Structural Study of Octahedral Cobalt(III) Complexes. Crystal and Molecular Structure of trans-Chlorobis(dimethylglyoximato)(triphenylphosphine)cobalt(III) and trans-Chlorobis(dimethylglyoximato)(ammine)cobalt(III) Monohydrate

By Sergio Brückner and Lucio Randaccio," Istituto di Chimica, Università di Trieste, 34127 Trieste, Italy

Abstract

The crystal structures of the title compounds have been determined from three-dimensional X-ray diffractometer data by conventional Patterson and Fourier methods. Both compounds crystallize in the orthorhombic space group $P 2_{1} 2_{1} 2_{1}$, with $Z=4$; cell parameters for the ammonia derivative (II) are: $a=10 \cdot 540(5), b=13 \cdot 147$ (6). and $c=10.443(5) \AA$; those of the triphenylphosphine derivative (I) are: $a=17 \cdot 211$ (8) , $b=14.225(6)$, and $c=10 \cdot 656(5) \AA$. The structures were refined by least-squares methods to $R 0.038$ [(II), 1651 observed reflections] and 0.049 [(I), 1429 observed reflections]. Evidence for trans-influence in this type of octahedral cobalt(III) complex is discussed.

Bis(dimethylglyoximato)cobalt(iii) complexes have been extensively studied ${ }^{1}$ in solution. Kinetic, thermodynamic, and ground-state cis- and trans-effects ${ }^{2}$ have been related to the σ-donor power of the influencing ligands and to transmission of electronic effects from each ligand to the other through the cobalt atom. However, few structural results ${ }^{3,4}$ on such systems have been reported. Knowledge of the bond lengths and of the overall geometry of the molecules would give useful information about ground-state effects and about steric factors influencing the reactivity of such complexes.

We now report the crystal and molecular structure of trans-chlorobis(dimethylglyoximato)(triphenylphosphine)cobalt(III), (I), and trans-chlorobis(dimethylglyoximato)(ammine) cobalt(III) (II).

EXPERIMENTAL

Crystal Data.—(a) $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{ClCoN}_{4} \mathrm{O}_{4} \mathrm{P}, \quad(\mathrm{I}), \quad M=586.9$, Orthorhombic. $a=17 \cdot 211(8), b=14 \cdot 225(6), c=10 \cdot 656(5)$, $U=2608.9 \AA^{3}, \quad D_{\mathrm{m}}=1 \cdot 50, \quad Z=4, \quad D_{\mathrm{c}}=1.495 . \quad \mu($ Mo$\left.K_{\alpha}\right)=8.9 \mathrm{~cm}^{-1}$. Space group $P 2_{1} 2_{1} 2_{1}$.
(b) $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{ClCoN}_{5} \mathrm{O}_{4},\left(\mathrm{H}_{2} \mathrm{O}\right)$, (II), $M=359 \cdot 7$, Orthorhombic, $\quad a=10 \cdot 540(5), \quad b=13 \cdot 147(6), \quad c=10 \cdot 433(5), \quad U=$ $1447 \cdot 1 \AA^{3}, \quad D_{\mathrm{m}}=1 \cdot 65, \quad Z=4, \quad D_{\mathrm{c}}=1 \cdot 652 . \quad \mu\left(\mathrm{Mo}-K_{\alpha}\right)=$ $6.0 \mathrm{~cm}^{-1}$. Space group $P 2_{1} 2_{1} 2_{1}$.

Cell parameters were determined from Weissenberg photographs taken with $\mathrm{Co}-K_{\alpha}$ radiation and refined with an on-line automated single-crystal Siemens diffractometer with Mo- K_{α} radiation, $\lambda=0.7107 \AA$.

Intensity Measurements.-Three-dimensional intensity data were collected for both compounds on a Siemens
\dagger See Notice to Authors No. 7 in J.C.S. Dalton, 1973, Index issue.
${ }^{1}$ G. N. Schriutuzer and R. G. Windgassen, J. Amer. Chem. Soc., 1966, 88, 3738, and references therein.
${ }^{2}$ G. Costa, G. Tauzher, and A. Puxeddu, Inorg. Chim. Acta. 1969, 3. 41 , and refs. therein; A. V. Ablov, B. A. Bovykin, and N. M. Samus, Zhur. neorg. Khim., 1966, 11, 1832.
diffractometer by means of the $\theta-2 \theta$ scan technique and Mo- K_{α} radiation for maximum $2 \theta 50^{\circ}$ for (I) and 60° for (II). Reflections having $I_{0}<3 \sigma\left(I_{0}\right)$ were rejected, the remainder being corrected for Lorentz-polarization factors. A total of 1429 for (I) and 1651 for (II) were used in the subsequent calculations. No correction for absorption or anomalous dispersion of the cobalt atom was applied.

Structure Determination and Refinement.-Both structures were solved by conventional Patterson and Fourier methods. After least-squares isotropic refinement R was 0.070 for (I) and 0.060 for (II). After three cycles of anisotropic block-diagonal least-squares refinement, threedimensional difference Fourier syntheses were calculated to enable location of the hydrogen atoms. Calculated positions of these atoms all occurred in regions of positive electron density. However, the methyl groups of (I) did not appear clearly on the map, and the contributions of these hydrogen atoms were not therefore included. Final anisotropic block-diagonal least-squares refinement gave $R 0.049$ for (I) and 0.038 for (II). The co-ordinates and the temperature factors of the hydrogen atoms [set at $B 5 \cdot 5 \AA^{2}$ for (I) and $5 \cdot 0 \AA^{2}$ for (II)] were not allowed to vary. The final weighting schemes were $w=1 /(A+$ $B\left|F_{\mathrm{o}}\right|+C\left|F_{\mathrm{o}}\right|^{2}$), where for (I) $A=10 \cdot 0, B=1 \cdot 0$, and $C=0.004$, and for (II) $A=5, B=1 \cdot 0$, and $C=0.008$, chosen to maintain $w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ essentially constant over all ranges of $\left|F_{0}\right|$ and $(\sin \theta / \lambda)$. Final atomic parameters are listed in Tables 1 and 2, together with their estimated standard deviations, calculated from the residuals and the diagonal elements of the inverse matrix of the last least-squares cycle. The numbering schemes of the atoms are shown in Figures 1 and 2. Observed and calculated structure factors are listed in Supplementary Publication No. SUP 20943 ($10 \mathrm{pp} ., 1$ microfiche). \dagger Atomic scattering factors were calculated according to ref. 5 .
${ }^{3}$ P. G. Lenhert, Chem. Comm., 1967, 980.
${ }^{4}$ L. Battaglia, A. Bonamartini Corradi, G. Grasselli Palmieri, and M. E. Vidoni Tani, Abstracts Italo-Yugoslav Meeting, Trieste, Italy, 1973, p. 197.
${ }_{5}$ F. H. Moore, Acta Cryst., 1963, 16, 1169.

