Preparation, and Crystal and Molecular Structure of π-Cyclopentadienyl-η-(tetraphenylborato) ruthenium(ii)

By Gert J. Kruger,* National Physical Research Laboratory, C.S.I.R., Pretoria
A. Louis du Preez,* Department of Inorganic and Analytical Chemistry, University of Pretoria, Pretoria

Raymond J. Haines, Department of Chemistry, University of Cape Town, Cape Town, Republic of South Africa

Abstract

The preparation of the title compound is reported. Crystals are monoclinic, $a=9 \cdot 527(4)$. $b=15 \cdot 381(6)$. $c=15.518(7) \AA, \beta=105.09(5)^{\circ} . Z=4$, space group $P 2_{1} / c$. The structure was determined by Patterson and Fourier methods from diffractometer data and refined by least-squares methods to a final R of 0.032 for 2048 reflections. The ruthenium atom is sandwiched between the cyclopentadienyl ring and one of the phenyl rings of the tetraphenylborate anion. The rings are planar, parallel, and $3.52 \AA$ apart.

The title compound has been identified as a zwitterionic sandwich species. ${ }^{1} \quad\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ru}\left(\mathrm{BPh}_{4}\right)$ is prepared by heating under reflux a solution of $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}^{2}$ and sodium tetraphenylborate in methanol for 14 h and was characterised ${ }^{3}$ by means of elemental analysis, i.r. and p.m.r. spectroscopy, and a conductivity measurement in acetone.
With a view to synthesising similar arene-bonded ' sandwich' compounds by utilising $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$ as starting compound, the reactions of benzene, tetra-methyl-, hexamethyl-, and hexafluoro-benzene with $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}$ in methanol and in the presence of hexafluorophosphate ions, or with $\left\{\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2}\right.$ (solvent) $\} \mathrm{SbF}_{6}$ (solvent $=$ acetone or methanol), in the appropriate solvent, were studied. No evidence was obtained for the formation of any arene-bonded species, however. \dagger The reason why only those reactions involving tetraphenylborate ions afforded a derivative containing an arene ring π-bonded to the ruthenium atom is puzzling, \ddagger and led us to investigate fully the crystal and molecular structure of the title compound.

experimental

Preparation.-A solution of $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}(0.50 \mathrm{~g}$, 0.69 mmol) and $\mathrm{NaBPh}_{4}(0.48 \mathrm{~g}, 1.4 \mathrm{mmol})$ in methanol (ca. 500 ml) was heated under reflux for 14 h under nitrogen. The filtered solution was concentrated to $c a .400 \mathrm{ml}$ and set aside for 24 h , when brown crystals separated. The mother liquor was decanted and the crystals (20%), which are only slightly soluble in most common organic solvents, washed with methanol and light petroleum (Found: C, $71.9 ; \mathrm{H}, 5.3 ; \mathrm{B}, 2.0 . \quad \mathrm{C}_{29} \mathrm{H}_{25} \mathrm{BRu}$ requires $\mathrm{C}, 71.8 ; \mathrm{H}$, $5 \cdot 2 ; \mathrm{B}, 2 \cdot 2 \%$). Molar conductivity in acetone ($10^{-4} \mathrm{M}$-solution) $1.2 \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. ${ }^{1} \mathrm{H}$ n.m.r. spectrum (τ values, p.p.m. vs. tetramethylsilane, CDCl_{3} solution) : $5 \cdot 24\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)$, 3.78 and 4.39 (bonded phenyl group resonances, centres of multiplets). I.r. spectrum ($1500-1350 \mathrm{~cm}^{-1}, \mathrm{KBr}$ disc) : $1481 \mathrm{~m}, 1442 \mathrm{~m}, 1430 \mathrm{~m}, 1415 \mathrm{~m}$, and 1393 mw .

