## Crystal Structure of Dicarbonyl( $\pi$-cyclopentadienyl)(pentafluoro-phenylsulphonyl-S)iron

By Alan D. Redhouse, Department of Chemistry and Applied Chemistry, University of Salford, Salford M5 4WT


#### Abstract

The product of the reaction between $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SO}_{2} \mathrm{Cl}$ and the anion $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right.$ ]- is the air-stable compound $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SO}_{2} \mathrm{Fe}(\mathrm{CO})_{2}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)$. This orange complex crystallizes in the monoclinic system, space group $P 2_{1} / c$, $a=10 \cdot 97(2) \cdot b=12 \cdot 12(2), c=12 \cdot 06(2) \AA, \beta=117 \cdot 6(2)^{\circ}, Z=4$. The crystal structure analysis based on 754 non-zero independent reflections has resulted in a final $R 10 \cdot 7 \%$ and shows the compound to be an $S$-sulphinatocomplex.


A large number of transition metal sulphinate complexes have been prepared by sulphur dioxide insertion into a metal-carbon $\sigma$ bond with the subsequent formation of a metal-sulphur linkage. ${ }^{1}$ However this method was not successful in the preparation of $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SO}_{2} \mathrm{Fe}$ -$(\mathrm{CO})_{2}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (I) which was prepared by nucleophilic attack on $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{SO}_{2} \mathrm{Cl}$ using the anion $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\right]^{-2}$. This investigation was carried out in order to confirm the presence of the $S$-sulphinato-group and to provide structural information to support the interpretation of the ${ }^{19} \mathrm{~F}$ n.m.r. spectrum of the compound reported previously. ${ }^{3}$

## EXPERIMENTAL

Crystal Data.- $\mathrm{C}_{13} \mathrm{H}_{5} \mathrm{~F}_{5} \mathrm{FeO}_{4} \mathrm{~S}, M=408$, Monoclinic, $a=$ $10 \cdot 97(2), b=12 \cdot 12(2), c=12 \cdot 06(2) \AA, \beta=117 \cdot 6(2)^{\circ}, U=$ $1420 \AA^{3}, D_{\mathrm{m}}=1.90 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4, D_{\mathrm{c}}=1.91 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=808, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=13.2 \mathrm{~cm}^{-1}$, data layers $0-2 k l$, $h k 0-2$, Space group, $P 2_{1} / c\left(C_{2 h}^{5}\right.$, No. 14), crystal dimensions ca. $0.5 \times 0.1 \times 0.07 \mathrm{~mm}$. A total of 893 independent reflections was recorded by visual estimation from precession photographs taken with Mo- $K_{\alpha}$ radiation $(\lambda=$ $0.7107 \AA$ ). Of these 139 were found to be too weak to be estimated by the visual technique employed. No correction was made for absorption.

The structure was solved by standard heavy-atom procedures and refined by using full-matrix least-squares methods. All atoms were refined with isotropic thermal parameters, and in the final calculations hydrogen atoms in positions calculated using the cyclopentadienyl group were incorporated into the model. The positional and thermal
${ }^{1}$ J. P. Bibler and A. J. Wojcicki, J. Amer. Chem. Soc., 1966, 88, 4862.
parameters of the hydrogen atoms were not refined. The final weighting scheme was $w=\left(7+0.3 F_{0}+0.001 F_{0}{ }^{2}\right)^{-1}$ which gave a satisfactory analysis of $w \Delta^{2}$ in ranges of $F_{0}$ and $(\sin \theta / \lambda)^{2}$. The final value of $R$ over 754 non-zero reflections was $\mathbf{1 0 . 7} \%$ and a final difference map revealed no fluctuations greater than $\pm 1 \mathrm{e}^{-3}{ }^{-3}$.
All calculations were carried out on the Salford University KDF 9 computer using local versions of programs written for the KDF 9 by J. S. Rollett and G. Ford.