Table l
Fractional co-ordinates $\left(\times 10^{4}\right)$ and thermal parameters for (I), with estimated standard deviations in parentheses.

	x	y	z	β_{11}	β_{12}	β_{13}	β_{22}	β_{23}	β_{33}
Co	839(1)	1595(1)	870(2)	17(1)	2(1)	1(1)	27(1)	1(2)	41 (1)
Cl	1124(2)	2711(2)	2331(3)	46(1)	$-10(3)$	$-17(4)$	37(2)	$-12(4)$	$59(3)$
P	495(2)	518(2)	$-677(3)$	17(1)	0 (2)	5(3)	$32(1)$	0 (4)	49(3)
$\mathrm{O}(1)$	1997(5)	412(7)	1923(10)	27(3)	42(8)	$-54(10)$	67 (6)	21(14)	116(11)
$\mathrm{O}(2)$	-748(5)	1757(7)	1598(9)	24(3)	18(8)	27(10)	$68(6)$	$-38(14)$	101(10)
$\mathrm{O}(3)$	-307(6)	2841(7)	-100 (10)	39(4)	43 (8)	-8(11)	60 (6)	-5(15)	96(11)
$\mathrm{O}(4)$	2445 (5)	1491(9)	232(10)	19(3)	-7(10)	0) -26(10)	84(7)	$-5(17)$	110(11)
$\mathrm{N}(1)$	1253 (6)	691(7)	1955(9)	37(4)	$1(8)$	-24(11)	$30(5)$	3(12)	57(10)
N(2)	-68(6)	1299(7)	1783(10)	22(4)	--4(8)	6(11)	37(5)	-19(13)	89(10)
N(3)	442(6)	2561(7)	-161(11)	27(4)	13(8)	-20(12)	39(5)	-23(13)	76(11)
N(4)	1767 (6)	1920 (8)	33(11)	23(3)	$-11(8)$	0(11)	$45(6)$	-8(14)	78(11)
C(1)	1057(12)	-401(10)	3734(15)	86(10)	$15(16$	6) - 22(21)	45(8)	66(17)	85(15)
C(2)	803(9)	300 (9)	2786(12)	45(6)	$-10(12$	2) $21(16)$	43(7)	$2(15)$	45(11)
$\mathrm{C}(3)$	12(9)	675(8)	2651 (13)	43(5)	$-13(10)$) $45(14)$	28 (6)	2(15)	$62(13)$
C(4)	-673(10)	304(12)	3405(15)	49(6)	-34(14)	4) $92(16)$	73(10)	$0(23)$	111 (16)
C(5)	686(12)	3832(12)	-1664(15)	90 (10)	42(19	9) 3(22)	80 (10)	73(21)	74(15)
$\mathrm{C}(6)$	923(8)	3014(9)	$-861(14)$	$44(5)$	$-13(12)$	2) $-41(17)$	41 (6)	9(19)	74(12)
$\mathrm{C}(7)$	1731 (8)	2633(9)	-752(14)	$32(5)$	$-36(10$	26(15)	62(7)	-43(18)	59(13)
C(8)	2398(10)	3015(15)	-1498(16)	62(7)	-89(16	6) 75(18)	114(14)	$-18(26)$	86(16)
	x	y	z	B / \AA^{2}		x	y	x	B / \AA^{2}
$\mathrm{C}(9)$	776(7)	933(8)	-2220(11)	2.6(2)	C(18)	1553(9)	--2440(12)	-441(15)	4.9(4)
$\mathrm{C}(10)$	264(8)	1307(10)	-3144(13)	3.4(3)	$\mathrm{C}(19)$	1600 (10)	-1990(12)	$-1507(18)$	5-2(4)
C(11)	533(8)	1646(11)	-4290 (15)	$4 \cdot 2(3)$	$\mathrm{C}(20)$	1264(8)	$-1073(10)$	-1615(14)	4-2(3)
C(12)	1317(9)	1633(12)	-4528(15)	$4 \cdot 6(3)$	$\mathrm{C}(21)$	-558(7)	302(8)	-664(12)	$2 \cdot 4(2)$
$\mathrm{C}(13)$	1864 (8)	1296(9)	-3616(13)	$3 \cdot 5(3)$	$\mathrm{C}(22)$	-1065(8)	$993(9)$	-1075(13)	3-7(3)
C(14)	1574(7)	951 (8)	-2494(12)	2.7(2)	$\mathrm{C}(23)$	-1858(8)	816(10)	--1130(13)	$4 \cdot 0(3)$
$\mathrm{C}(15)$	920(7)	-676(8)	-592(11)	$2 \cdot 5(2)$	$\mathrm{C}(24)$	-2133(10)	-16(12)	-635(17)	5-2(4)
$\mathrm{C}(16)$	893(8)	-1185(9)	519 (12)	3-4(2)	$\mathrm{C}(25)$	$-1661(9)$	-689(11)	$-175(16)$	$4 \cdot 8(3)$
C(17)	1181(8)	-2074(10)	515(14)	$4 \cdot 0(3)$	$\mathrm{C}(26)$	-857(8)	-533(9)	-212(13)	3•7(3)
Hydrogen atom co-ordinates ($\times 10^{\mathbf{3}}$)									
	x	$y \quad z$		x	y	z	x	y	z
HA	-70	240 50	$\mathrm{H}(5)$	198	69 -	-176 H(11)	-87	160	-139
HB	244	$100 \quad 140$	$\mathrm{H}(6)$	62	-90	131 H(12)) -224	130	-150
$\mathrm{H}(1)$	-29	$133-310$	$\mathrm{H}(7)$	116	-241	$131 \quad \mathrm{H}(13)$	-272	-16	-66
$\mathrm{H}(2)$	12	$196-497$	$\mathrm{H}(8)$	178	-315	-69 H(14)	-183	-127	12
$\mathrm{H}(3)$	145	$185-530$	$\mathrm{H}(9)$	187	-225 -	-230 H(15)	-49	-102	13
H(4)	238	$130-351$	$\mathrm{H}(10)$	128	-74 -	-240			
* In the form: $T=\exp \left[-\left(\beta_{11} h^{2}+\beta_{12} h k+\beta_{13} h l+\beta_{22} k^{2}+\beta_{23} h l+\beta_{33} l^{2}\right)\right]$									

