Entropy Titrations: A Reassessment of Data for the Reaction of the Sulphate Ion with Trivalent Lanthanoid Ions

By H. Kipton J. Powell, Chemistry Department, University of Canterbury, Christchurch, New Zealand

Abstract

The simultaneous determination of $\log K^{\circ}$ and ΔH° for anion-cation interactions is examined with reference to the reactions $\mathrm{M}^{3+}+\mathrm{SO}_{4}{ }^{2-} \rightleftharpoons \mathrm{MSO}_{4}{ }^{+}$and $\mathrm{MSO}_{4}{ }^{+}+\mathrm{SO}_{4}{ }^{2-} \rightleftharpoons \mathrm{M}\left(\mathrm{SO}_{4}\right)_{2}-(\mathrm{M}=$ lanthanoid $)$. Limitations of the 'entropy titration' approach are outlined. From published enthalpimetric data ΔH° values for the formation of the monosulphate ion pairs have been recalculated using published K° data. For the formation of the bis(sulphate) ion pair ΔH° and K° have been recalculated from enthalpimetric data by graphical methods and by general nonlinear least-squares analysis.

The entropy titration method for simultaneous determination of K° and ΔH° from enthalpimetric titrations has received wide application since its introduction by Becker et al. ${ }^{1}$ We ${ }^{2}$ and others ${ }^{3,4}$ have pointed to the limitations of this method. In a recent publication ${ }^{2}$ we criticised the application of this method to the reaction of the sulphate ion with protons and with bivalent metal
${ }^{1}$ F. Becker, J. Bartel, N. G. Schmahl, G. Lange, and H. M. Luschow, Z. phys. Chem. (Frankfurt), 1963, 37, 33.
${ }^{2}$ H. K. J. Powell, J.C.S. Dalton, 1973, 1947.
${ }^{3}$ S. Cabani and P. Gianni, Analyt. Chem., 1972, 44, 253.
${ }^{4}$ S. Cabani and P. Gianni, J. Chem. Soc. $(A), 1968,547$.
ions ${ }^{5-7}$ and drew attention to (i) the inadequacy of iterative methods, ${ }^{3,5-7}$ rather than general non-linear least-squares methods, for simultaneous calculation of parameters from the experimental data; (ii) the dependence of the results on the relationships assumed in the minimisation of residuals; (iii) the profound effect of the
${ }^{5}$ J. J. Christensen, R. M. Izatt, L. D. Hansen, and J. A. Partridge, J. Phys. Chem., 1966, 70, 2003.
${ }^{6}$ R. M. Izatt, D. Eatough, J. J. Christensen, and C. H. Bartholomew, J. Chem. Soc. (A), 1969, 45.
${ }^{7}$ R. M. Izatt, D. Eatough, J. J. Christensen, and C. H. Bartholomew, J. Chem. Soc. (A), 1969, 47.
chosen activity coefficient expression on the computed K° and ΔH° for ion-pairing reactions; and (iv) the greater reliability of employing potentiometrically determined K° data to calculate ΔH° from calorimetric measurements for these reactions.

In this paper we focus attention on the reaction of the sulphate ion with trivalent lanthanoid ions and (i) discuss the effect of the choice of activity coefficient relationship, and of a°, the assumed distance of closest approach of the ions, on the calculated value of ΔH°; (ii) discuss evidence for the existence of both $1: 1$ and $2: 1$ sulphatelanthanoid ion pairs; (iii) recalculate $\Delta H_{1}{ }^{\circ}$ for reaction (I) from published (conductometric) $K_{1}{ }^{\circ}$ data and calorimetric enthalpy data; and (iv) recalculate $K_{2}{ }^{\circ}$ and $\Delta H_{2}{ }^{\circ}$ for reaction (2) by application of both general non-linear least-squares and graphical methods to enthalpimetric data.

$$
\begin{gather*}
\mathrm{M}^{3+}+\mathrm{SO}_{4}{ }^{2-} \rightleftharpoons \mathrm{MSO}_{4}^{+} \tag{l}\\
\mathrm{MSO}_{4}{ }^{+}+\mathrm{SO}_{4}{ }^{2-} \rightleftharpoons \mathrm{M}\left(\mathrm{SO}_{4}\right)_{2}{ }^{-} \tag{2}
\end{gather*}
$$

A complete non-linear least-squares analysis to determine the four parameters $K_{1}{ }^{\circ}, K_{2}{ }^{\circ}, \Delta H_{1}{ }^{\circ}$, and $\Delta H_{2}{ }^{\circ}$ from enthalpimetric data could not be achieved; the computation was non-convergent, as was the case for bivalent metal sulphates. ${ }^{2}$