## RESULTS

The final atomic co-ordinates and thermal parameters with their standard deviations are given in Table 1. Details of the molecular geometry are given in Table 2 with


Figure 1 View of the molecule showing the numbering system standard deviations in parentheses. Figure 1 indicates the labelling of the atoms. The measured and calculated

[^0]structure factors are listed in Supplementary Publication No. SUP 20976 (5 pp.).*

Table 1
Atomic parameters

| Atom | $x / a$ | $y / b$ | $z / c$ | $U / \lambda^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| Fe | $0 \cdot 1242(3)$ | $0 \cdot 2066(3)$ | -0.1658(2) | $0 \cdot 0415(9)$ |
| S | $0 \cdot 2880$ (3) | $0 \cdot 3071$ (6) | -0.1721(4) | $0 \cdot 0489(14)$ |
| C(1) | $0 \cdot 0855(19)$ | $0 \cdot 3068$ (20) | -0.0837(16) | $0 \cdot 0488(48)$ |
| O(1) | $0 \cdot 0498(15)$ | $0 \cdot 3693(15)$ | -0.0303(13) | $0 \cdot 0764(44)$ |
| C(2) | $0.0055(22)$ | $0 \cdot 2539(20)$ | $-0.3130(19)$ | $0 \cdot 0527(56)$ |
| $\mathrm{O}(2)$ | -0.0741(16) | $0 \cdot 2936(14)$ | -0.4080(14) | $0 \cdot 0762(43)$ |
| $\mathrm{O}(3)$ | $0 \cdot 2407(15)$ | $0 \cdot 4160$ (15) | -0.2208(12) | $0 \cdot 0685(44)$ |
| $\mathrm{O}(4)$ | $0 \cdot 3623(14)$ | $0 \cdot 2498(13)$ | -0.2296(12) | $0 \cdot 0601(41)$ |
| C(3) | $0 \cdot 2577(27)$ | $0 \cdot 0692(28)$ | -0.0962(24) | $0 \cdot 0912(86)$ |
| C(4) | $0 \cdot 1885(25)$ | $0 \cdot 0858(29)$ | -0.0244(21) | $0 \cdot 0791$ (75) |
| C(5) | $0 \cdot 0566(28)$ | $0 \cdot 0776(30)$ | -0.1006(23) | 0.0807(78) |
| C(6) | $0 \cdot 0256(26)$ | $0 \cdot 0528(28)$ | -0.2175(22) | $0 \cdot 0886(78)$ |
| C(7) | $0 \cdot 1521(22)$ | $0 \cdot 0528(23)$ | -0.2202(19) | $0 \cdot 0696(61)$ |
| C(8) | $0 \cdot 4165(18)$ | $0.3331(19)$ | -0.0098(15) | $0 \cdot 0438(42)$ |
| C(9) | $0 \cdot 5332(22)$ | $0 \cdot 2662(23)$ | $0 \cdot 0516(19)$ | $0 \cdot 0549(58)$ |
| C(10) | $0 \cdot 6279(24)$ | $0 \cdot 2863(26)$ | $0 \cdot 1736(21)$ | $0 \cdot 0708(63)$ |
| C(11) | $0 \cdot 6086(23)$ | $0 \cdot 3652(23)$ | $0 \cdot 2377(20)$ | $0 \cdot 0577(57)$ |
| C(12) | $0 \cdot 5016(23)$ | 0.4351 (23) | $0 \cdot 1851(19)$ | 0.0579 (59) |
| C(13) | $0 \cdot 4086(22)$ | $0 \cdot 4178(23)$ | $0.0611(18)$ | $0 \cdot 0587(58)$ |
| $1 \times(9)$ | $0.5567(15)$ | $0 \cdot 1761(15)$ | $-0.0063(14)$ | $0 \cdot 0920(47)$ |
| F(10) | $0 \cdot 7377(16)$ | $0 \cdot 2151(17)$ | $0 \cdot 2302(14)$ | $0.0994(47)$ |
| F(1) | $0 \cdot 7048(13)$ | $0 \cdot 3847(13)$ | $0 \cdot 3604(11)$ | $0 \cdot 0806(38)$ |
| $\mathrm{F}(12)$ | $0 \cdot 4808(15)$ | $0 \cdot 5162(15)$ | $0 \cdot 2491(13)$ | $0 \cdot 0928(48)$ |
| $1 \mathrm{l}(13)$ | $0 \cdot 2977(14)$ | $0 \cdot 4845(15)$ | $0 \cdot 0118(12)$ | $0 \cdot 0895$ (45) |
| $\mathrm{H}(3)$ | $0 \cdot 3679$ | $0 \cdot 0667$ | --0.0647 | $0 \cdot 1$ |
| $\mathrm{H}(4)$ | $0 \cdot 2267$ | $0 \cdot 1102$ | 0.0751 | $0 \cdot 1$ |
| H(5) | -0.0207 | $0 \cdot 0874$ | -0.0676 | $0 \cdot 1$ |
| $\mathrm{H}(6)$ | -0.0763 | 0.0418 | -0.2954 | $0 \cdot 1$ |
| $\mathrm{H}(7)$ | $0 \cdot 1662$ | 0.0404 | $-0.3013$ | $0 \cdot 1$ |