Table 2
Fractional co-ordinates $\left(\times 10^{4}\right)$ and anisotropic temperature parameters $\left(\times 10^{4}\right)^{*}$ for (II), with estimated standard

	x	y	z	β_{11}	β_{12}	β_{13}	β_{22}	β_{23}	β_{33}
Co	1697(1)	1120 (1)	1352(1)	39-4(4)	1(1)	-9(1)	32•6(3)	0 (1)	$53 \cdot 4(5)$
Cl	1028(1)	994(1)	3393(1)	$79(1)$	$-20(2)$	17(2)	50(1)	-4(2)	59 (1)
N(5)	2359(5)	1222(4)	-402(4)	74(4)	4(7)	$11(7)$	54(3)	--1(6)	$50(3)$
$\mathrm{O}(1)$	4214(4)	1280 (4)	2320(5)	56(3)	7 (5)	$-53(7)$	$55(3)$	$30(6)$	113(4)
$\mathrm{O}(2)$	-64(4)	2704(4)	841 (6)	$56(3)$	40 (5)	-40(8)	$52(3)$	4(7)	147(6)
$\mathrm{O}(3)$	-856(4)	952(3)	475(5)	46(3)	$12(5)$	-42(6)	$59(3)$	$-1(6)$	101 (4)
$\mathrm{O}(4)$	3460(4)	-476(4)	1848(5)	$49(3)$	$30(5)$	-4(7)	$58(2)$	$34(6)$	116 (5)
$\mathrm{N}(1)$	$3168(4)$	1782(4)	1946(5)	$49(3)$	0 (6)	$-21(7)$	50(3)	8(6)	71 (4)
$\mathrm{N}(2)$	$1106(4)$	2470 (4)	1262(5)	56(3)	15(5)	-6(8)	30(2)	6(6)	84(4)
N(3)	210 (4)	446(4)	$743(5)$	41 (3)	$-14(5)$	$-13(7)$	44(2)	$-5(6)$	76(4)
N(4)	2276(4)	$-237(4)$	1423(5)	58(4)	-4(5)	$-5(7)$	45(2)	-8(6)	62 (4)
C(1)	4148(7)	3417(6)	2561(7)	81 (5)	-62(8)	$-45(10)$	64(4)	-2(9)	94(6)
C(2)	$3112(5)$	2748(5)	2049(6)	54(4)	$-17(7)$	$-5(8)$	48 (3)	$-4(7)$	69(4)
C(3)	1879(6)	3170 (4)	1598(6)	$71(5)$	$-13(6)$	20 (8)	41 (3)	12(6)	69(5)
C(4)	1597(7)	4287(5)	1516(8)	$99(6)$	$-9(8)$	19(13)	38(3)	$-10(8)$	118(7)
C(5)	-785 (6)	$-1193(5)$	148(7)	76 (5)	$2(8)$	$-14(10)$	48(3)	$-16(9)$	104(6)
C(6)	274(5)	-529(4)	612(5)	67(5)	0 (6)	13(8)	36(3)	0 (6)	62(4)
C(7)	1518(6)	-932(4)	1019 (6)	$78(5)$	$-23(7)$	23(8)	$44(3)$	6 (6)	$66(4)$
C(8)	1870 (8)	$-2038(5)$	960(8)	114(7)	$8(9)$	20(13)	38(3)	6(8)	120(7)
O(W)	3206(5)	6747(5)	3379 (6)	96(4)	$13(9)$	33(11)	93(4)	-8(11)	146(6)

Hydrogen atom co-ordinates $\left(\times 10^{3}\right)$; hydrogen atoms are numbered according to the carbon atom to which they are bonded

	x	y	z		x	y	z		x	y	z
$1-\mathrm{H}(1)$	497	295	284	$2-\mathrm{H}(8)$	182	-229	-2	2-H(N5)	193	70	-96
2-H(1)	381	382	341	3-H(8)	125	-247	156	3-H(N5)	330	111	-40
$3-\mathrm{H}$ (1)	444	396	184	1-H(5)	-49	-198	15	HA	385	60	220
$1-\mathrm{H}(4)$	243	471	183	$2-\mathrm{H}(5)$	-103	-97	-83	HB	-30	205	50
$2-\mathrm{H}(4)$	79	447	211	$3-\mathrm{H}(5)$	-161	-108	76	1-H(OW)	270	620	360
$3-\mathrm{H}(4)$	139	449	52	1-H(N5)	217	193	-75	$2-\mathrm{H}(\mathrm{OW})$	420	635	350
1-H(8)	286	-210	129								

* See footnote to Table 1.

Calculations.-All calculations were carried out on a CDC 6200 computer, with programs described in ref. 6. A local program was used to obtain best molecular planes, whose equations were calculated according to ref. 7.