Crystals are well formed and approximately cube-shaped. Laue symmetry and space group were determined by use of oscillation and Weissenberg photographs. Cell parameters were obtained from least-squares refinement of 252θ values measured on a Philips diffractometer.
\dagger Unpublished data.
\ddagger The mixed-sandwich compound $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ru}\left(\pi-\mathrm{C}_{6} \mathrm{H}_{6}\right)\right] \mathrm{Cl}$ has been reported. ${ }^{4}$
${ }_{1}$ R. J. Haines and A. L. du Preez, J. Amer. Chem. Soc., 1971, 93, 2820.
${ }_{2}$ J. D. Gilbert and G. Wilkinson, J. Chem. Soc. (A), 1969, 1749 .

Crystal Data.- $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{BRu}, M=484 \cdot 9$, Monoclinic, $a=$ $9.527(4), \quad b=15 \cdot 381(6), \quad c=15.518(7) \AA, \quad \beta=105 \cdot 09(5)^{\circ}$, $D_{\mathrm{m}}=1 \cdot 46(2)$ (by flotation), $Z=4, D_{\mathrm{c}}=1 \cdot 466, F(000)=$ 92. Space group $P 2_{1} / c(h 0 l, l=2 n ; 0 k 0, k=2 n)$, Mo- K_{α} radiation, $\lambda=0.7107 \AA, \mu\left(\right.$ Mo- $\left.K_{\alpha}\right)=7.1 \mathrm{~cm}^{-1}$.

Intensity data were collected on a Philips PW 1100 fourcircle automatic diffractometer, equipped with a graphite monochromator, from a crystal ca. $0.24 \times 0.16 \times 0.16 \mathrm{~mm}^{3}$. The $\omega-20$ scan mode was used at a scan rate of $0.04^{\circ} \mathrm{s}^{-1}$ in θ with a constant scan-width of $1 \cdot 2^{\circ} \theta$. The background on each side of the reflection was counted for half the total scanning time. A unique set of reflections in the θ range $3-20^{\circ}$ was measured. Three reference reflections were measured at regular intervals and both their optimum positions and intensities stayed constant during data collection. Of the 2048 independent reflections, 320 had $I<1 \cdot 65$ $\sigma(I)$ and were classified as unobserved. $\sigma^{2}(I)$ Was calculated as $S+B+(0.02 S)^{2}$, where S is the scan count and B the total background count. Lorentz and polarisation corrections were applied and no corrections were made for absorption.

Structure Solution and Refinement.-All calculations were done on an IBM $360 / 65$ computer using the ' X-Ray '72' system of crystallographic programs. ${ }^{5}$ Stereoscopic drawings were obtained by the thermal-ellipsoid plot program ORTEP. ${ }^{6}$ The structure was solved by the application of the heavy-atom method. The position of the Ru atom was deduced from a three-dimensional Patterson map and successive Fourier syntheses revealed the positions of all the non-hydrogen atoms.

Refinement was by full-matrix least-squares methods minimising the quantity $\Sigma \omega\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$. The R index was reduced to 0.090 on isotropic refinement and to 0.051 on anisotropic refinement. All the hydrogen positions were found from a difference electron-density synthesis at this stage. The isotropic temperature factors for the hydrogen atoms were kept constant at $u 0 \cdot 03$, and the overall temperature factor for the crystal, as estimated from a Wilson plot, and the positional parameters were then refined together with all other atomic parameters. During refinement unit weights were used except in the last few cycles where those reflections with large F_{o} and/or small $\sin \theta$ values were weighted according to the scheme $\omega=$ $\left(\frac{\sin \theta}{0.25} \times \frac{120}{F_{\mathrm{o}}}\right)$ for reflections with $\sin \theta<0.25$ and/or $F_{\mathrm{o}}>$
${ }^{3}$ A. L. du Preez, Ph.D. Thesis, University of Pretoria, 1972.

* R. A. Zelonka and M. C. Baird, J. Organometallic Chem., 1972, 44, 383.