## DISCUSSION

The analysis confirms the descriptions of (I) as an $S$ -sulphinato-complex. The $\mathrm{Fe}^{-} \mathrm{S}$ distance is $2 \cdot 20(1) \AA$ which, if following Churchill ${ }^{4}$ we take the length of an $\mathrm{Fe}-\mathrm{S}$ single bond to be $2 \cdot 38 \AA$, is significantly shorter than the single bond length. This is in accord with the observations made on the structure of $\left[\pi-\mathrm{C}_{5}\left(\mathrm{CH}_{3}\right)_{5}\right] \mathrm{Fe}$ $(\mathrm{CO})_{2} \mathrm{SO}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHC}_{6} \mathrm{H}_{5}{ }^{4}$ where the $\mathrm{Fe}-\mathrm{S}$ bond length is $2 \cdot 218 \AA$.

The $S-C(8)$ bond length is $1 \cdot 83(2) \AA$ and is close to the single bond distance of $1.78 \AA$ calculated from the covalent radii of sulphur ( $1.04 \AA$ ) and $s p^{2}$ carbon ( $0.74 \AA$ ). This fact, together with the short $\mathrm{Fe}-\mathrm{S}$ distance, can be taken to indicate a strong $\pi$-interaction between the iron and sulphur $d$ orbitals, but minimal interaction between the $\pi$ system of the phenyl group and the sulphur $d$ orbitals, and supports the interpretation of the ${ }^{19} \mathrm{~F}$ n.m.r. spectrum of (I). ${ }^{3}$

The co-ordination polyhedron of the iron atom is similar to that found in a number of complexes containing the $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}$ group, i.e. the iron can be considered to be pseudo-octahedrally co-ordinated. The distances of the iron to the cyclopentadienyl carbon atoms range from 2.04 to $2 \cdot 12(4) \AA$, the mean value of which ( $2.08 \AA$ ) compares favourably with the value of $2.04 \AA$ reported by Wheatley ${ }^{5}$ as the mean of a number of

[^1]previous determinations. The other three ligands are disposed around the iron atom in a manner consistent with octahedral co-ordination and the structural parameters associated with the two carbonyl groups are normal. The sulphur has a tetrahedral environment which deviates somewhat from regularity (see Table 2).

## Table 2

(a) Intramolecular distances $/ \AA$ with estimated standard deviations in parentheses