I : 1 Lanthanoid-Sulphate Ion Pairs.-Izatt et al. ${ }^{7}$ have calculated $K_{1}{ }^{\circ}$ and $\Delta H_{1}{ }^{\circ}$ (and $K_{2}{ }^{\circ}$ and $\Delta H_{2}{ }^{\circ}$) from calorimetric clata ${ }^{8}$ for the titration of $0.5005 \mathrm{M}-\left(\mathrm{Me}_{4} \mathrm{~N}\right)_{2} \mathrm{SO}_{4}$ into acidic solutions of lanthanoid perchlorates (ca. $0.02 \mathrm{~m}, \mathrm{pH}$ ca. $2 \cdot 0-3 \cdot 5$). Activity coefficients were calculated from equation (3), $B=0.329 \AA$, assuming $a^{\circ}=5 \cdot 0 \AA$ and $\beta=0.5$. Calculations involved the iterative 'entropy titration' procedure which varied

$$
\begin{equation*}
\log \gamma_{\leq}=-A Z^{2}\left\{\frac{\sqrt{ } I}{1+B a^{\circ} \sqrt{ } I}-\beta I\right\} \tag{3}
\end{equation*}
$$

one parameter, $K_{1}{ }^{\circ}$, calculated the value of the other parameter ΔH at each data point, and calculated the average value of this parameter through the data set $(\overline{\Delta H})$; the ' best pair ' of parameters $K_{1}{ }^{\circ}, \overline{\Delta H}$ were those which gave a minimum in the error square sum [ref. 2, equations (4)-(6)]. However, as only the one parameter $K_{1}{ }^{\circ}$ was varied, $\overline{\Delta H}$ is a function of $K_{1}{ }^{\circ}$, whereas both K and ΔH should be varied independently ${ }^{2}$ (as in a general non-linear least-squares calculation) to obtain a correct minimum in the error square sum. ${ }^{9}$ Also no
${ }^{8}$ Data supplementary to ref. 7; document No. 00185 obtained from ASIS National Auxiliary Publication Service, c/o CCM Information Services, 22 West 34th Street, New York, 10001.
${ }^{2}$ L. G. Sillen, Acta Chem. Scand., 1962, 16, 159.
${ }_{10}$ D. P. Fay and N. Purdie, J. Phys. Chem., 1969, 73, 3462.
${ }^{11}$ I. H. Spedding and S. Jaffe, J. Amer. Chem. Soc., 1954, 76, 882.
${ }_{12}$ G. R. Hedwig and H. K. J. Powell, J.C.S. Dalton, 1973, 798.
13 A. K. Covington, J. V. Dobson, and K. V. Srinivasan, J.C.S. Favaday $I, 1973,94$.
${ }^{14}$ D. P. Fay, D. Litchinsky, and N. Purdie, J. Phys. Chom., 1969, 73, 544.

15 W. E. Dasent, ' Inorganic Energetics,' Penguin, 1970, p. 84.
allowance was made for the dependence of ΔH on ionic strength, so the derived enthalpy change $\overline{\Delta H}$ (though reported ${ }^{7}$ as ΔH°) is the average value of the concentra-tion-dependent molar enthalpy change (and differs from ΔH° by ca. $3 \mathrm{~kJ} \mathrm{~mol}^{-1}$ in the ionic strength range concerned, ca. $0 \cdot 1 \mathrm{~m}$). Further, as pointed out by Fay and Purdie, ${ }^{10}$ the calculated value of ΔH is rather insensitive to the value chosen for $K_{1}{ }^{\circ}$ (since $K_{1}{ }^{\circ}$ is very large, ca. 4×10^{3}); they suggest that a 30% change in $K_{1}{ }^{\circ}$ causes less than 1% change in ΔH [although our calculations show that a 10% (or 20%) decrease in $K_{1}{ }^{\circ}$ effects a 2% (or 3%) increase in $\left.\Delta H^{\circ}\right]$. This lack of sensitivity would not aid an analysis by iterative calculation.

Fay and Purdie ${ }^{10}$ made a calorimetric study of the formation of 1:1 lanthanoid-sulphate ion pairs by titrating a sodium sulphate solution into a solution containing a large molar excess of lanthanoid nitrate. $\overline{\Delta H}$ was calculated by use of Spedding and Jaffe's ${ }^{11}$ (conductometric) stability constants $K_{1}{ }^{\circ}$, although a different equation for activity coefficients was used [equation (4), $a^{\circ}=8.86 \AA$]. No attempt was made to

$$
\begin{equation*}
\log \gamma_{ \pm}=-A Z^{2}\left\{\frac{\sqrt{ } I}{1+2.92 \sqrt{ } I}-0.3 I\right\} \tag{4}
\end{equation*}
$$

correct $\overline{\Delta H}(I$ ca. $0 \cdot 3 \mathrm{~m})$ to $\Delta H_{1}{ }^{\circ}(I=0)$.
The derived values for K° and ΔH° are critically dependent on the expression chosen for the ionic activity coefficients. ${ }^{2,12,13}$ The different values of a° used by Izatt et al. and Fay and Purdie approximate to the formation of contact, MSO_{4}, and solvent separated, $\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{SO}_{4}$, ion pairs respectively; relaxation spectrometry studies ${ }^{14}$ on the rate of formation of lanthanoid monosulphates have indicated that these species exist predominantly ($79-93 \%$) as contact ion pairs.