5, J. M. Stewart, G. J. Kruger, H. Ammon, C. H. Dickinson, and S. R. Hall, University of Maryland Computer Sci. Tech. Report TR 192, College Park, Maryland, 1972.
${ }^{6}$ C. K. Johnson, program ORTEP, Report ORNL 3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1965.
120. This weighting scheme resulted in no observable trend in the values of $\omega\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ for subsets of reflections divided into ranges of $\sin \theta$ and F_{0}. In the final cycle R was 0.032 and $R^{\prime} 0.036$ for the observed reflections $\left\{\right.$ where $\left.R^{\prime}=\left[\Sigma \omega\left(\left|F_{0}\right|-\left|F_{c}\right|\right)^{2} / \Sigma \omega F_{0}{ }^{2}\right]^{\frac{1}{2}}\right\}$. The average shift-to-error for all parameters was 0.07 , the maximum being 0.66 . The standard deviation of an observation of unit

Table 1
Final fractional atomic co-ordinates

	x	y	z
Ru	$0 \cdot 2559$ (1)	$0 \cdot 2371$ (1)	$0.4177(1)$
B	$0 \cdot 6457(7)$	$0 \cdot 1979(4)$	$0 \cdot 4840$ (4)
C(11)	$0 \cdot 6399(6)$	$0 \cdot 1557(4)$	$0 \cdot 3852(4)$
$\mathrm{C}(12)$	$0 \cdot 6750$ (7)	0.2013(4)	$0 \cdot 3173$ (4)
$\mathrm{C}(13)$	0.6751 (8)	$0 \cdot 1639(6)$.	$0 \cdot 2371$ (5)
C(14)	$0 \cdot 6386(8)$	$0.0789(6)$	$0 \cdot 2199$ (5)
$\mathrm{C}(15)$	$0 \cdot 6058(9)$	$0.0311(5)$	$0 \cdot 2857(5)$
C(16)	$0 \cdot 6077(8)$	$0 \cdot 0692(4)$	$0 \cdot 3652(5)$
C(21)	$0.7177(6)$	$0 \cdot 2953$ (4)	$0 \cdot 4952$ (4)
$\mathrm{C}(22)$	$0 \cdot 8475$ (7)	$0 \cdot 3169(4)$	$0 \cdot 5567$ (4)
$\mathrm{C}(23)$	0.9044 (8)	$0 \cdot 4000(5)$	0.5659 (5)
$\mathrm{C}(24)$	$0 \cdot 8327(8)$	$0 \cdot 4668$ (5)	$0 \cdot 5150$ (5)
$\mathrm{C}(25)$	$0 \cdot 7045$ (9)	$0 \cdot 4490$ (5)	$0 \cdot 4522(5)$
$\mathrm{C}(26)$	$0 \cdot 6492$ (7)	$0 \cdot 3651$ (4)	$0 \cdot 4425(5)$
C(31)	0.7416(6)	$0 \cdot 1328(4)$	$0 \cdot 5613(4)$
$\mathrm{C}(32)$	$0.7059(7)$	$0.1109(4)$	$0 \cdot 6402(4)$
C(33)	$0 \cdot 7952(9)$	$0 \cdot 0589(5)$	$0 \cdot 7056(5)$
C(34)	$0 \cdot 9237(8)$	$0.0276(5)$	$0 \cdot 6947$ (5)
$\mathrm{C}(35)$	0.9619 (7)	$0.0462(4)$	$0.6178(5)$
$\mathrm{C}(36)$	$0 \cdot 8734$ (7)	0.0973 (4)	$0.5532(4)$
$\mathrm{C}(41)$	$0 \cdot 4823(6)$	$0 \cdot 2030$ (4)	0.5016(4)
$\mathrm{C}(42)$	$0 \cdot 3870$ (7)	$0 \cdot 1305(4)$	$0 \cdot 4893(4)$
$\mathrm{C}(43)$	$0 \cdot 2521$ (7)	$0 \cdot 1316(5)$	$0 \cdot 5114(5)$
$\mathrm{C}(44)$	$0 \cdot 2057(8)$	$0 \cdot 2065(5)$	$0 \cdot 5456(5)$
