw	2.210 2.202	$2 \cdot 201$	003
w	2.116	2.118	322
w	2.110	2.110	421
w	$2 \cdot 103$	$2 \cdot 101$	113
vvw	2.009	2.013	203
vw	1.991	1.992	430, 500
W	1.987	1.988	402
w	1.953	1.953	213 510
vw	1.946	1.949	412
w	1.913	1.913	332
vw	1.906	1.907	431,501
VW	1.872	1.873	511
w	1.868	1.866	223
W	1.847	1.849	520
VVW	1.834	1.8340	422
w	1.805	1.804	313
mw	1.761	1.760	440
w	1.709	1.708	530
w	1.707	1.705	432, 502
vw	1.701	1.701	441
vvw	1.683	1.681	512
vw	1.658	1.659	600
w	1.003 (Ba	1.053 Li)-F	991
	dlå (obc.)	d/λ (only)	227
1	$a_{1} \mathbf{A} (005.)$	ain (carc.)	<i>niçi</i>
5 m	7.01	0.98 6.56	110
III VVW	5.48	5.46	101
vvw	4.96	4.94	200
m	4.782	4.780	111
w	3.946	3.944	201
vw	3.664	3.662	211
vw	3.491	3.490	220
w	3.279	3.280	002
w	3.120	3.121	310
5 111	5.081 2.071	2.068	421 119
S	2.818	2.818	311
vvw (br)	2.733	2.737	320
vvw	2.525	2.526	321
mw	$2 \cdot 467$	2.468	400
vvw	2.333	2.327	330
vvw	2.305	2.309	401
vVW	Z·Z0Z	2.249	411

¹⁵ R. M. Barrer and J. W. Baynham, J. Chem. Soc., 1956, 2882.

C. Baerlocher and R. M. Barrer, Zeit. Krist., in the press.
 R. M. Barrer and N. McCallum, J. Chem. Soc., 1953, 4029.
 R. M. Barrer and C. Marcilly, J. Chem. Soc. (A), 1970, 2735.

PLATE Scanning electron micrographs for: A, (Ba,Li)-E zeolite; B, (Ba,Li)-F zeolite; C, (Ba,Li)-M zeolite

[To face p. 939]

TABLE 7 (Continued) (Ba Li)-F

$d/\text{\AA}$ (obs.)	$d/\text{\AA}$ (calc.)	hkl
$2 \cdot 192$	$2 \cdot 193$	331
1.973	1.972	402
1.852	1.853	223
1.829	1.831	422
1.743	1.745	440
1.691	1.691	502
1.665	1.667	512
1.638	1.639	531
1.593	1.593	333
1.517	1.518	621
1.504	1.204	532
1.450	1.449	513
1.410	1.410	700
1.365	1.365	711
	$\begin{array}{c} d/ \rm{\AA} \ (obs.) \\ 2\cdot 192 \\ 1\cdot 973 \\ 1\cdot 852 \\ 1\cdot 829 \\ 1\cdot 743 \\ 1\cdot 691 \\ 1\cdot 665 \\ 1\cdot 665 \\ 1\cdot 663 \\ 1\cdot 593 \\ 1\cdot 593 \\ 1\cdot 517 \\ 1\cdot 504 \\ 1\cdot 450 \\ 1\cdot 410 \\ 1\cdot 365 \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

cells of Table 5 may be pseudo-cells only. The cells of Tl-F and of (Ba,Li)-F are considerably larger than those of (Ba,Li)-E. This suggests that they may be more aluminous and therefore richer in cations than (Ba,Li)-E, which was formed from a much more siliceous medium.

The water losses observed in t.g.a. were 4.2% for Tl-F and 12.1% for (Ba,Li)-F. The d.t.a. curves showed endothermic effects of maximum intensity *ca.* 100 °C for Tl-F and *ca.* 90 and *ca.* 260 °C for (Ba,Li)-F (Figure 4b). Tl-F also gave a small exothermic peak at 1013 °C, the product being amorphous, while (Ba,Li)-F recrystallised exothermally *ca.* 930 °C to a product different from that obtained by ignition of (Ba,Li)-E (Table 6). The similar crystal form of (Ba,Li)-F and of (Ba,Li)-E is shown in the stereoscan electron micrographs of Plates B and A respectively.