The value of a° for a contact ion pair may be approximated to the sum of the ionic radius of the lanthanoid ion (average $1 \cdot 12 \AA$) and the thermochemical radius ${ }^{15}$ for the sulphate ion $(2 \cdot 30 \AA$), viz $3 \cdot 42 \AA$. [This figure can be compared with (a) the sum of the radii of the solvated ions ($3 \cdot 95+2 \cdot 29 \AA$) as derived from ionic mobilities in $\mathrm{H}_{2} \mathrm{O},{ }^{16}$ or (b) the sum of the radii of the ions $(3 \cdot 42 \AA)$ plus the diameter of a water molecule ${ }^{17}(2.92 \AA)$, viz. $6.34 \AA$.] The Davies equation ${ }^{18}$ [equation (3) with $\beta=$ 0.2 or 0.3 and with $\left.a^{\circ}=3.04 \AA\right]$ has been found to be satisfactory in predicting the activity coefficients for (i) lanthanum bromide solutions, ${ }^{19}$ (ii) ion-pairing lanthanum and lutetium malonates, ${ }^{20}$ (iii) lanthanum sulphate, ${ }^{21,22}$ and (iv) ytterbium sulphate. ${ }^{23,24}$ In contrast Newton
${ }^{16}$ C. B. Monk, 'Electrolytic Dissociation,' Academic Press, New York, 1961, p. 271.
${ }_{17}$ G. W. Brady and W. J. Romanov, J. Chem. Phys., 1960, 32, 306.
${ }^{18}$ C. W. Davies, 'Ion Association,' Butterworths, London, 1962.
${ }^{19}$ Ref. 18, p. 43.
${ }^{20}$ E. Gelles and G. H. Nancollas, Trans. Faraday Soc., 1956, 52, 680.
${ }_{21}$ C. W. Davies, J. Amer. Chem. Soc., 1950, 72, 2696.
${ }^{22}$ H. W. Jones and C. B. Monk, Trans. Faraday Soc., 1952, 48, 929.
${ }^{23}$ D. W. Archer and C. B. Monk, J. Chem. Soc. (A), 1966, 1374.
${ }^{24}$ D. W. Archer and C. B. Monk, Trans. Faraday Soc., 1966, 62, 1583 .
and Arcand, ${ }^{25}$ using the Debye-Hückel equation, derived values of $a^{\circ}=6.57$ from a study on the solubility of cerium sulphate in potassium sulphate solution ($I=$ $0.02-0.3 \mathrm{~m}$) and $a^{\circ}=5.73 \AA$ from a spectrophotometric analysis of $\mathrm{CeSO}_{4}{ }^{+}$ion pair formation in sodium perchlorate solutions.

In reassessing the calorimetric data of Izatt et al..7,8 we have used the $K_{1}{ }^{\circ}$ values published by Spedding and Jaffe ${ }^{11}$ (with interpolated values ${ }^{10}$ for $\mathrm{Eu}, \mathrm{Tb}, \mathrm{Dy}, \mathrm{Tm}$, and Lu); this is the most comprehensive set of $K_{1}{ }^{\circ}$ values available and, where comparison is possible, they are in general agreement with values published by other workers. ${ }^{26}$ These values are based on conductivity measurements over a very wide range of ionic strengths ($I<0.003$ to >0.60); $K_{1}{ }^{\circ}$ was calculated from the derived concentration quotients K_{1} [equation (5)] by
(to $\pm 0 \cdot 1 \%$) was achieved for both $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{SO}_{4}{ }^{2-}\right]$. Convergence was achieved in $3-7$ cycles. With reference to the computed ionic strength, $Q_{\text {obs }}$ was then corrected for the heat of dilution of the $0.5005 \mathrm{M}-\left(\mathrm{Me}_{4} \mathrm{~N}\right)_{2}{ }^{-}$ SO_{4} titrant, ${ }^{7}$ for the protonation of the sulphate ion, ${ }^{2}$ and for the formation of the ion pair $\mathrm{Me}_{4} \mathrm{~N}^{+} \mathrm{ClO}_{4}{ }^{-.}{ }^{6} \quad \Delta H$ was calculated from $Q_{\text {corr }}$ and $\left[\mathrm{MSO}_{4}^{+}\right]$, and ΔH° was calculated from the expression (7) by use of equations (15) $\left(a^{\circ}=5 \cdot 0 \AA\right)$, (16), and (17) in ref. $2\left(Q^{\prime} c a .3 \cdot 0-3 \cdot 1\right.$ $\mathrm{kJ} \mathrm{mol}{ }^{-1}$).