| $\mathrm{Fe}-\mathrm{S}$ | $2 \cdot 201(6)$ | $\mathrm{C}(5)-\mathrm{C}(6)$ | $1 \cdot 32(4)$ |
| :--- | :---: | :--- | :--- |
| $\mathrm{Fe}-\mathrm{C}(1)$ | $1 \cdot 74(2)$ | $\mathrm{C}(6)-\mathrm{C}(7)$ | $1 \cdot 40(4)$ |
| $\mathrm{Fe}-\mathrm{C}(2)$ | $1 \cdot 74(2)$ | $\mathrm{C}(7)-\mathrm{C}(3)$ | $1 \cdot 42(4)$ |
| $\mathrm{Fe}-\mathrm{C}(3)$ | $2 \cdot 12(3)$ | $\mathrm{C}(8)-\mathrm{C}(9)$ | $1 \cdot 40(4)$ |
| $\mathrm{Fe}-\mathrm{C}(4)$ | $2 \cdot 10(3)$ | $\mathrm{C}(9)-\mathrm{C}(10)$ | $1 \cdot 37(3)$ |
| $\mathrm{Fe}-\mathrm{C}(5)$ | $2 \cdot 04(3)$ | $\mathrm{C}(10)-\mathrm{C}(11)$ | $1 \cdot 30(4)$ |
| $\mathrm{Fe}-\mathrm{C}(6)$ | $2 \cdot 10(3)$ | $\mathrm{C}(11)-\mathrm{C}(12)$ | $1 \cdot 34(4)$ |
| $\mathrm{Fe}-\mathrm{C}(7)$ | $2 \cdot 05(3)$ | $\mathrm{C}(12)-\mathrm{C}(13)$ | $1 \cdot 38(3)$ |
| $\mathrm{S}-\mathrm{O}(3)$ | $1 \cdot 44(2)$ | $\mathrm{C}(13)-\mathrm{C}(8)$ | $1 \cdot 37(3)$ |
| $\mathrm{S}-\mathrm{O}(4)$ | $1 \cdot 47(2)$ | $\mathrm{C}(9)-\mathrm{F}(9)$ | $1 \cdot 38(3)$ |
| $\mathrm{S}-\mathrm{C}(8)$ | $1 \cdot 83(2)$ | $\mathrm{C}(10)-\mathrm{F}(10)$ | $1 \cdot 38(3)$ |
| $\mathrm{C}(1)-\mathrm{O}(1)$ | $1 \cdot 17(3)$ | $\mathrm{C}(11)-\mathrm{F}(11)$ | $1 \cdot 38(3)$ |
| $\mathrm{C}(2)-\mathrm{O}(2)$ | $1 \cdot 17(3)$ | $\mathrm{C}(12)-\mathrm{F}(12)$ | $1 \cdot 33(3)$ |
| $\mathrm{C}(3)-\mathrm{O}(3)$ | $1 \cdot 41(4)$ | $\mathrm{C}(13)-\mathrm{F}(13)$ | $1 \cdot 35(3)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)$ | $1 \cdot 31(4)$ |  |  |
| $(\mathrm{b}) \mathrm{Intramolecular}$ |  |  |  |
| $\mathrm{Fe}-\mathrm{C}(1)-\mathrm{O}(1)$ | $174(2)$ | $\mathrm{S}-\mathrm{C}(8)-\mathrm{C}(13)$ | $124(2)$ |
| $\mathrm{Fe}-\mathrm{C}(2)-\mathrm{O}(2)$ | $175(2)$ | $\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)$ | $114(2)$ |
| $\mathrm{Fe}-\mathrm{S}-\mathrm{O}(3)$ | $112(1)$ | $\mathrm{F}(9)-\mathrm{C}(9)-\mathrm{C}(8)$ | $122(2)$ |
| $\mathrm{Fe}-\mathrm{S}-\mathrm{O}(4)$ | $113(1)$ | $\mathrm{F}(9)-\mathrm{C}(9)-\mathrm{C}(10)$ | $117(2)$ |
| $\mathrm{Fe}-\mathrm{S}-\mathrm{C}(8)$ | $107(1)$ | $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$ | $121(2)$ |
| $\mathrm{O}(3)-\mathrm{S}-\mathrm{O}(4)$ | $115(1)$ | $\mathrm{F}(10)-\mathrm{C}(10)-\mathrm{C}(9)$ | $118(2)$ |
| $\mathrm{O}(3)-\mathrm{S}-\mathrm{C}(8)$ | $103(1)$ | $\mathrm{F}(10)-\mathrm{C}(10)-\mathrm{C}(11)$ | $121(2)$ |
| $\mathrm{O}(4)-\mathrm{S}-\mathrm{C}(8)$ | $105(\mathrm{l})$ | $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(\mathrm{II})$ | $121(2)$ |
| $\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(2)$ | $95(1)$ | $\mathrm{F}(11)-\mathrm{C}(11)-\mathrm{C}(10)$ | $120(2)$ |
| $\mathrm{C}(1)-\mathrm{Fe}-\mathrm{S}$ | $93(1)$ | $\mathrm{F}(11)-\mathrm{C}(11)-\mathrm{C}(12)$ | $118(2)$ |
| $\mathrm{C}(2)-\mathrm{Fe}-\mathrm{S}$ | $91(1)$ | $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$ | $122(2)$ |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | $107(2)$ | $\mathrm{F}(12)-\mathrm{C}(12)-\mathrm{C}(11)$ | $122(2)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ | $115(2)$ | $\mathrm{F}(12)-\mathrm{C}(12)-\mathrm{C}(13)$ | $120(2)$ |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$ | $105(2)$ | $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$ | $118(2)$ |
| $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$ | $108(2)$ | $\mathrm{F}(13)-\mathrm{C}(13)-\mathrm{C}(8)$ | $119(2)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$ | $105(2)$ | $\mathrm{F}(13)-\mathrm{C}(13)-\mathrm{C}(12)$ | $117(2)$ |
| $\mathrm{S}-\mathrm{C}(8)-\mathrm{C}(9)$ | $122(2)$ | $\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{C}(12)$ | $124(2)$ |
|  |  |  |  |
|  |  |  |  |