$\mathrm{C}(45)$	$0 \cdot 2924$ (8)	$0 \cdot 2801$ (5)	$0 \cdot 5564(5)$
$\mathrm{C}(46)$	$0 \cdot 4280$ (7)	$0 \cdot 2785(5)$	0.5356 (4)
C(51)	$0 \cdot 1961$ (12)	$0 \cdot 1984(6)$	$0 \cdot 2785$ (5)
C(52)	$0 \cdot 0699(11)$	$0 \cdot 2167$ (8)	$0 \cdot 3042$ (7)
C(53)	$0 \cdot 0747(10)$	$0 \cdot 3027$ (8)	$0 \cdot 3278$ (8)
C(54)	$0 \cdot 2019(11)$	$0 \cdot 3407(6)$	$0 \cdot 3190$ (7)
C(55)	0.2797(11)	$0 \cdot 2763(7)$	$0 \cdot 2886$ (5)
$\mathrm{H}(12)$	$0 \cdot 697(5)$	$0 \cdot 257(3)$	$0 \cdot 326$ (3)
$\mathrm{H}(13)$	$0 \cdot 695(4)$	$0 \cdot 195(4)$	$0 \cdot 199(4)$
H(14)	$0 \cdot 636(6)$	$0.053(4)$	$0 \cdot 172$ (4)
H(15)	$0 \cdot 582(7)$	-0.019(4)	$0 \cdot 280(4)$
H(16)	$0 \cdot 582(7)$	$0 \cdot 035(4)$	0.395(4)
H(22)	$0 \cdot 896(7)$	$0 \cdot 280$ (4)	$0 \cdot 587$ (4)
H(23)	0.981 (7)	$0 \cdot 409$ (4)	0.599 (4)
H(24)	$0 \cdot 875$ (6)	$0 \cdot 520$ (4)	$0 \cdot 522(4)$
H(25)	$0 \cdot 656(6)$	$0 \cdot 491$ (4)	0.417(4)
H(26)	$0.553(6)$	$0 \cdot 357$ (4)	$0 \cdot 395$ (4)
H(32)	$0 \cdot 615$ (7)	$0 \cdot 137(4)$	$0 \cdot 641$ (4)
H(33)	$0 \cdot 767(6)$	$0 \cdot 049$ (4)	$0.758(4)$
H(34)	$0.983(7)$	-0.005(4)	$0 \cdot 731$ (4)
$\mathrm{H}(35)$	1.037(7)	$0 \cdot 028(4)$	0.606(4)
H(36)	$0 \cdot 902(6)$	$0 \cdot 110(4)$	0.506(4)
$\mathrm{H}(42)$	$0 \cdot 409(6)$	$0 \cdot 083(4)$	$0 \cdot 459$ (4)
$\mathrm{H}(43)$	$0 \cdot 184(6)$	$0 \cdot 085(4)$	$0 \cdot 490$ (4)
$\mathrm{H}(44)$	$0 \cdot 100(7)$	$0 \cdot 206(4)$	$0 \cdot 540$ (4)
H(45)	$0 \cdot 276(7)$	0.325(4)	$0 \cdot 574$ (4)
$\mathrm{H}(46)$	$0 \cdot 488$ (7)	$0 \cdot 322(4)$	$0 \cdot 547$ (4)
$\mathrm{H}(51)$	$0 \cdot 214(6)$	$0 \cdot 146(4)$	$0 \cdot 250$ (4)
H(52)	-0.002(7)	$0 \cdot 180(4)$	0.294(4)
$\mathrm{H}(53)$	$0.007(7)$	$0 \cdot 320$ (5)	$0 \cdot 338(4)$
$\mathrm{H}(54)$	0.241 (7)	$0 \cdot 389$ (4)	$0 \cdot 333(4)$
$\mathrm{H}(55)$	$0 \cdot 366$ (7)	0.287(4)	0.283(4)

weight was $1 \cdot 26$. The largest peak in a difference electrondensity synthesis calculated after the final cycle of refinement was ca. $0.3 \mathrm{e}^{-3}$. Scattering factors were taken from ref. 7 except for hydrogen, which was taken from ref. 8;

* For details see Notice to Authors No. 7 in J.C.S. Dalton, 1973, Index issuc.
${ }^{7}$ D. T. Cromer and J. B. Mann, . 4 cta Cryst., 1968, A24, 321.
${ }^{8}$ R. F. Stewart, E. Davidson, and W. Simpson, J. Chem. Phys., 1965, 42, 3175.
that for Ru was corrected for the effects of anomalous dispersion, according to ref. 9.