$$
\begin{equation*}
\Delta H^{\circ}=\Delta H+Q^{\prime}=\Delta H+R T^{2} \Sigma\left[\frac{n_{\mathrm{s}} \partial \ln f_{\mathrm{s}}}{\partial T}\right]_{p} \tag{7}
\end{equation*}
$$

For the lanthanoids La, Pr, Nd, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb, $\Delta H_{1}{ }^{\circ}$ (calc) was approximately constant ($\pm<0 \cdot 15 \mathrm{~kJ} \mathrm{~mol}^{-1}$) up to the sixteenth data point, at

Table 1
Thermodynamic data for the reactions $\mathrm{M}^{3+}+\mathrm{SO}_{4}{ }^{2-} \rightleftharpoons \mathrm{MSO}_{4}{ }^{+}(\mathrm{aq})$ at $25^{\circ} \mathrm{C}$
$K_{1}{ }^{\circ}(\pm 10 \%) / 1 \mathrm{~mol}^{-1} a$
$\Delta H_{1}{ }^{\circ}(\pm 0 \cdot 4) / \mathrm{kJ} \mathrm{mol}^{-1}$ (Spedding-Jaffe activities)
$\overline{\Delta H}_{1} / \mathrm{kJ} \mathrm{mol}^{-1}$
(Ref. 7, $I=0.1 \mathrm{M}$)
$\overline{\Delta H_{1}} / \mathrm{kJ} \mathrm{mol}^{-1}$
(Ref. $10, I=0.3 \mathrm{~m}$) $\Delta H_{1}{ }^{\circ}(\pm 3 \%) / \mathrm{kJ} \mathrm{mol}^{-1}$
Equation (3), $\beta=0 \cdot 3$

La	Pr	Nd	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
4170	4170	4350	$4550{ }^{\text {b }}$	4550	$4320^{\text {b }}$	$4080^{\text {b }}$	3850	3850	$3850{ }^{\text {b }}$	3850	3850
$18 \cdot 4_{5}$	$19 \cdot 85$	$20 \cdot 0$	$20 \cdot 5$	$19 \cdot 95$	$19 \cdot 7$	$20 \cdot 35$	$20 \cdot 4$	$20 \cdot 3$	$20 \cdot 0$	$19 \cdot 8$	$(19.5)^{\circ}$
$13 \cdot 6$	$14 \cdot 6$	$15 \cdot 15$	$15 \cdot 2 \cdot{ }_{5}$	$15 \cdot 0$	$15 \cdot 0_{5}$	$15 \cdot 45$	$15 \cdot 3$	$15 \cdot 1$	$15 \cdot 0_{5}$	$15 \cdot 0$	$13 \cdot 7_{5}$
$13 \cdot{ }^{\text {d }}$	$16 \cdot 4$	$17 \cdot 4$	$17 \cdot 3$	$17 \cdot 1_{5}$	$15 \cdot 5^{d}$	$15 \cdot 0$	$14 \cdot 8$	$14 \cdot 1$	$13 \cdot 2$	$12 \cdot 1$	$14 \cdot 8$
$20 \cdot 0$	$21 \cdot 6$	21.8	$22 \cdot 5$	$21 \cdot 5$	$21 \cdot 2$	$22 \cdot 2$	$22 \cdot 2$	$22 \cdot 0$	$21 \cdot 6$	$21 \cdot 4$	$20 \cdot 7$
$19 \cdot 4$	$21 \cdot 0$	21.2	21.8	$20 \cdot 9$	$20 \cdot 6$	$21 \cdot 5$	$21 \cdot 5$	$21 \cdot 3$	20.9	$20 \cdot 8$	$20 \cdot 1$
$17 \cdot 6$	$19 \cdot 1$	$19 \cdot 2$	$19 \cdot 8$	$19 \cdot 1$	$18 \cdot 7$	$19 \cdot 5$	$19 \cdot 4$	$19 \cdot 2$	18.9	$18 \cdot 7$	$18 \cdot 1$
$17 \cdot 0$	$18 \cdot 4$	$18 \cdot 5$	$19 \cdot 1$	$18 \cdot 4$	$18 \cdot 0$	$18 \cdot 8$	$18 \cdot 7$	$18 \cdot 5$	$18 \cdot 1$	$18 \cdot 0$	$17 \cdot 5$
$16 \cdot 0$	$17 \cdot 4$	$17 \cdot 6$	$18 \cdot 1$	$17 \cdot 4$	$17 \cdot 0$	$17 \cdot 8$	$17 \cdot 6$	$17 \cdot 5$	$17 \cdot 1$	$17 \cdot 0$	$16 \cdot 5$
$15 \cdot 4$											