(c) Least squares planes defined by atomic positions

In the following equations $X, Y, Z$ refer to orthogonal co-ordinates obtained by the transformation:

(1) Plane defined by $\mathrm{C}(3), \mathrm{C}(4), \mathrm{C}(5), \mathrm{C}(6)$, and $\mathrm{C}(7)$

$$
0.0575 X-0.9813 Y+0.1838 Z+1 \cdot 1478=0
$$

Distances of atoms from the planes $(\AA)$ $\mathrm{C}(3) 0.015, \mathrm{C}(4) 0.002, \mathrm{C}(5)-0.020, \mathrm{C}(6) 0.028, \mathrm{C}(7)-0.025$
(2) Plane defined by $\mathrm{C}(8), \mathrm{C}(9), \mathrm{C}(10), \mathrm{C}(11), \mathrm{C}(12)$, and $\mathrm{C}(13)$ $-0.5211 X-0.6027 Y+0.6043 Z+5.9111=0$
Distances of atoms from the plane $(\AA)$
$\mathrm{C}(8) 0.018, \mathrm{C}(9) 0.004, \mathrm{C}(10)-0.024, \mathrm{C}(\mathrm{II}) 0.023, \mathrm{C}(12) 0.000$, $\mathrm{C}(13)-0.020, \mathrm{~F}(9) 0.048, \mathrm{~F}(10) 0.014, \mathrm{~F}(11)-0.008$, $\mathrm{F}(12) 0.043, \mathrm{~F}(\mathrm{I} 3) 0.036$

The largest sulphur bond angle is that involving the two oxygen atoms and is considerably larger than the regular tetrahedral angle. This feature has been observed in the structures of a variety of compounds containing the

[^2]$\mathrm{SO}_{2}$ group. ${ }^{6}$ The $\mathrm{S}-\mathrm{O}$ distances of $1 \cdot 44(2) \AA$ and $1 \cdot 47(2) \AA$ are close to accepted values. ${ }^{6}$
The phenyl and the cyclopentadienyl groups are accurately planar (see Table 2) with mean C-C distances of 1.36 and $1.37 \AA$ respectively. The phenyl group


Figure 2 View showing the orientation of the pentafluorophenyl group with respect to the rest of the molecule
makes an angle of $86^{\circ}$ with the plane defined by $\mathrm{Fe}, \mathrm{S}$, $\mathrm{C}(8), \mathrm{C}(\mathbf{1 1})$, and $\mathrm{F}(\mathbf{1 1})$. This angle is presumably influenced by steric factors as rotation of the phenyl group about the S-C bond would involve the $o$-fluorine atoms in close approaches with atoms $\mathrm{O}(1), \mathrm{O}(4), \mathrm{O}(3)$ and the
hydrogen atom associated with $\mathrm{C}(3)$. These intramolecular approaches are $\mathrm{F}(9)-\mathrm{O}(4) 2 \cdot 70, \mathrm{~F}(9)-\mathrm{H}(3)$ 2.28, $\mathrm{F}(13)-\mathrm{O}(1) 2 \cdot 89$, and $\mathrm{F}(13)-\mathrm{O}(3) 2.71 \AA$ for the observed arrangement (see Figure 2).