Atomic parameters from the final least-squares cycle are given in Tables 1 and 2. Interatomic distances and angles

Table 2

Figure 1 A diagram of the structure which shows the numbering system used for the carbon atoms. The rings are numbered according to the first digit of the carbon atom number
are listed in Table 3, and some appropriate least-squares planes in Table 4. Estimated standard deviations are given in brackets and refer to the least significant figures in the parameter values. Bond lengths are uncorrected for thermal motion. The atom numbering is shown in Figure 1, hydrogen atoms being numbered according to the carbon atoms to which they are bonded. Observed and calculated structure factors are listed in Supplementary Publication No. SUP 20952 ($12 \mathrm{pp} ., 1$ microfiche).*

9 ' International Tables for X-Ray Crystallography,' vol. 3, Kynoch Press, Birmingham, 1962, p. 216.

Table 3
Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ with estimated standard deviations in parentheses

(a) Distances			
Ru-C(5l)	$2 \cdot 170(8)$	$\mathrm{C}(21)-\mathrm{C}(22)$	1-391(8)
Ru--C(52)	$2 \cdot 172(9)$	$\mathrm{C}(22)-\mathrm{C}(23)$	$1 \cdot 380$ (10)
$\mathrm{Ru}-\mathrm{C}(53)$	$2 \cdot 166(10)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1 \cdot 366$ (10)
Ru-C(54)	$2 \cdot 179(10)$	$\mathrm{C}(24)-\mathrm{C}(25)$	$1 \cdot 377(10)$
$\mathrm{Ru}-\mathrm{C}(55)$	$2 \cdot 162(9)$	$\mathrm{C}(25)-\mathrm{C}(26)$	$1 \cdot 387(10)$
Ru-C(41)	$2 \cdot 271$ (5)	$\mathrm{C}(26)-\mathrm{C}(21)$	1-404(8)
Ru--C(42)	$2 \cdot 181(6)$	$\mathrm{C}(31)-\mathrm{C}(32)$	$1.396(10)$
$\mathrm{Ru}-\mathrm{C}(43)$	$2 \cdot 185(7)$	$\mathrm{C}(32)-\mathrm{C}(33)$	$1 \cdot 394(9)$
Ru-C(44)	2.210(8)	$\mathrm{C}(33)-\mathrm{C}(34)$	$1 \cdot 367$ (12)
$\mathrm{Ru}-\mathrm{C}(45)$	$2 \cdot 191$ (8)	$\mathrm{C}(34)-\mathrm{C}(35)$	$1 \cdot 367$ (11)
$\mathrm{Ru}-\mathrm{C}(46)$	$2 \cdot 209(6)$	$\mathrm{C}(35)-\mathrm{C}(36)$	$1 \cdot 367(9)$
C(51)-C(52)	$1 \cdot 392(17)$	$\mathrm{C}(36)-\mathrm{C}(31)$	$1 \cdot 405(9)$
$\mathrm{C}(52)-\mathrm{C}(53)$	1-371(18)	$\mathrm{C}(41)-\mathrm{C}(42)$	$1 \cdot 419$ (8)
$\mathrm{C}(53)-\mathrm{C}(54)$	1-384(16)	$\mathrm{C}(42)-\mathrm{C}(43)$	$1 \cdot 415$ (10)
$\mathrm{C}(54)-\mathrm{C}(55)$	$1 \cdot 393(16)$	$\mathrm{C}(43)-\mathrm{C}(44)$	$1 \cdot 387(11)$
$\mathrm{C}(55)-\mathrm{C}(51)$	$1 \cdot 425(15)$	$\mathrm{C}(44)-\mathrm{C}(45)$	1.385 (11)
$\mathrm{C}(11)-\mathrm{C}(12)$	$1 \cdot 377(9)$	$\mathrm{C}(45)-\mathrm{C}(46)$	$1.411(11)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1 \cdot 372$ (10)	$\mathrm{C}(46)-\mathrm{C}(41)$	$1 \cdot 428(9)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1 \cdot 362(12)$	B-C(11)	$1 \cdot 654(9)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1 \cdot 359(12)$	B-C(21)	$1 \cdot 638(9)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1 \cdot 363(11)$	$\mathrm{B}-\mathrm{C}(31)$	1-644(8)
$\mathrm{C}(16)-\mathrm{C}(11)$	$1 \cdot 382(9)$	$\mathrm{B}-\mathrm{C}(41)$	1.651(10)
$\mathrm{C}(12)-\mathrm{H}(12)$	0.89 (5)	$\mathrm{C}(22)-\mathrm{H}(22)$	0.80 (6)
$\mathrm{C}(13)-\mathrm{H}(13)$	0.82(7)	$\mathrm{C}(23)-\mathrm{H}(23)$	0.79 (6)