(Ba,Tl)-G,L, (Ba,Li)-G,L, and (Ba,Na)-G,L. These zeolites were all based upon the framework of zeolite L.¹⁹ Zeolite L was originally synthesised using KOH + NaOH as mixed bases but novel variants additional to those above have also been made with Ba(OH)₂ alone and with Ba(OH)₂ + KOH.⁴ The cations which favour the growth of G,L therefore appear to be K⁺ and Ba²⁺. The baric forms of the zeolite had very different SiO₂/Al₂O₃ ratios from those usually formed with KOH + NaOH and they showed excellent sorbent properties and were thermally very stable.⁴ Samples of (Ba,Li)-G,L and (Ba,Na)-G,L derived respectively from parent oxide compositions

0.663 BaO, 0.166 Li₂O, Al₂O₃, 4 SiO₂, 308 H₂O

and

0.663 BaO, 0.166 Na₂O, Al₂O₃, 2 SiO₂, 308 H₂O

gave the hexagonal unit cells

 $a = 18.54_8 \text{ Å}; \ c = 7.46_1 \text{ Å} [(Ba,Li)-G,L]$ $a = 18.63_4 \text{ Å}; \ c = 7.50_4 \text{ Å} [(Ba,Na)-G,L]$

The crystals were not analysed because they contained some non-crystallised material.

(Ba,Li)-M and (Ba,Na)-M. These two zeolites each appear to be based upon a harmotome- or phillipsite-type framework. The *d*-spacings are given in Table 8 together with those of Ba-M¹⁴ and of a natural harmotome.¹⁴ As with zeolites F and G,L the formation of M-type zeolites is favoured by the presence of larger cations in the reaction mixture (for M these include K⁺,¹⁵ Rb⁺,¹² and Ba^{2+ 14}). Also, as with (Ba,Li)-F, the crystallisation field of (Ba,Li)-M shifted towards higher alkalinity as the initial ratio SiO₂/ Al₂O₃ increased (Figure 2). The d.t.a. curve of (Ba,Li)-M

(Figure 4c) shows endothermal minima due to water loss ca. 100 and ca. 280 °C. There are at higher temperatures two exothermal recrystallisation processes and an endothermal process, the sample finally melting. The stereoscan electron micrograph of Plate C shows that the crystals

TABLE 8

X-Ray patterns for harmotome-phillipsite-type zeolites a (d in Å)

				Natu	iral °		
(Ba,Na	a)-M	Ba-N	A 6	harmo	tome	(Ba,L	.i)-M
$\frac{1}{d}$	Int	\overline{d}	Int	\overline{d}	Int	\overline{d}	Int
8.16	me	8.94	VS	8.09	s	8.19	mw
7.95	10.5	7.86	VW	7.86	vw	010	
7.14	me	7.18	e	7.14	s	7.14	mw
1.14	111.5	7.03	w	6.99	w		
6.37	me	6.30	vs	6.37	s	6.38	mw
6.20	VW	6.11	vw	6.26	w	000	
0 20		0 11	• ••	5.60	m		
5.03	mw	5.02	ms	5.01	m	5.01	w
0.00	111.74	0.02	1115	4.72	vw	0.01	
4.90	mw	4.29	ms	4.27	m	4.30	W
IAU		4.10	5	4.08	5		
4.07	s	4.06	s	100	0	4.08	m
H 01	3	4.03	s	4.03	s	- 00	
2.01	mw	3.89	m	3.93	mw		
9.91	111.00	9 00	111	3.88	mw		
				3.76	VW		
3.67	1-1-117	3.66	117	3.67	VW		
3.01		3.57	VV VV	0.01			
		3.59	¥ ¥ ¥¥			3.59	17117
9.46		2.46	mw	3.46	37337	0.0-	• • •
9.41	V W ·	9.40	111 W	0.40	v .v	3.40	1717
9.94	v w	2.92	~	2.94	m	3.94	V W
3.24	111	3.23 9.10	5	2.10	111	0.74	mw
3.723 2.17	w	2.16	me	2.16	m		
3.17	m	0.10 9.10	ms	9.11	111	9.16	•••
3.14	S	3.14	vs	2.07	1115	9.10	111
3.09	w	3.01	111	2.00			
0.09		9.01		9.01	w	9.09	m
2.93	111	2.91	1115	2.91	mw	2.93	III W
2.949	vvw	2.000	w	2.903	mw	2.020	vv
0 = 90		2.740	w	9.795	***	0.799	122 117
2.134 9.605	m	0.074	5	9.602	111	2.199	111 99
2.020	ma	2.074	5	2.093	m	9.674	-
2.014	ms	2.000	5	2.009	111	2.699	111
2.030	w	2.024	w	2.020	w	2.099	w
2.901	w	2.201	w	2.500	v w	9.540	
2.999	mw	2.979	w	2.917	111	7.049	vvv
2.914	w	2.009	w	9.460			
2.411	w	2.404	111	2.400	w	9.491	
2.440	w			9.406		7.491	vw
0.970		a 900		2·400	V W		
2.370	w	2.200	m	2.209	w	9.954	
2.209	w	0.915		9.990		2.904	V W
2.320	mw	2.915	m	2.320	mw	2.970	w
2.307	w	2.290	111	2.784	mw	9.950	
2.200	vw	2.200	w		v w	2·209	vvw
2.239	vw	2.790	111	2.230	mw		
0.150		2.213	w	2.205	w	0.101	
2.193	mw	2.147	m	2.145	m	2.101	W
^a Line	s of sa	mples	(Ba,Na	.)-M and	i (Ba,I	.i)-M ar	e usually