Figure 1 Numbering scheme for the atoms of $\mathrm{CoCl}(\mathrm{dmg})_{2^{-}}$ $\left(\mathrm{PPh}_{3}\right)$, (I), with the most significant bond lengths; estimated standard deviations are in parentheses. The numbering scheme for the triphenylphosphine carbon atoms is given in Figure 3

Figure 2 Numbering scheme for the atoms of $\mathrm{Cl}(\mathrm{dmg})_{2} \mathrm{Co}\left(\mathrm{NH}_{3}\right)$, (II), with the bond lengths; estimated standard deviations are in parentheses

RESULTS AND DISCUSSION

cis-Influence and Equatorial Ligand.-The overall molecular structures reveal no surprises, confirming the expected trans-geometry of both molecules. The most significant bond lengths are shown in Figures 1 and 2. As far as the equatorial ligand $(\mathrm{dmg})_{2}(\mathrm{dmg}=$ dimethylglyoximato) is concerned, no significant differences are found between the two molecules. The mean values of chemically equivalent bond lengths and the corresponding calculated bond order according to the Bernstein equation ${ }^{8}$ are given in Table 3 together with those of the related $\left[\mathrm{Co}^{\mathrm{III}}(\mathrm{dmg})_{2}\left(\mathrm{PhNH}_{2}\right)_{2}\right] \mathrm{Cl}^{4}$ and $\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{2}\right) \mathrm{Co}^{\mathrm{III}}(\mathrm{dmg})_{2}(\mathrm{py})$ compounds. ${ }^{3}$ The values of $\mathrm{C}-\mathrm{C}$ bond lengths found in the first two molecules correspond to a nearly single bond order, cf. the mean value of $1.482 \AA$ from recent accurate measurement for the single $\mathrm{C}\left(s p^{2}\right)-\mathrm{C}\left(s p^{2}\right)$ bond, ${ }^{9}$ whereas the $\mathrm{C}-\mathrm{N}$ bond

[^0]order is $>\mathbf{1 . 5}$. This result is in agreement with that found in $\mathrm{Cu}(\mathrm{dmg})_{2} .^{10}$ As the σ-donor power of the axial ligand increases (for dianiline and then to organometallic derivatives) the $\mathrm{C}-\mathrm{C}$ bond lengths appear to shorten and finally, in the organometallic derivative, the $\mathrm{N}-\mathrm{O}$ bond to lengthen, whereas the $\mathrm{N}-\mathrm{C}$ bond length does not change significantly. This may imply a significant (at bond-length level) influence of an axial σ-bonded ligand on the equatorial $(\mathrm{dmg})_{2}$ group. An analogously shorter $\mathrm{C}-\mathrm{C}$ bond length $[1.452(9) \AA]$ is found ${ }^{11}$ for a similar equatorial ligand in $\mathrm{Me}_{2} \mathrm{Co}^{\mathrm{III}} \mathrm{L}$ where $\mathrm{L}=1,3$-bis(diacetylmonoximeimino)propane mono-anion.

If such differences are significant, the structural results would be in agreement with those of theoretical calculations carried out ${ }^{\mathbf{1 2}}$ on such molecules having axial substituents with different σ-donor power. These calculations lead us to conclude that the electronic charge donated by the axial ligand on the metal is partly spread over the atoms of chelate rings, essentially by delocalized π-orbitals. We suggest that here delocalization may also be extended to the rings containing the hydrogen bonds. This idea may be supported by the results for $\left[\mathrm{ClRh}{ }^{\text {III }}(\mathrm{dmgH})(\mathrm{dmg})\left(\mathrm{PPh}_{3}\right)\right] \mathrm{Cl},{ }^{13}$ where one $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ bridge is broken by protonation and the corresponding $\mathrm{Rh}-\mathrm{N}$ distances are $2.094(3)$ and $2.091(4)$, whereas they are $1.993 \AA$ on the side of the other $\mathrm{O} \cdots \mathrm{H} \cdot \mathrm{O}$ bridge.

Unfortunately, the accuracy and the number of structural data do not allow any conclusion to be made, but further data on σ-carbon-bonded dimethylglyoximate compounds may give an answer.

No significant differences in $\mathrm{O} \cdots \mathrm{O}$ distances are detectable between (I) and (II), in both of which the hydrogen bridge appears to be asymmetric, from an analysis of the difference-Fourier synthesis, although the $\mathrm{N}-\mathrm{O}$ distances are all similar. On the contrary the $\mathrm{O} \cdot \mathrm{O}$ distance is strongly dependent upon the metalnitrogen distance, i.e. the nature of the metal atom, being 2.50 in $\mathrm{Co}^{\mathrm{III}}$ complexes and $2.70 \AA$ in $\mathrm{Rh}^{\mathrm{III}}$ complexes. ${ }^{14,15}$ Table 4 lists the $\mathrm{O} \cdots \mathrm{O}$ and $\mathrm{M}-\mathrm{N}$ distances and the bond angles of the $M(d m g)_{2}$ unit for different metal atoms M. The bond angles are shown to be nearly independent of the nature of the metal, so that the strength (i.e. the length) of the $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ bridge appears to be related mainly to the length of the co-ordination distances.
trans-Influence and Axial Ligands.-As far as the axial distances are concerned, the trans-influence of the phosphine ligand on the trans-chlorine atom is significantly greater, although of little amount, than that of the ammonia molecule. However the trans-influencing power of these two ligands is far less than that of a σ-carbon-bonded group. In fact the $\mathrm{Co}-\mathrm{Cl}$ distance
${ }^{12}$ G. De Alti, V. Galasso, A. Bigotto, and G. Costa, Inorg. Chim. Acta, 1969, 3, 533.
${ }^{13}$ A. Chiesi Villa, A. Gaetani Manfredotti, and C. Guastini Cryst. Struct. Comm., 1973, 2, 133.
${ }_{14}$ F. A. Cotton and J. G. Norman, jun., J. Amer. Chem. Soc., 1971, 93, 80.
${ }^{15}$ A. Chiesi Villa, A. Gaetani Manfredotti, and C. Guastini, Cryst. Struct. Comm., 1973, 2, 129.
in (II) is $2 \cdot 251(1)$, nearly coincident with that of 2.256(3) reported for trans-dichlorobis(diarsine)cobalt(III) chloride, ${ }^{16}$ whereas it is $2 \cdot 277(3) \AA$ for (I).