$\mathrm{C}(14)-\mathrm{H}(14)$	$0 \cdot 84(7)$	$\mathrm{C}(24)-\mathrm{H}(24)$	0.90 (6)
$\mathrm{C}(15)-\mathrm{H}(15)$	$0 \cdot 80(6)$	$\mathrm{C}(25)-\mathrm{H}(25)$	0.89 (6)
$\mathrm{C}(16)-\mathrm{H}(16)$	0.78 (7)	$\mathrm{C}(26)-\mathrm{H}(26)$	$1 \cdot 03(5)$
$\mathrm{C}(32)-\mathrm{H}(32)$	0.95 (6)	$\mathrm{C}(42)-\mathrm{H}(42)$	0.91 (6)
$\mathrm{C}(33)-\mathrm{H}(33)$	0.93(7)	$\mathrm{C}(43)-\mathrm{H}(43)$	0.97 (6)
$\mathrm{C}(34)-\mathrm{H}(34)$	$0 \cdot 85$ (6)	$\mathrm{C}(44)-\mathrm{H}(44)$	0.99 (6)
$\mathrm{C}(35)-\mathrm{H}(35)$	$0 \cdot 83(7)$	$\mathrm{C}(45)-\mathrm{H}(45)$	0.78(7)
$\mathrm{C}(36)-\mathrm{H}(36)$	$0 \cdot 86$ (7)	$\mathrm{C}(46)-\mathrm{H}(46)$	0.87(6)
$\mathrm{C}(51)-\mathrm{H}(51)$	0.96 (7)		
$\mathrm{C}(52)-\mathrm{H}(52)$	0.86(6)		
$\mathrm{C}(53)-\mathrm{H}(53)$	$0 \cdot 75$ (6)		
$\mathrm{C}(54)-\mathrm{H}(54)$	$0 \cdot 84(6)$		
$\mathrm{C}(55)-\mathrm{H}(55)$	0.87(7)		
(b) Angles			
$\mathrm{C}(11)-\mathrm{B}-\mathrm{C}(21)$	111.6(5)		
$\mathrm{C}(11)-\mathrm{B}-\mathrm{C}(31)$	108.4(5)	$\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{C}(53)$	107.5(10)
$\mathrm{C}(11)-\mathrm{B}-\mathrm{C}(41)$	$111 \cdot 6(4)$	$\mathrm{C}(52)-\mathrm{C}(53)-\mathrm{C}(54)$	$110 \cdot 5(10)$
$\mathrm{C}(21)-\mathrm{B}-\mathrm{C}(31)$	$110 \cdot 0(4)$	$\mathrm{C}(53)-\mathrm{C}(54)-\mathrm{C}(55)$	$106 \cdot 9(10)$
$\mathrm{C}(21)-\mathrm{B}-\mathrm{C}(41)$	109.0(5)	$\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{C}(51)$	107.7(9)
$\mathrm{C}(31)-\mathrm{B}-\mathrm{C}(41)$	$106 \cdot 1(5)$	$\mathrm{C}(55)-\mathrm{C}(51)-\mathrm{C}(52)$	107.4(9)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$122 \cdot 6(6)$	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	122.4(7)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$121 \cdot 3(8)$	$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	$120 \cdot 5(7)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$118 \cdot 0$ (8)	$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	$119 \cdot 1(6)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	119•8(8)	$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$	120.2(7)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	124.6(7)	$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(31)$	123.3(7)
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)$	113.7(6)	$\mathrm{C}(36)-\mathrm{C}(31)-\mathrm{C}(32)$	114.4 (5)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$123 \cdot 2(6)$	$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(43)$	123.2(6)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$120 \cdot 9(6)$	$\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(44)$	$120 \cdot 2(6)$
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$118 \cdot 5(7)$	$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)$	$119 \cdot 0$ (7)
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$120 \cdot 2(7)$	$\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{C}(46)$	$120 \cdot 8(7)$
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(21)$	$123 \cdot 0(6)$	$\mathrm{C}(45)-\mathrm{C}(46)-\mathrm{C}(41)$	$122 \cdot 7(6)$
$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{C}(22)$	114.3(5)	$\mathrm{C}(46)-\mathrm{C}(41)-\mathrm{C}(42)$	114•1(6)