rather broad. ^b Ref. 14.

are often formed as aggregates. The d.t.a. curve of (Ba,Na)-M in Figure 4d shows two very clear endothermal minima *ca.* 220 and 274 °C associated with water loss. The water content determined by t.g.a. was $14\cdot0\%$, close to that of natural harmotome. When heated for several hours at 1100 °C the ignition product was similar to that obtained by heating Ba-A.¹⁴

(Ba,Li)-P*, (Ba,Na)-P* (*Cymrite-type Crystals*). This phase resembles but is not identical with the polymorph ¹⁹ D. W. Breck and E. M. Flanigen in 'Molecular Sieves,' *Soc. Chem. Ind.*, London, 1968, p. 47.

of celsian, BaAl₂Si₂O₈, previously designated Ba-P,¹⁴ and also it bears no relation to the gismondite-like zeolite Na-P.5 The d-spacings given in Table 9 suggest that

X-Ray spacings of (Ba,Li)-P* and related species $(d \text{ in } \text{\AA})$

				α-Hexa	gonal ^ø		
(Ba,Li)-P*	Cymri	te ª	BaAl	Si ₂ O ₈	Ba-I	P c
d	Int	\overline{d}	Int	d	Int	d	Int
7.64	mw (br)	7.71	50	7.79	100	7.74	m
4.65	w	4.62	10				
3.98	vvs	3.96	90	3.95	43	3.96	s
		3.85	10	3.90	18		
2.96	s (br)	2.96	100 - 100	2.97	49	2.97	s
2.68	vs	2.67	70	2.65	13	2.67	ms
(covered by	y	2.57	10	2.597	20		
kaolinite		2.53	10				
lines)							
2.32	m	2.31	20	2.292	4	2.31	mw
$2 \cdot 24$	w (br)	$2 \cdot 24$	40	2.259	18	2.25	m
$2 \cdot 22$	ms	$2 \cdot 21$	40				
2.195	w (br)	2.195	10	2.195	11	2.215	m
1.981	vw	1.982	10			1.982	vw
1.925	w (vbr)	1.925	30	1.947	65	1.933	w
1.852	m(br)	1.850	40	1.853	7	1.854	m
	- ,	1.778	5				
1.709	m	1.703	20			1.702	m
1.596	m	1.591	30			1.592	m
1.560	vw	1.560	20			1.561	mw
1.547	m	1.541	20			1.540	w
a Dof	91 b 37	Takanahi	N	and T	Tabau	1050 0	911

Y. Takeuchi, Mineral. J. Japan, 1958, 2, 311. c Ref. 14.

(Ba,Li)-P* is nearer to cymrite 20,21 than to Ba-P.14 Lines at 4.65 and 2.22 Å are among those absent from Ba-P and present in (Ba,Li)-P*. Also the line intensities of (Ba,Li)-P* correspond more closely with those of cymrite than of Ba-P.

The d.t.a. curve of (Ba,Li)-P* showed, besides the endothermal dehydration of unreacted kaolinite, an endothermic process maximal ca. 392 °C. The t.g.a. curve showed this to be due to a 6% weight loss of water excluding water loss of the kaolinite content found from t.g.a. (the water loss of pure kaolinite is 14%). The water loss from a pure natural cymrite is 7.17%.²¹ Despite the water loss (Ba,Li)-P* remained essentially unchanged when heated to 1100 °C, apart from a small decrease in the a-dimension and a small increase in the *c*-dimension. A qualitative chemical test showed little or no Li⁺ to be present so that the compound during crystallisation is highly selective for Ba²⁺. (Ba,Na)-P* is very similar to (Ba,Li)-P* and will not be separately described.