A larger value of $2 \cdot 380$ (4) \AA for the $\mathrm{Co}^{-}-\mathrm{Cl}$ distance is found in the protonated cobaloxime $\mathrm{ClCo}^{\text {III }}(\mathrm{dmg})$ $(\mathrm{dmgH}) \mathrm{Et},{ }^{17}$ although this compound has a different equatorial ligand. However for this type of octahedral cobalt compound the equatorial ligand has little, if any, effect on the axial distance. ${ }^{18}$ Such a strong influence of a σ-carbon-bonded group has already been found ${ }^{19}$ in the dimeric $\left[\mathrm{Co}^{\mathrm{III}}(\text { salen }) \mathrm{X}\right]_{2}[$ salen $=$ dianion of bis-(salicylaldehyde)ethylenedi-imine] where $\mathrm{Co}^{-} \mathrm{O}$ was
significantly from the values for $\mathrm{Co}-\mathrm{N}(\mathrm{py})[2 \cdot 040(6)]^{3}$ and $\mathrm{Co}-\mathrm{NH}_{2} \mathrm{Ph}[2 \cdot 001 \AA]^{4}$ in which, respectively, a σ-carbon-bonded group and a $\mathrm{NH}_{2} \cdot \mathrm{Ph}$ base are present in the trans position. The following trend is obtained,

	trans to	Distance $/ \AA$
$\mathrm{Co}-\mathrm{N}\left(s p^{3}\right)$	Cl	$1.965(4)$
$\mathrm{Co}-\mathrm{N}\left(s p^{2}\right)$	Cl	$1.97(2)$
$\mathrm{C}-\mathrm{N}\left(p^{3}\right)$	$\mathrm{NH}_{2} \mathrm{Ph}$	$2.001(5)$
$\mathrm{Co}-\mathrm{N}\left(s p^{2}\right)$	$-\mathrm{CH}_{2} \mathrm{R}$	$2.040(6)$

which follows that of the increasing σ-donor power of the trans-influencing ligand, on changing from Cl to an organic group. In the last two compounds, making

Table 3
Mean values of chemically equivalent bond lengths (\AA), with their standard deviations in parentheses, and in square brackets calculated $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{N}$, and $\mathrm{N}-\mathrm{O}$ bond orders* for the dmg moiety. Values for free glyoxime are reported for comparison

	(1)	(II)	$\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{2}\right) \mathrm{Co}{ }^{\text {III }}$ (dmg) $)_{2}$ (py)	$\left[\left(\mathrm{PhNH}_{2}\right) \mathrm{Corir}(\mathrm{dmg})_{2}\left(\mathrm{NH}_{2} \mathrm{Ph}\right)\right] \mathrm{Cl}$	Glyoxime \dagger
C-C	$1.485(15)$ [1.05]	$1.483(6)[1.06]$	$1 \cdot 460(10)[1 \cdot 15]$	$1 \cdot 470(14)[1 \cdot 11]$	1-449(6) [1-20]
$\mathrm{C}-\mathrm{N}$	$1 \cdot 300(14)$ [$1 \cdot 68$]	$1.282(4)[1.77]$	$1.285(12)$ [1.76$]$	$1.295(7)[1.70]$	$1.284(5)[1.77]$
$\mathrm{N}-\mathrm{O}$	$1 \cdot 343(9)[1.43]$	1-346(10) [1-40]	1-373(12) [1/29]	$1 \cdot 340$ (14) [1-42]	$1 \cdot 397(5)[1.21]$

* The equation used for calculating bond orders is $-4 \cdot 192 \log \left(\frac{3 R}{R^{1}}-2\right)$, where R is the actual distance and R^{1} the single-bond distance, taken as C-N 1-45, C-C 1-50, and N-O $1.44 \AA$. † From M. Calleri, G. Ferraris, and D. Viterbo, Acta Cryst., 1966, 20, 73.

Table 4

$\mathrm{O} \cdots \mathrm{O}$ and $\mathrm{M}-\mathrm{N}$ distances (\AA) and ring bond angles $\left({ }^{\circ}\right)$ of some metal-glyoxime complexes. Estimated standard deviations of each individual measurement are given in parentheses. The numbering scheme is the same as that of Figure 1

	$\mathrm{O} \cdot \cdots \mathrm{O}$	$\mathrm{M}-\mathrm{N}$	$\mathrm{N}(1)-\mathrm{M}-\mathrm{N}(4)$	$\mathrm{N}(1)-\mathrm{M}-\mathrm{N}(2)$	$\mathrm{M}-\mathrm{N}(1)-\mathrm{C}(1)$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$\mathrm{M}-\mathrm{N}(1)-\mathrm{O}(1)$	$\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{C}(1)$	d_{M} / \AA
$\mathrm{ClCoIII}(\mathrm{dmg})_{2}\left(\mathrm{NH}_{3}\right){ }^{\text {a }}$	$\begin{aligned} & 2 \cdot 491(7) \\ & 2 \cdot 480(7) \end{aligned}$	1.890(5)	98.9(2)	81-2(2)	117.0(3)	112.4(4)	122.3(4)	$120 \cdot 6(5)$	$0 \cdot 005$
$\mathrm{ClCoIII}(\mathrm{dmg})_{2}\left(\mathrm{PPh}_{3}\right)_{a}$	$\begin{aligned} & 2 \cdot 49(1) \\ & 2 \cdot 50(1) \end{aligned}$	1.89(1)	98.7(2)	$81 \cdot 3(5)$	117.4(9)	112(1)	122.9(8)	120(1)	$0 \cdot 050$
$\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{2}\right) \mathrm{CoIII}(\mathrm{dmg})_{2}$ (py) 6	$\begin{aligned} & 2 \cdot 51(1) \\ & 2 \cdot 49(1) \end{aligned}$	1-880(6)	99.7(3)	80.3(3)	117.7(6)	$111 \cdot 8(6)$	$122 \cdot 2(6)$	120.6(6)	
$\left(\mathrm{PhNH}_{2}\right) \mathrm{CoIII}(\mathrm{dmg})_{2}\left(\mathrm{NH}_{2} \mathrm{Ph}\right){ }^{\text {c }}$	2.488(7)	$1.887(5)$	$99 \cdot 2(3)$	$80 \cdot 8(3)$	$117.3(9)$	112.3(9)	1.22 1 (6)	121(1)	
$\mathrm{CuII}(\mathrm{dmg})_{2}{ }^{\text {a }}$	$\begin{aligned} & 2.526(5) \\ & 2.694(5) \end{aligned}$	$1.953(5)$	97.7(2)	$80 \cdot 5(2)$	116.2(3)	113.4(4)	$123 \cdot 3(3)$	120.4(4)	0
$(\mathrm{im}) \mathrm{FeII}(\mathrm{dmg})_{2}(\mathrm{im}) e$	$2.588(8)$	$1 \cdot 905(6)$	99.6(2)	80.4(6)	117.6(5)	$112 \cdot 1(8)$	123.5(5)	118.8(6)	0.310
CIRhIII (dmg) ${ }_{2}\left(\mathrm{PPh}_{3}\right) f$	$\begin{aligned} & 2 \cdot 709(6) \\ & 2 \cdot 618(6) \end{aligned}$	1-992(4)	$100 \cdot 5(2)$	$79 \cdot 6(2)$	115-9(2)	114.2(2)	121-1(3)		0.126
$\mathrm{ClRhIII}(\mathrm{dmg})_{2}\left(\mathrm{SbPh}_{3}\right)^{\prime}$	$\begin{aligned} & 2 \cdot 70(1) \\ & 2 \cdot 61(1) \end{aligned}$	1-98(1)	100.4(4)	$79 \cdot 5(4)$	116.4(8)	114(1)	$121 \cdot 2(8)$	123(1)	
$\mathrm{NiII}(\mathrm{EtMeg})_{4} h$	$2 \cdot 454(5)$	$1 \cdot 962(4)$	$97.5(2)$	$82 \cdot 5(2)$	116.3(3)	$112 \cdot 5(4)$	123.9(4)	119.9(4)	0
$\mathrm{NiIl}^{\mathrm{Ni}}(\mathrm{g})_{2}{ }^{\text {d }}$	2.453(6)	$1.874(5)$	$97.8(2)$ $99.7(4)$	$82 \cdot 2(2)$ $80 \cdot 3(4)$	115.4(3)	$113 \cdot 6(5)$	$123 \cdot 3(6)$	$121 \cdot 4(7)$	
$\operatorname{PdII}\left(\mathrm{g}_{4}{ }^{3}\right.$	$2 \cdot 60(1)$ $2 \cdot 66(1)$	$1 \cdot 955(8)$ $1 \cdot 970(8)$	$99 \cdot 7(4)$ $99.7(4)$	$80 \cdot 3(4)$ $80 \cdot 3(4)$	$115 \cdot 8(7)$ $115 \cdot 7(7)$	$113 \cdot 4(9)$ $114.2(9)$	$121 \cdot 9(7)$ $122 \cdot 3(7)$	$122 \cdot 4(9)$ $122 \cdot 2(9)$	0