TAble 4

Least-square planes. x, y, and z in the equations of the planes are fractional co-ordinates in the direct cell. σ is the standard deviation from the plane of the atoms defining the plane

Equations of planes defined by C atoms in respective rings:
Ring (1): $8.582 x-3.807 y+1.703 z=5.565$
Ring (2): $-6.732 x+3.021 y+13.054 z=2.517$
Ring (3): $3 \cdot 608 x+12 \cdot 558 y+4 \cdot 997 z=7 \cdot 141$
Ring (4): $2 \cdot 025 x-4.558 y+13.084 z=6.598$
Ring (5) : $2 \cdot 073 x-3 \cdot 826 y+13 \cdot 264 z=3 \cdot 347$
$\mathrm{C}(42)$-(46) $2.072 x-4.589 y+13.047 z=6.590$

Table 4 (Continued)
Distances (\AA) from planes

DISCUSSION

The molecular structure of the compound is illustrated by the stereopair in Figure 2. The ruthenium atom is sandwiched between, and directly bonded to, the cyclopentadienyl ring [ring (5)] and one of the phenyl rings [ring (4)] of the BPh_{4} group. The distances between the ruthenium atom and the best planes through the fivemembered ring and the phenyl ring (Table 4) are 1.817 and $1.701 \AA$. The inter-ring distance is $3.52 \AA$ and the angle between the two planes is 2.95°. Both rings are planar in contrast to the distortion of the bonded phenyl ring observed in $\mathrm{Rh}\left[\mathrm{P}(\mathrm{OMe})_{3}\right]_{2} \mathrm{BPh}_{4},{ }^{10}$ and in $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ $\mathrm{RuCl}_{2}\left(\mathrm{PMePh}_{2}\right)$ and $\left(p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CHMe}_{2}\right) \mathrm{RuCl}_{2}\left(\mathrm{PMePh}_{2}\right) \cdot{ }^{\mathbf{1 1}}$

Electron-diffraction studies of gaseous bis(benzene)chromium ${ }^{12}$ and ferrocene ${ }^{13}$ showed that the hydrogen atoms on the carbon rings are probably bent out of the planes of these rings towards the metal atom by $c a .5^{\circ}$. The hydrogen atoms in this study appear not to be placed accurately enough to allow any conclusions regarding this effect as some of them are bent out of the plane of the carbon atoms in the ring by as much as 16°, but not all in the direction of the ruthenium atom. The mean $\mathrm{C}-\mathrm{H}$ bond distance found is $0.87 \AA$ which is shorter than that normally found for inorganic structures. ${ }^{14}$