(Ba,Li)-Q. This yugawaralite-type zeolite was obtained only when kaolinite was the source of alumina and silica. It was always associated with some Ba-aluminate, the d-spacings of which are shown in Table 10 which also compares the spacings of (Ba,Li)-Q with those of the analogous yugawaralite-type zeolite Sr-Q.^{22,23} The d.t.a. curve shows the endotherm due to water loss to be at its maximum ca. 135 °C. The water loss, estimated from the t.g.a. curve after allowing for unreacted kaolinite, was about 15.4% of the weight of (Ba,Li)-Q plus Ba-aluminate.

(Ba,Li)-T. This phase was dominant in the crystallisation fields in which the sources of alumina plus silica were in the proportion kaolin (1 mol) + 1, 2, or 4 mol of added

20 W. Campbell Smith, F. A. Bannister, and M. H. Hey, Min. Mag., 1949, 28, 676. ²¹ D. D. Runnells, Amer. Mineralog., 1964, 49, 158.

SiO2. Either T was formed or the reactants yielded amorphous products. The amount of amorphous material increased with increasing SiO₂/Al₂O₃ ratios.

The X-ray pattern of (Ba,Li)-T was identical with that of the previously reported Ba-T,⁴ which was considered to be a zeolitic phase with included Ba(OH)₂ having the

TABLE 10 X-Ray spacings of (Ba,Li)-Q and Ba-aluminate $(d \text{ in } \text{\AA})$

(Ba,Li)-Q		Sr-Q ª		(Ba,)	(Ba,Li)-Q		Sr-Q *	
d	Int	\overline{d}	Int	d	Int	\overline{d}	Int	
10.0	m	9.66	w	2.15	w	2.146	w	
		7.89	vvw	2.12	w	2.129	vw	
		6.96	mw			2.095	w	
		6.61	vw	2.07	w	2.076	vw	
		6.30	w			2.032	vw	
5.88	m	5.88	vs	2.03	mw	2.000	m	
4.98	w			1.96	w	1.976	VW	
4.69	mw	4.76	vs	1.95	w	1.954	VW	
4.55	'vw	4.65	s	1.92	w	1.924	vw	
4.24	ms	4.31	s	1.88	w	1.894	ms	
		4.16	ms	1.84	w	1.828	vw	
		4.06	w					
3.97	VW	3.94	\mathbf{ms}					
		3.76	mw					
3.64	w	3.67	vw					
		3.54	w	Synt	hetic			
3.41	mw (br)	3.48	W	Ba-alu	minate	BaO,	AI2O3 "	
3.34	vw	3.30	w	d	Int		Int	
$3 \cdot 25$	vvw	3.27	s	4 7 7 .	1110	4 20	1110	
		3.14	w	4.99	· vw	4.00	80	
3.08	vvw	3.10	nıs	9.17	-	4.00	100	
3.01	w (b r)	3.03	\mathbf{vs}	0.65	ms	3.17	100	
		2.95	W	2.00	111	2.02	80	
2.93	vvw	$2 \cdot 93$	\mathbf{ms}			2.01	20	
2.88	vvw	2.89	vvw			2.40	20	
2.77	vvw	2.768	mw	9.94		2.20	20	
2.71	\mathbf{ms}	2.738	mw	2.74	W	2.24	20	
2.68	w	2.657	m	9.10	6	9.190	10	
		2.542	VVW	2.13	- w	2.109	60	
0.40		2.454	W	2.03	111.14	1.007	30	
2.42	w	2.416	m			1.051	10	
		2.374	vw			14 fu	rthor	
0.10-		2.328	w			weake	rline	
2.190	w	2.196	w			weakt	a mies	
aΤ	0.1 00	hv D-	D-+-	T:1 A (1 17	0 212	

Ref. 22. ^bX-Ray Data File, ASTM Card No. 2-545. ^o These lines are common to both the phases.

composition BaO, Al₂O₃, 2 SiO₂, 1.2 Ba(OH)₂, 2 H₂O. However the pattern proves to be that of a known barium silicate hydrate, BaSiO₃, H₂O,²⁴ so that the original Ba-T, like (Ba,Li)-T, was not pure and was a silicate not a zeolite.

DISCUSSION

A number of zeolites have now been made in these laboratories from more than one cationic composition. Some examples, with the cations present in synthesis, are summarised in Table 11. Of the zeolites referred to in the Table there are four which appear to grow well in sodic environments. They are gismondite, gmelinite, faujasite, and Linde Sieve A, or variants of these. One, Li-A(BW),^{11,12} definitely needs a lithic environment while four types namely, chabazite, edingtonite, harmotome (or phillipsite), and zeolite L

R. M. Barrer and D. J. Marshall, J. Chem. Soc., 1964, 485.
 R. M. Barrer and D. J. Marshall, Amer. Mineralog., 1965, 50,

⁴⁸⁴

²⁴ X-Ray Data File, ASTM Card No. 18–179.