 C. V. Banks, and R.A. Jacobson, Acta Cryst., 1972, B28, 2318 . © M. Calleri, G. Ferraris, and D. Viterbo, Acta Cryst., 1967, 22,468 . j M. Calleri, G. Ferraris, and D. Viterbo, Inorg. Chim. Acta, 1967, 1, 297; in this paper the two crystallographically non-independent molecules appear to have significantly different geometries.

Ligand abbreviations: $\mathrm{im}=$ imidazole, $g=$ glyoximato, EtMeg $=$ ethylmethylglyoximato.
$2 \cdot 342(3)$ for $\mathrm{X}=\mathrm{CH}_{2} \mathrm{Me}$ and $2 \cdot 00(\mathrm{l}) \AA$ for $\mathrm{X}=\mathrm{Cl}$. The values of these distances follow the same trend as the $\mathrm{p} K_{\mathrm{a}}$ values of reaction (1), which are 6.98 for

$$
\begin{equation*}
\left[\mathrm{H}_{2} \mathrm{OCo}(\mathrm{dmg})_{2} \mathrm{~L}\right]^{+} \rightleftharpoons \mathrm{HO} \cdot \mathrm{Co}(\mathrm{dmg})_{2} \mathrm{~L}+\mathrm{H}^{+} \tag{1}
\end{equation*}
$$

$\mathrm{L}=\mathrm{NH}_{3}$ and $7 \cdot 10$ for $\mathrm{L}=\mathrm{PPh}_{3} .{ }^{2}$ On the other hand $\mathrm{p} K_{\mathrm{a}}$ for ammonia is $9 \cdot 27$ whereas that for the phosphine ligand is 3.05 .

The $\mathrm{Co}^{-}-\mathrm{NH}_{3}$ distance $[1.965(4) \AA]$ does not differ from the less accurate $\mathrm{Co}-\mathrm{N}(\mathrm{py})$ value $[1 \cdot 97(2) \AA]$ found for cis-[1,12-bis(methylglyoximato)dodecane]chloro(pyridine)cobalt(III), ${ }^{20}$ a chlorine atom being trans to the nitrogen base in both cases. However, they differ
${ }_{16}$ P. K. Bernstein, G. A. Rodley, R. Marsh, and H. B. Gray, Inorg. Chem., 1971, 11, 3040.
${ }_{17}$ A. L. Crumbliss, J. T. Bowman, P. L. Gaus, and A. T. McPhail, J.C.S. Chem. Comm., 1973, 415.
${ }^{18}$ M. Calligaris, G. Nardin, and L. Randaccio, J.C.S. Dalton, 1972, 1433.
allowance for the different σ-covalent radii of the hybridized nitrogen atom, the particularly strong transinfluence of the σ-bonded organic group again appears.

The Co ${ }^{\text {III }}-\mathrm{P}$ distance $[2 \cdot 327(4) \AA]$ compares well with the sum of the radii $(2 \cdot 32 \AA)$ assuming ${ }^{21}$ cobalt(III) atom to have the normal octahedral radius of 1.22 and phosphorus the tetrahedral radius of $1 \cdot 10 \AA$. It is comparable with values reported for a series of five-co-ordinate cobalt(11) complexes ${ }^{22}$ in which $\mathrm{Co}^{-} \mathrm{P}$ ranges from $2 \cdot 31$ to $2 \cdot 40 \AA$. Surprisingly the CoIII-P distance has the same value $[2 \cdot 327(1) \AA]$ as the $\mathrm{Rh}-\mathrm{P}$ distance in

[^1]the analogous $\mathrm{ClRh}^{\mathrm{III}}(\mathrm{dmg})_{2}\left(\mathrm{PPh}_{3}\right){ }^{14}$ whereas the corresponding $\mathrm{Co}^{-}-\mathrm{Cl}$ and $\mathrm{Rh}-\mathrm{Cl}$ distances are $2 \cdot 277(4)$ and $2 \cdot 381(1) ~ \AA$ respectively. Such a comparison suggests that the $\mathrm{Co}^{-} \mathrm{P}$ bond has little double-bond character. In addition, the steric interaction of the phosphine ligand with the rigid equatorial ligand may be responsible for the lengthening of the $\mathrm{Co}-\mathrm{P}$ bond.