${ }^{a}$ Ref. 11. ${ }^{b}$ Interpolated values, ref. 10. ©Average; values ranging $20 \cdot 0-19 \cdot 1-19 \cdot 9$ through data set. ${ }^{d}$ Redetermined values; N. Purdie, personal communication.
use of a Debye-Hückel expression for mean ionic activity coefficients for $\mathrm{M}_{2}\left(\mathrm{SO}_{4}\right)_{3}, \gamma_{2,3 \pm}$, and $\left(\mathrm{MSO}_{4}\right)_{2} \mathrm{SO}_{4}, \gamma_{1,2 \pm}$ [equation (6)]. All 36 enthalpimetric data points were used for each metal ion. Molar concentrations could be used because of the small temperature changes involved in the calorimetric measurements (max. $0.08{ }^{\circ} \mathrm{C}$).

$$
\begin{align*}
K_{1}^{\circ} & =\frac{\left[\mathrm{MSO}_{4}{ }^{+}\right]}{\left[\mathrm{M}^{3+}\right]\left[\mathrm{SO}_{4}{ }^{2-}\right]} \cdot \frac{\left(\gamma_{1.2 \pm}\right)^{\frac{3}{2}}}{\left(\gamma_{2.3 \pm}\right)^{\frac{5}{2}}} \tag{5}\\
-\log \gamma_{i j \pm} & =A\left|Z_{i} Z_{j}\right| \sqrt{ } I\left(\mathbf{1}+0.329 a^{\circ} \sqrt{ } I\right) \tag{6}
\end{align*}
$$

An iterative procedure was used to calculate the solution composition at each titration point. From an approximate value of the ionic strength I, the activity coefficient expressions $\left(\gamma_{1,2 \pm}\right)^{\frac{3}{2}} /\left(\gamma_{2.3 \pm}\right)^{\frac{5}{2}}$ and $\gamma_{\text {ESO }} / \gamma_{\mathrm{H}} \gamma_{\mathrm{SO}}$ (Davies equation, $\beta=0 \cdot 3$) were calculated and these were used to obtain values for the concentration quotients $K_{\mathrm{MSO}_{4}}$ and K_{HSO}^{4} from the respective thermodynamic equilibrium constants. The solution composition was then calculated by use of the mass balance equations for $T_{\mathrm{M}}, T_{\mathrm{SO}_{4}}$, and T_{H}; an improved value of I was then obtained and the process was repeated until convergence
${ }^{25}$ T. W. Newton and G. M. Arcand, J. Amer. Chem. Soc., 1953, 75, 2449.
which the ratio of $T_{\mathrm{SO}_{4}}: T_{\mathrm{M}}$ in solution is $c a .0 .70-0.75$. $\Delta H_{1}{ }^{\circ}$ (calc) then increased linearly with increasing sulphate ion concentration (Figure) and the form of this curve is taken to indicate the presence of at least two species in solution, with the $1: 1$ species $\mathrm{MSO}_{4}{ }^{+}$predominating at low sulphate ion concentrations. The value of $\Delta H_{1}{ }^{\circ}$ was determined as the limiting value of $\Delta H_{1}{ }^{\circ}$ (calc) as $\left[\mathrm{SO}_{4}{ }^{2-}\right] \rightarrow 0 . \Delta H_{1}{ }^{\circ}$ Values are given in Table l, and are compared with those values reported by Izatt et al. ${ }^{7}$ and Fay and Purdie ${ }^{10}$ [both of which are $\overline{\Delta H}$ values and should be compared with $\Delta H_{1}\left(\sim \Delta H_{1}{ }^{\circ}\right.$ $\left.\left.-3.0 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)\right]$. The uncertainties in $\Delta H_{1}{ }^{\circ}$ were determined by varying $K_{1}{ }^{\circ}$ by $\pm 10 \%{ }^{11}$ [In the case of Ce and $\operatorname{Sm~} \Delta H_{1}{ }^{\circ}$ (calc) increased almost uniformly through the data set, with a very minor inflexion at the sixteenth data point; no further analysis of these data was attempted.]

For comparison the data were also analysed using equation (3) for activity coefficients with $\beta=0.3$ and values of a° in the range $3 \cdot 04-9 \cdot 26 \AA$. For each metal ion $\Delta H_{1}{ }^{\circ}$ (calc) decreased with increasing values of
${ }^{26}$ L. G. Sillen and A. E. Martell, 'Stability Constants,' Chem. Soc. Special Publ. Nos. 17 and No. 25, Chemical Society, London, 1964 and 1971.
a°; for each $a^{\circ} \Delta H_{1}{ }^{\circ}$ (calc) spanned a range of $c a .1 \mathrm{~kJ}$ mol^{-1}, with a minimum near the centre of the data set. These results do not afford evidence for the existence of either one or two ion pair species in solution and suggest an inappropriate choice either of activity coefficient expression or of a°. The critical dependence of $\Delta H_{1}{ }^{\circ}$ on the value of a° relates to the high charges on the reactant species. ${ }^{2}$ Table 1 records the average values of $\Delta H_{1}{ }^{\circ}$.