TABLE 11

Some zeolite syntheses from more than one cation composition a

	-	Environment
	Cations present in	favouring
Framework type	synthesis b	synthesis
Analcime-leucite-	Na K Rb Cs Tl NH.	5
nollucite	(T1 Na) $(T1 Rb)$	
Pondeite	(Na,Cs), (K,Rb), Ca,Sr	
Chabazite	K_{1} (K.Na), (K.Li),	Potassic:
	(K, Na, TMA), Sr, Ba,	baric (?)
	(Ba, K)	()
Edingtonite	K, Rb, Cs, Tl, (K,Li),	Potassic;
	(Na,Li), (Ba,Tl),	baric
	(Ba,Li)	
Faujasite	Na, (Na,Li), (Na,TMA),	Sodic
-	TMA °	
Gismondite	Na, (Na,K), (Na,Li),	Sodic
	(Na,Ba), (Na,TMA)	
Gmelinite	Na, (Na, K), (Na, Li),	Sodic
	(Na,Ba), (Na,TMA),	
	(Ca,TMA), Sr, (Ba,Na)	
Harmotome-phillipsite	Na, K, Rb, NH_4 , (K, Na),	Potassic;
	(K,Li), Ca, (Ca,TMA),	baric;
	Ba, (Ba,Li), (Ba,Na)	calcic (?)
	$MeNH_3$, Me_2NH_2 , c	
a	Me ₃ NH, ^e TMA ^e	D ()
Zeolite L [#]	K, (K, Na) , $(K, Na, 1MA)$	Potassic;
	Ba, (Ba, K), (Ba, 11),	Daric
7 11/ T . A (TOTAL) A	(Ba, Na), (Ba, L1)	T 141-1-
Zeolite Li-A(BW) *	L_{1} , (L_{1}, N_{a}) , (L_{1}, K) ,	Litnic
T	(L1, Ba)	Calia
Linde A	Ma_{1} ($Ma_{1}K$), ($Ma_{1}MA$),	Sourc
N.C Leveld	IMA C	
Wordenite Verserverslife	Na, Ca, Sr S_{n} (B _n Li)	
rugawarante	Sr, (Da , Ll)	
"Syntheses are exa	umples from the series of r	apers ' Hydro-

^a Syntheses are examples from the series of papers 'Hydrothermal Chemistry of the Silicates, Parts I—XV' and the series 'Chemistry of Soil Minerals. Parts I—XIV' respectively, appearing in the *Journal of the Chemical Society* from 1951 (ref. 11) onwards and from 1965 onwards (R. M. Barrer and D. J. Marshall, *J. Chem. Soc.*, 1965, 6616). ^b For ions in parentheses each ion is present in comparable amounts. ^c Traces of ions such as Na⁺ or K⁺ are also thought to be present. ^d Ref. 19. ^e Refs. 11 and 12. and variants of these appear to form easily in baric or potassic environments. The analcime type of structure has been formed comparably well in a range of environments, although because of the comparative compactness of the framework crystals of analcimetype containing large cations prove to be non-hydrated felspathoids rather than zeolites. Similar environmental influences have recently been evaluated by Flanigen.²⁵

In a successful crystallisation such variables as alkali concentration, SiO₂/Al₂O₃ ratio, the nature of the starting materials and the temperature have all proved to be important. Nevertheless the cationic composition of the magma can be discerned from Table 11 as another major factor. It is interesting that K^+ and Ba^{2+} , despite their difference in valence, tend to play equivalent roles in favouring the appearance of certain zeolites. This may be connected with their nearly equal cationic radii. Continued study of zeolite synthesis should show other regularities and may also demonstrate that certain zeolites can be synthesised from even more diverse cationic compositions than those in Table 11. However, there is undoubtedly considerable specificity about certain cation pairings in directing and favouring the formation of particular zeolites.

One of us (C. C.) wishes to thank the Fondazione F. Giordani, Roma, for financial support which enabled him to take part in this work.

[3/2107 Received, 15th October, 1973]

²⁵ E. M. Flanigen in 'Molecular Sieves,' eds. W. M. Meier and J. B. Uytterhoeven, Adv. in Chem. Series No. 121, Amer. Chem. Soc., 1973, p. 119.