Conformational Aspects.--Figure 3 shows a side view of the molecules of (I) and (II). The $\mathrm{Co}(\mathrm{dmg})_{2}$ units

O Co
웂ㅇ Cl
OP
0 N
0 O
0 C

Figure 3 A side view of molecules of (a) (I) and (b) (II), showing the numbering scheme for the phosphine carbon atoms
are both nearly planar, with only slight differences in the fine points of their geometry. In (II) the four nitrogen donor atoms are coplanar ($\pm 0.002 \AA$) with Co essentially in their mean plane, being displaced from it by only $0.005 \AA$, whereas in (I) the cobalt atom is displaced $0.05 \AA$ towards the P atom from the plane of the four coplanar nitrogen atoms $(\pm 0 \cdot 004 \AA)$. In both molecules the cobalt atom has a slightly distorted octahedral stereochemistry. The $\mathrm{ClRh}^{\mathrm{III}}(\mathrm{dmg})_{2}\left(\mathrm{PPh}_{3}\right)$ analogue ${ }^{14}$ show a more marked displacement of the rhodium atom $(0.126 \AA)$ from the plane of its four nitrogen donor atoms. Furthermore the planes passing through the atoms of the two dmg units make an angle of $\mathbf{1 7 \cdot 1}$, their angles with the plane of the four nitrogen donor atoms being 10.6 and $7 \cdot 1$ * in the rhodium compound. For the cobalt complex the corresponding values are $6 \cdot 0,4 \cdot 3$, and $1 \cdot 6^{\circ}$, which do not differ from the corresponding values for (II) which are $3 \cdot 7,3 \cdot 0$, and $1 \cdot 3^{\circ}$. The weighted leastsquares planes are listed in Table 5. The slight dis-

Table 5
Equation of least-squares planes and, in square brackets, distances (\AA) of atoms from the planes. The equations are referred to the crystal axes and x, y, z are fractional co-ordinates
(a) $\mathrm{ClCo}(\mathrm{dmg})_{2}\left(\mathrm{PPh}_{3}\right)$, (I)

Plane (1): $\mathrm{Co}, \mathrm{O}(1), \mathrm{O}(2), \mathrm{N}(1), \mathrm{N}(2), \mathrm{C}(1)-(4)$
$3 \cdot 742 x+10 \cdot 141 y+7 \cdot 105 z=2 \cdot 568$
$[\mathrm{Co}-0.018, \mathrm{O}(1)-0.036, \mathrm{O}(2) \quad 0.070, \mathrm{~N}(1)-0.009$, $\mathrm{N}(2) \quad-0.009, \mathrm{C}(1) \quad 0.074, \mathrm{C}(2) \quad 0.016, \mathrm{C}(3) 0.005, \mathrm{C}(4)$ -0.092]
Plane (2): $\mathrm{Co}, \mathrm{O}(3), \mathrm{O}(4), \mathrm{N}(3), \mathrm{N}(4), \mathrm{C}(5)-(8)$ $3 \cdot 485 x+9 \cdot 115 y+7 \cdot 891 z=2 \cdot 400$
$\left[\begin{array}{llll}\mathrm{Co} 0.032, & \mathrm{O}(3) & 0.003, \mathrm{O}(4)-0.006, \mathrm{~N}(3)-0.039, N(4)\end{array}\right.$ $-0.009, \mathrm{C}(6)-0.011, \mathrm{C}(7) 0.009, \mathrm{C}(5) 0.018, \mathrm{C}(8) 0.001]$
Plane (3): Co, N(1) - (4)
$3.648 x+9.875 y+7.330 z=2.569$
$[\mathrm{Co}-0.050, \mathrm{~N}(1) 0.004, \mathrm{~N}(3)-0.004, \mathrm{~N}(2) 0.004, \mathrm{~N}(4)$ $-0.004]$
Plane (4): C(9)-(14)
$1.339 x+12.995 y+4.255 z=0.384$
$[\mathrm{C}(9)-0.013, \mathrm{C}(10) 0.012, \mathrm{C}(11) 0.001, \mathrm{C}(12)-0.012$, $\mathrm{C}(13) 0.011, \mathrm{C}(14) 0.001]$
Plane (5): C(15)-(20)

$$
15.022 x+5.562 y+3.113 z=0.819
$$

$[\mathrm{C}(15) 0.003, \mathrm{C}(16) 0.025, \mathrm{C}(17)-0.038, \mathrm{C}(18) 0.020, \mathrm{C}(19)$ $0.009, \mathrm{C}(20)-0.019]$
Plane (6): C(21)-(26)

$$
-1.081 x+5.699 y+9.741 z=-0.402
$$

$[\mathrm{C}(21)-0.012, \mathrm{C}(22) \quad 0.036, \mathrm{C}(23)-0.033, \mathrm{C}(24) \quad 0.005$, $\mathrm{C}(25) 0.019, \mathrm{C}(26)-0.015]$
(b) $\mathrm{ClCo}(\mathrm{dmg})_{2}\left(\mathrm{NH}_{3}\right)$, (II)