1:2 Lanthanoid-Sulphate Ion Pairs.-The results summarised in the Figure afford evidence for the existence at high sulphate concentrations of an ion

Plot of $\Delta H_{1}{ }^{\circ}$ (calc) against titration increment for the enthalpimetric titration of $\left(\mathrm{Me}_{4}\right)_{2} \mathrm{SO}_{4}$ into lanthanoid perchlorate solutions; (a) Eu, (b) Gd, (c) Tb
pair with $\mathrm{SO}_{4}{ }^{2-}: \mathrm{M}^{3+}$ stoicheiometry $>1: 1$. Charvalho and Choppin ${ }^{27}$ deduced the existence of the species $\mathrm{M}\left(\mathrm{SO}_{4}\right)_{2}{ }^{-}$from potentiometric measurements (2 M NaClO_{4}), whereas Archer and Monk ${ }^{23}$ found no evidence for a $\mathrm{Yb}\left(\mathrm{SO}_{4}\right)_{2}{ }^{-}$complex from ion exchange studies. Izatt et al. ${ }^{7}$ postulated the existence of $\mathrm{M}\left(\mathrm{SO}_{4}\right)_{2}{ }^{-}$species on the basis of a decrease in the error square sum when this species was included in a least-squares analysis; however such evidence cannot be considered to establish the existence of a second ion pair.

We have analysed the data in terms of the stepwise formation of the ion pairs $\mathrm{MSO}_{4}{ }^{+}$and $\mathrm{M}\left(\mathrm{SO}_{4}\right)_{2}{ }^{-}$. The two parameters $K_{2}{ }^{\circ}$ and $\Delta H_{2}{ }^{\circ}$ were simultaneously determined by use of (a) the graphical method of Bolles and Drago, ${ }^{28}$ and (b) a general non-linear least-squares calculation.
(a) Graphical method. Equations (8) and (9) relate the concentration quotient K_{2}, the constant $K_{2}{ }^{\circ}$, and ΔH for the formation of $\mathrm{M}\left(\mathrm{SO}_{4}\right)_{2}{ }^{-}$. For the correct

$$
\begin{gather*}
K_{2}=K_{2}{ }^{\circ} \cdot \frac{\gamma_{\mathrm{MSO}_{4}, \gamma_{\mathrm{SO}}^{4}}}{\gamma_{\mathrm{M}\left(\mathrm{SO}_{4}\right)_{2}}}=\frac{\frac{Q_{\mathrm{obs}}}{\Delta H} \cdot \frac{1000}{V(\mathrm{ml})}}{\left[\mathrm{MSO}_{4}{ }^{+}\right]\left[\mathrm{SO}_{4}{ }^{2-}\right]} \tag{8}\\
\Delta H_{2}{ }^{\circ}=\Delta H_{2}+Q^{\prime}=\frac{1000 Q_{\mathrm{obs}} \mathrm{fn}(\gamma)}{K_{2}{ }^{\circ} V\left[\mathrm{MSO}_{4}{ }^{+}\right]\left[\mathrm{SO}_{4}{ }^{2-}\right]} \tag{9}
\end{gather*}
$$

value of $K_{\mathbf{2}}{ }^{\circ}$ all experimental data will give the correct value of $\Delta H_{2}{ }^{\circ}$ from equation (9). However, for each data point a plot of $\Delta H_{2}{ }^{\circ}$ (calc) against $\left(K_{2}{ }^{\circ}\right)^{-1}$ for a

[^0] Chem., 1967, 29, 725.
series of ' chosen ' $K_{2}{ }^{\circ}$ in the region of the ' correct ' $K_{2}{ }^{\circ}$ will give a straight line. These lines will intercept in a graphical area defined by ($K_{2}{ }^{\circ} \pm$ error $),\left(\Delta H_{2}{ }^{\circ} \pm\right.$ error $)$.

The solution composition at each titration point was calculated by an iterative procedure. From an approximate value for the ionic strength I, activity coefficients were calculated [using equation (3) to calculate $\gamma_{\mathrm{M}\left(\mathrm{SO}_{4}\right)_{2} /}$ $\left.\gamma_{\mathrm{MSO}}^{4}, \gamma_{\mathrm{SO}_{4}} ; \beta=0.3, a^{\circ}=5 \cdot 0 \AA\right]$ and these were used to calculate the concentration quotients $K_{\mathrm{M}\left(\mathrm{SO}_{4}\right)_{2}}$, $K_{\text {MSO }}$, and $K_{\text {HSO }}$. A cubic expression for the equilibrium sulphate ion concentration was derived from the mass balance equations for $T_{\mathrm{M}}, T_{\mathrm{SO}}$, and T_{H}; the expression was solved by the Newton Rapson ${ }^{29}$ method, convergence being achieved to $\pm 0.5 \%$ in 3 cycles. An improved value of the ionic strength was derived and the process was repeated until the ionic strength was invariant ($\pm 0 \cdot 1 \% ; 1-3$ cycles).