The average C-F bond length is $1 \cdot 36 \AA$ compared with the accepted value of $1 \cdot 328(5) \AA$ for a $C$ (aromatic)- $F$ distance. ${ }^{7}$

The molecules are separated by the usual van der Waals distances (Table 3).

Table 3
Closest intermolecular approaches $/ \AA$

| $\mathrm{S}-\mathrm{H}\left(4^{\mathrm{I}}\right)$ | $2 \cdot 98$ | $\mathrm{O}(4)-\mathrm{H}\left(4^{\mathrm{I}}\right)$ | $2 \cdot 72$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{O}(1)-\mathrm{H}\left(7^{\mathrm{II}}\right)$ | $2 \cdot 68$ | $\mathrm{~F}(9)-\mathrm{F}\left(11^{\mathrm{I}}\right)$ | $2 \cdot 86$ |
| $\mathrm{O}(2)-\mathrm{F}\left(11^{\mathrm{III}}\right)$ | $2 \cdot 94$ | $\mathrm{~F}(11)-\mathrm{H}\left(4^{\mathrm{V}}\right)$ | $2 \cdot 85$ |
| $\mathrm{O}(2)-\mathrm{H}\left(5^{\mathrm{I}}\right)$ | $2 \cdot 68$ | $\mathrm{~V}(11)-\mathrm{H}\left(5^{\mathrm{VI}}\right)$ | $2 \cdot 74$ |
| $O(3)-\mathrm{H}\left(4^{\mathrm{I}}\right)$ | $2 \cdot 42$ | $\mathrm{~F}(13)-\mathrm{H}\left(6^{\mathrm{IV}}\right)$ | 2.70 |
| $\mathrm{O}(3)-\mathrm{H}\left(6^{\mathrm{IV}}\right)$ | $2 \cdot 44$ |  |  |

The superscripts refer to the positions:

$$
\begin{array}{cc}
\text { I } x, \frac{1}{2}-y,-\frac{1}{2}+z & \text { IV }-x, \frac{1}{2}+y,-\frac{1}{2}-z \\
\text { II } x, \frac{1}{2}-y, \frac{1}{2}+z & \text { V } 1-x, \frac{1}{2}+y, \frac{1}{2}-z \\
\text { II }-1+x, y,-1+z & \text { VI } 1+x, \frac{1}{2}-y, \frac{1}{2}+z
\end{array}
$$

I thank Dr. M. I. Bruce for suggesting the problem and supplying the crystals, and the staff of the Computing Laboratory, University of Salford, for assistance.
[3/2399 Received, 23rd November, 1973]
${ }^{6}$ S. C. Abrahams, Quart. Rev., 1956, 407.
7 Interatomic Distances Supplement, Chenn. Soc. Special Pıtbl., No. 18, 1965.


[^0]:    ${ }^{2}$ M. I. Bruce and A. D. Redhouse, J. Organometallic Chem., 1971, 30, C78.
    ${ }^{3}$ 'M. I. Bruce, J. Chem. Soc. (A), 1968, 1459.

[^1]:    * For details of Supplementary Publications see Notice to Authors No. 7 in J.C.S. Dalton, 1973, Index issue. Items less than 10 pp . are sent as full-size copies.

[^2]:    ${ }^{4}$ M. R. Churchill and J. Wormald, Inorg. Chem., 1971, 10, 572.
    5 P. J. Wheatley, 'Perspectives in Structural Chemistry,' eds. J. D. Dunitz and J. A. Ibers, Wiley, New York, 1967, vol. 1, p. 1 .