Plane (1): $\mathrm{O}(1), \mathrm{O}(2), \mathrm{N}(1), \mathrm{N}(2), \mathrm{C}(1)-(4)$

$$
-3.764 x-0.816 y+9.733 z=0.590
$$

$[\mathrm{Co}-0.004, \mathrm{O}(1)-0.023, \mathrm{O}(2) 0.032, \mathrm{~N}(1)-0.034, \mathrm{~N}(2)$
$0.020, \mathrm{C}(1) 0.062, \mathrm{C}(2) 0.009, \mathrm{C}(3)-0.001, \mathrm{C}(4)-0.066]$
Plane (2): $\mathrm{O}(3), \mathrm{O}(4), \mathrm{N}(3), \mathrm{N}(4), \mathrm{C}(5)-(8)$

$$
-3.622 x-1.639 y+9.720 z=0.600
$$

$[\mathrm{Co}-0.084, \mathrm{O}(3) \quad 0.016, \mathrm{O}(4) \quad 0.022, \mathrm{~N}(3)-0.027, \mathrm{~N}(4)$ $-0.002, \mathrm{C}(5) \quad 0.029, \mathrm{C}(6)-0.017, \mathrm{C}(7)-0.006, \mathrm{C}(8)$ $-0.010]$
Plane (3): $\mathrm{N}(1)-(4)$

$$
-3.556 x-0.954 y+9.801 z=0.610
$$

$\left[\begin{array}{llll}\mathrm{Co} & 0.005, & \mathrm{~N}(1) & 0.002\end{array} \mathrm{~N}(2)-0.002, \mathrm{~N}(3) \quad 0.002, \mathrm{~N}(4)\right.$ $-0.002]$

TABLE 6
Intermolecular distances $(\AA)<3.5 \AA$ in (II)

$\mathrm{N}(5) \cdots \mathrm{O}\left(2^{\mathrm{IV}}\right)$	$3 \cdot 095(7)$	$\mathrm{O}(3) \cdots \mathrm{C}\left(4^{\mathrm{V}}\right)$	$3 \cdot 410(9)$
$\mathrm{N}(5) \cdots \mathrm{O}\left(\mathrm{WIII}^{\mathrm{III}}\right)$	$3 \cdot 017(8)$	$\mathrm{O}(4) \cdots \mathrm{N}\left(5^{\mathrm{II}}\right)$	$3 \cdot 155(7)$
$\mathrm{O}(1) \cdots \mathrm{C}\left(5^{\mathrm{II}}\right)$	$3 \cdot 388(9)$	$\mathrm{N}(2) \cdots \mathrm{O}\left(\mathrm{W}^{\mathrm{III}}\right)$	$3 \cdot 263(8)$
$\mathrm{O}(2) \cdots \mathrm{O}\left(\mathrm{W}^{\mathrm{III}}\right)$	$3 \cdot 312(8)$	$\mathrm{C}(1) \cdots \mathrm{O}\left(4^{\mathrm{VII}}\right)$	$2 \cdot 976(9)$
$\mathrm{O}(3) \cdots \mathrm{C}\left(1^{\mathrm{V}}\right)$	$3 \cdot 277(9)$	$\mathrm{C}(8) \cdots \mathrm{O}\left(\mathrm{W}^{\mathrm{I}}\right)$	$3 \cdot 303(10)$
$\mathrm{O}(3) \cdots \mathrm{C}\left(2^{\mathrm{V}}\right)$	$3 \cdot 324(8)$	$\mathrm{O}(\mathrm{W}) \cdots \mathrm{O}\left(1^{\mathrm{VII}}\right)$	$2 \cdot 882(7)$
$\mathrm{O}(3) \cdots \mathrm{C}\left(3^{\mathrm{V}}\right)$	$3 \cdot 423(8)$	$\mathrm{O}(\mathrm{W}) \cdots \mathrm{O}\left(3^{\mathrm{VI}}\right)$	$2 \cdot 943(7)$

Superscripts refer to the following equivalent positions, relative to the reference molecule at x, y, z :

$$
\begin{array}{lc}
\text { I } x,-1+y, z & \text { V }-\frac{1}{2}+x, \frac{1}{2}-y,-z \\
\text { II } \frac{1}{2}-x,-y,-1+z & \text { VI }-x, \frac{1}{2}+y, \frac{1}{2}-z \\
\text { III } \frac{1}{2}-x, 1-y,-\frac{1}{2}+z & \text { VII } 1-x, \frac{1}{2}+y, \frac{1}{2}-z \\
\text { IV } \frac{1}{2}+x, \frac{1}{2}-y,-z &
\end{array}
$$

tortion from planarity in all these compounds may be described as an asymmetric 'umbrella-shaped' conformation. The larger co-ordination bond lengths involving the Rh atom, as compared with those of the

Co atom, appear to be responsible for the Rh being out-of-plane, the in-plane position requiring a too large shift of the two dmg units. If the reactivity were parallelled by such a distortion, the Rh analogue would be expected to have a greater ligand exchange rate than the corresponding cobalt compound.
The phenyl groups are nearly planar and the equations of the best planes passing through the atoms of each group are listed in Table 5.
Intermolecular contacts are as expected in (I). In
(II) there are some particularly short van der Waals distances, in addition to those indicative of hydrogenbond formation, involving the water molecule of crystallization, the ammonia molecule, and the oxygen atoms of the dmg units. Intermolecular distances $<3.5 \AA$ are reported in Table 6.

We thank Dr. G. Tauzher for supplying the compounds, and C.N.R., Roma (Italy), for financial support of this work.
[3/1975 Received, 26th September, 1973]

[^0]: ${ }^{6}$ V. Albano, A. Domenicano, and A. Vaciago, Gazzetta, 1966, 96, 922; A. Immirzi, Ricerca Sci., 1967, 10, 846.
 ${ }^{7}$ V. Schomaker, J. Waser, R. F. Marsh, and G. Bergman, Acta Cryst., 1959, 12, 600.
 ${ }^{8}$ H. T. Bernstein, J. Chem. Phys., 1947, 15, 284.
 ${ }^{9}$ M. J. S. Dewar and H. N. Schmeising, Tetrahedron, 1960, 11, 96.

 10 A. Vaciago and L. Zambonelli, J. Chem. Soc. (A), 1970, 218.
 ${ }_{11}$ M. Calligaris, personal communication.

[^1]: ${ }^{19}$ M. Calligaris, G. Nardin, and L. Randaccio, Co-ordination Chem. Rev., 1972, 7, 385.
 ${ }_{20}$ M. W.' Bartlett and J. D. Dunitz, Helv. Chim. Acta, 1971, 54, 2753.
 ${ }^{21}$ L. Pauling, 'The Nature of Chemical Bond,' Cornell University Press, Ithaca, New York, 1969.
 ${ }^{22}$ L. Sacconi, Co-ordination Chem. Rev., 1972, 8, 351; P. L. Orioli, ibid., 1971, 6, 285.