With reference to the derived ionic strength, the infinite dilution correction terms ($Q_{i}{ }^{\prime}=\Delta H_{i}{ }^{\circ}=\Delta H_{i}$) were calculated using equation (7) ($Q_{1}{ }^{\prime} \sim 3.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$, $Q_{2}{ }^{\prime} \sim 1.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$), and $Q_{\text {obs }}$ was corrected for the heat of dilution of titrant, for the protonation of sulphate ion, for the formation of the ion pair $\mathrm{Me}_{4} \mathrm{~N}^{+} \mathrm{ClO}_{4}{ }^{-}$, and for the formation of $\mathrm{MSO}_{4}{ }^{+}\left\{_{\text {MSO }_{4}}=\left(\Delta H_{1}{ }^{\circ}-Q_{1}{ }^{\prime}\right) V-\right.$ $\left.\left(\left[\mathrm{MSO}_{4}{ }^{+}\right]+\left[\mathrm{M}\left(\mathrm{SO}_{4}\right)_{2}{ }^{-}\right]\right)\right\} . \quad \Delta H_{2}^{\circ}$ was calculated from equation (10). From the first to last data point $Q_{\text {corr }}$

$$
\begin{equation*}
\Delta H_{2}^{\circ}=Q_{\mathrm{corr}} / V\left[\mathrm{M}\left(\mathrm{SO}_{4}\right)_{2}^{-}\right]+Q_{2}^{\prime} \tag{10}
\end{equation*}
$$

increased from 0 to 8% of $Q_{\text {obs }}$ whereas $Q_{\text {MsO }}$ varied from 95 to 86% of $Q_{\text {obs }}$. Because of the accumulation of errors in $Q_{\text {corr }}$ only the last 12 data points $\left(Q_{\text {corr }}>\right.$ $0.04 Q_{\text {obs }}$) were considered in calculating $\Delta H_{2}{ }^{\circ}$. Initially data were analysed using trial $K_{2}{ }^{\circ}$ values in the range $10-100$ in steps of 10 ; data were then analysed using trial values of $K_{2}{ }^{\circ}$ in steps of 2 about the apparent region of graphical convergence. The values of $K_{2}{ }^{\circ}$ and $\Delta H_{2}{ }^{\circ}$ obtained graphically had uncertainties of $\pm 5-10 \%$ and $\pm 3-8 \%$ respectively. However the errors determined by simultaneously varying $K_{1}{ }^{\circ}$ by $\pm 10 \%$ and $\Delta H_{1}{ }^{\circ}$ by $\pm 2 \%$ were ca. $15-37$ and $10-90 \%$ for $K_{2}{ }^{\circ}$ and $\Delta H_{2}{ }^{\circ}$ respectively. These errors result from the minimal contribution of $Q_{\mathrm{M}\left(\mathrm{SO}_{4}\right)_{2}}$ to $Q_{\text {obs }}$. (Only for the two ions Ce^{3+} and Sm^{3+}, which showed exceptional behaviour in calculations for $\Delta H_{1}{ }^{\circ}$, was convergence not achieved.)

Results are given in Table 2. The values of $K_{2}{ }^{\circ}$ lie in the range $16-55$ and are in broad agreement with those reported by Izatt et al. ${ }^{7}$ (Table 2); the values of $\Delta H_{2}{ }^{\circ}$ and $\Delta H_{2}\left(\sim \Delta H_{2}^{\circ}-1.02 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ are significantly higher than those reported by Izatt et al. ${ }^{7}$
(b) Least-squares analysis. For the ions Gd^{3+} and Yb^{3+} the results were checked by a general non-linear leastsquares analysis for $K_{2}{ }^{\circ}$ and $\Delta H_{2}{ }^{\circ}$ on data points $14-36$ inclusive. The general analysis of solution composition was as described above. The least-squares process
${ }^{28}$ T. F. Bolles and R. S. Drago, J. Amer. Chem. Soc., 1965, 87, 5015.
${ }^{29}$ N. I. Vilenkin, 'Successive Approximation,' Pergamon, Oxford, 1964.
minimised the error square sum $\Sigma\left\{\left[\mathrm{SO}_{4}{ }^{2-}\right]_{t}(\mathrm{Obs})\right.$ $\left.\left[\mathrm{SO}_{4}{ }^{2-}\right]_{\mathrm{t}}(\mathrm{calc})\right\}_{i}{ }^{2}$, in which $\left[\mathrm{SO}_{4}{ }^{2-}\right]_{\mathrm{t}}(\mathrm{calc})=\left[\mathrm{SO}_{4}{ }^{2-}\right]+$ $\left[\mathrm{HSO}_{4}^{-}\right]+\left[\mathrm{MSO}_{4}{ }^{+}\right]+2\left[\mathrm{M}\left(\mathrm{SO}_{4}\right)_{2}{ }^{-}\right]$. The value of [$\mathrm{M}\left(\mathrm{SO}_{4}\right)_{2}{ }_{2}^{-]}$used in this summation was calculated from equation (11) in which $\Delta H_{2}{ }^{\circ}$ is a trial parameter. Convergence was achieved in $7-10$ cycles from a range of
illustrate a limitation of the enthalpimetric method for simultaneously determining these two parameters.
These calculations make apparent some of the problems inherent in studies on ion pairing systems. $\Delta H_{1}{ }^{\circ}$ is strongly dependent on the values chosen for a°. The use of Spedding-Jaffe activities and $K_{1}{ }^{\circ}$ values is justified by