The distances between the ruthenium and the carbon atoms in the cyclopentadienyl ring are all within 1σ of the mean value $[2 \cdot 170(6) \AA]$. The $\mathrm{Ru}-\mathrm{C}(41)$ distance (i.e. to the carbon atom attached to the boron atom) $2.721 \AA$ differs significantly from the mean $[2 \cdot 195(12) \AA]$ to the other five carbon atoms in ring (4). This could be a steric effect and is a result of a number of deviations from the symmetrical shape of the six-membered ring, which are not individually significant but taken together could give rise to this lengthening: $\mathrm{C}(41)$ lies $0 \cdot 021 \AA$ from the best plane through atoms $C(42)-(46)$, i.e. the plane through $C(41), C(42)$, and $C(46)$ makes an angle of
${ }^{10}$ M. J. Nolte, G. Gafner, and L. M. Haines, Chem. Comm., 1969, 1406.
${ }^{11}$ M. A. Bennett, G. B. Robertson, and A. K. Smith, J. Organometallic Chem., 1972, 43, C41.
12 A. Haaland, Acta Chem. Scand., 1965, 19, 41.
${ }^{13}$ R. K. Bohn and A. Haaland, J. Organometallic Chem., 1966, 5, 470.
${ }_{14}$ M. R. Churchill, Inorg. Chem., 1973, 5, 1213.
1.47° with the aforementioned plane; bond lengths $C(41)-C(42)$ and $C(41)-C(46)$ are slightly longer than the other four; the projection of the ruthenium atom on the plane through ring (4) is $0.029 \AA$ away from the centre of the ring.

The tetraphenylborate anion shows no appreciable distortion and the phenyl rings are bonded to the boron atom in a normal tetrahedral configuration with mean

The molecular packing is illustrated by the stereopair in Figure 3. Intermolecular contacts correspond to van der Waals interactions, the shortest being H \cdots H $2 \cdot 66$, $\mathrm{C} \cdots \mathrm{H} 2 \cdot 75$, and $\mathrm{C} \cdots \mathrm{C} 3.53 \AA$.

The X-ray crystal structure determination of the title compound has revealed it to possess the structure originally suggested. ${ }^{1}$ Although $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ru}\left(\mathrm{BPh}_{4}\right)$ still represents the only example of a mixed-sandwich structure

FIGURE 2 Stereoscopic drawing of the molecule showing the thermal ellipsoids at the 50% probability level

Figure 3 Stcreoscopic view of the contents of the unit cell

B-C $1.647(6) \AA$. Rings (1), (2), and (3) are planar, and the mean $\mathrm{C}-\mathrm{C}$ distance for all three rings is $1 \cdot 379(12) \AA$. The mean C - C distance in ring (4) $[1 \cdot 408(16) \AA]$ compares well with that $[1 \cdot 410(4) \AA]$ observed in the planar ring in bis(hexamethylbenzene)ruthenium (0)..15 The mean $\mathrm{C}-\mathrm{C}$ distance in the five-membered ring is 1.394 (18) \AA which is shorter than in ruthenocene ${ }^{16}(1 \cdot 43 \AA)$, and in bis(dicarbonyl- π-cyclopentadienylruthenium) ${ }^{17}$ ($1.42 \AA$), but not significantly so.
${ }^{15}$ G. Huttner, S. Lange, and E. O. Fischer, A ngew. Chem. Internat. Edn., 1971, 10, 556.
containing the tetraphenylborate anion directly bonded to the metal, its ready formation compared t_{0} the inability to obtain other mixed-sandwich complexes by a similar route still cannot be explained. A more detailed investigation of $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Ru}\left(\mathrm{PPl}_{3}\right)_{2} \mathrm{Cl}$ may enable us to explain these anomalies.
[3/1908 Received, 17th Septenber. 1973]

[^0]
[^0]: ${ }^{16}$ G. L. Hardgrove and D. H. Templeton, Acta Cryst., 1959, 12, 28.
 ${ }^{17}$ O. S. Mills and J. P. Nice, J. Organometallic Chem., 1967, 9, 339.