Table 2

Reported values (ref. 7)	$K_{2}{ }^{\circ}$ and $\Delta H_{2}{ }^{\circ}$ for the reactions $\mathrm{MSO}_{4}{ }^{+}+\mathrm{SO}_{4}{ }^{2-} \underset{\mathrm{M}^{3+}}{ } \mathrm{M}\left(\mathrm{SO}_{4}\right)_{2}{ }^{-}(\mathrm{aq})$ at $25^{\circ} \mathrm{C}$										
	La	Pr	Nd	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	$1 \cdot 85$	$1 \cdot 9$	$1 \cdot 7$	$1 \cdot 8$	$1 \cdot 7$	1.9	$1 \cdot 75$	$1 \cdot 6$	$1 \cdot 8$	$1 \cdot 8$	$1 \cdot 7$
$\overline{\Delta H_{2}} / \mathrm{kJ} \mathrm{mol}{ }^{-1}$											
Graphical analysis											
$\log K_{2}{ }^{\circ}$	1.67	$1 \cdot 30$	1.50	1.74	1.55	1.51	$1 \cdot 2$	$1 \cdot 3$	1.45	1.55	$1 \cdot 6$
	± 0.07	± 0.05	$\because 0 \cdot 15$	$\pm 0 \cdot 06$	± 0.07	$\pm 0 \cdot 08$	$\pm 0 \cdot 2$	$\pm 0 \cdot 2$	$\pm 0 \cdot 15$	$\pm 0 \cdot 07$	± 0.2
$\Delta H_{2}{ }^{\circ} / \mathrm{kJ} \mathrm{mol}{ }^{-1}$	17 ± 2	$\underline{24} \pm 3$	15 ± 6	$9 \cdot 1$	10.9	13 ± 2	21 ± 12	6 ± 14	12 ± 5	8 ± 3	9 ± 3
				± 1.2	$\pm 1 \cdot 3$						
Least-squares analysis											
$\log {K_{2}}^{\circ}$					1.56						$1 \cdot 5$
					$\pm{ }_{9}^{ \pm}+0.05$						$\pm 0 \cdot 2$
$\Delta H_{2}{ }^{\circ} / \mathrm{kJ} \mathrm{mol}{ }^{-1}$					$\begin{gathered} 9 \cdot 8 \\ \pm 0.9 \end{gathered}$						9 ± 3

trial parameters $\left(K_{2}{ }^{\circ}, \Delta H_{2}{ }^{\circ}\right)$ to give an R factor ${ }^{30}$ of

$$
\begin{equation*}
\left[\mathrm{M}\left(\mathrm{SO}_{4}\right)_{2}{ }^{-}\right]=Q_{\text {corr }} / V\left(\Delta H_{2}^{\circ}-Q_{2}{ }^{\prime}\right) \tag{11}
\end{equation*}
$$

$0 \cdot 1-0 \cdot 3 \%$ and an error square sum of $10^{-8}-10^{-7}$; there were no systematic trends in the residuals. ${ }^{31}$ The results are in close agreement with those obtained by the graphical method (Table 2). However, the very large errors accumulated in some values of $K_{2}{ }^{\circ}$ and $\Delta H_{2}{ }^{\circ}$
${ }^{30}$ A. Vacca, A. Sabatini, and M. A. Gristina, Co-ordination Chem. Rev., 1972, 8, 45.
the constancy of the calculated $\Delta H_{1}{ }^{\circ}$ over a range of concentrations at low $\mathrm{SO}_{4}{ }^{2-}: \mathrm{M}^{3+}$ ratios. The ΔH_{1} values ($I=0 \cdot 10 \mathrm{~m}, \Delta H_{1} \sim \Delta H_{1}{ }^{\circ}-3 \mathrm{~kJ} \mathrm{~mol}^{-1}$) are in reasonable agreement with those derived by Fay and Purdie, $I=0.30 \mathrm{~m}$. The parameters $K_{2}{ }^{\circ}$ and $\Delta H_{2}{ }^{\circ}$ could not be determined with precision or accuracy because of the small magnitude of $Q_{\text {corr }}$ [equation (10)] with respect to $Q_{\text {obs }}$.
[3/2477 Recewed, 4th December, 1973]
${ }^{31}$ A. Braibanti, F. Dallavalle, E. Laporati, and G. Mori, J.C.S. Dalton, 1973, 323.

[^0]: ${ }^{27}$ R. G. de Charvalho and G. R. Choppin, J. Inorg. Nuclear

