Metal-Carbonyl and Metal-Nitrosyl Complexes. Part XV. ${ }^{1}$ Crystal and Molecular Structure of (3-Formyl-N-ethoxycarbonylazepine)tricarbonyliron(0) t

By David I. Woodhouse, George A. Sim,* and James G. Sime, Chemistry Department, University of Glasgow, Glasgow G12 800

The molecular geometry of the title compound has been determined by single-crystal X-ray analysis from diffractometer data; the positional and thermal parameters of the atoms were obtained by Fourier and least-squares procedures and the final value of R was $4 \cdot 6 \%$ over 2363 independent reflections. The tricarbonyliron group binds to the $C(4), C(5), C(6), C(7)$-butadiene fragment of the azepine ring, with $\mathrm{Fe}-\mathrm{C}(4), \mathrm{C}(7)$ distances of 2.151 and $2.096(4) \AA$ and $\mathrm{Fe}-\mathrm{C}(5), \mathrm{C}(6)$ distances of 2.053 and 2.051 (4) \AA. The bond lengths in the azepine ring are: $N(1)-C(2) 1 \cdot 379, C(2)-C(3) 1 \cdot 347, C(3)-C(4) 1 \cdot 465, C(4)-C(5) 1 \cdot 431, C(5)-C(6) 1 \cdot 406, C(6)-C(7) 1 \cdot 431$, and $\mathrm{C}(7)-\mathrm{N}(1) 1.447 \AA$, all with σ ca. $0.005 \AA$. The ring has two nearly planar groups of atoms, (i) $\mathrm{C}(4), \mathrm{C}(5)$, $\mathrm{C}(6), \mathrm{C}(7)$, and (ii) C(7), N(1), C(2), C(3), C(4), the dihedral angle between the planes being 138°. The crystals are triclinic, space group $P \overline{1}$, with $a=7 \cdot 022(3), b=10 \cdot 550(4), c=9 \cdot 500(3) A, \alpha=92^{\circ} 49(2)^{\prime}, \beta=94^{\circ} 32(2)^{\prime}$. $\gamma=96^{\circ} 8(2)^{\prime}$, and $Z=2$.

Discussion of the nature of the stable bond formed between the iron atom and olefins has been aided by X-ray diffraction studies of a wide range of dienetri-

[^0]carbonyliron complexes. ${ }^{2-4}$ The results reveal that the iron atom is bound to a planar cis-butadiene C_{4}-fragment, with a substantial alteration in the molecular geometry of the olefinic ligand: thus, e.g., the characteristic ' tub'
${ }^{3}$ M. R. Churchill and R. Mason, Adv. Organometallic Chem., 1967, 5, 93.
' M. L. H. Green, ' Organometallic Compounds,' vol. 2, 3rd edn., Methuen, London, 1968.
conformation of cyclo-octatetraene (\cot) is greatly altered on formation of $(\cot) \mathrm{Fe}(\mathrm{CO})_{3}$ and $(\cot)\left[\mathrm{Fe}(\mathrm{CO})_{3}\right]_{2},{ }^{5}$ geometrical isomerization occurs when vitamin-A aldehyde forms a tricarbonyliron complex, ${ }^{6}$ and in all the complexed dienes the two outer carbon-carbon bonds are notably longer and the central carbon-carbon bond is notably shorter than in uncomplexed butadiene. The

(1)

heterocyclic azepine ring (1) in N-p-bromobenzenesulphonylazepine ${ }^{7}$ and N-phenoxycarbonylazepine ${ }^{8}$ exists in a boat conformation with localized double bonds, whereas in the complexes ($1 H$-azepine)tricarbonyliron, ${ }^{9}$ (N-methoxycarbonylazepine)tricarbonyliron, ${ }^{10}$ and (3-acetyl- $1 H$-azepine)tricarbonyliron, ${ }^{11}$ where the tricarbonyliron group is bound to the $C(4), C(5), C(6), C(7)$ butadiene moiety, the ring is divided into two almost planar sets of atoms hinged about the $C(4) \cdots C(7)$ line and inclined at a dihedral angle of $c a .140^{\circ}$. Since the unsubstituted, 1 -substituted, and 3 -substituted complexes show interesting small variations in molecular geometries, we undertook an X-ray analysis of a 1,3 -disubstituted complex, (3 -formyl- N -ethoxycarbonylazepine)tricarbonyliron (2), ${ }^{12}$ in order to extend our knowledge of the bonding in azepinetricarbonyliron complexes.
X-Ray intensity data for (2) were measured on a Hilger and Watts Y290 diffractometer and the positional and thermal parameters of the atoms determined by Fourier and least-squares procedures, the final value of R being 4.6% over 2363 reflections. The molecular structure is shown in Figure 1 and the arrangement of molecules in the unit cell in Figure 2. The atomic coordinates are listed in Table 1 and the bond lengths are compared with those of related complexes in Table 2. Other interatomic distances and angles are given in Tables 3 and 4, and the displacements of the atoms from various planes are in Table 5.

The X-ray analysis confirms that the tricarbonyliron group is bound to the $C(4), C(5), C(6), C(7)$ - rather than the $C(2), C(3), C(4), C(5)$-butadiene fragment of the azepine ring. The iron atom is significantly closer to the central than to the terminal atoms of the butadiene; the
${ }^{5}$ B. Dickens and W. N. Lipscomb, J. Chem. Phys., 1962, 37, 2084.
${ }^{6}$ A. J. Birch, H. Fitton, R. Mason, G. B. Robertson, and J. E. Stangroom, Chem. Comm., 1966, 613.
${ }^{7}$ I. C. Paul, S. M. Johnson, L. A. Paquette, J. H. Barrett, and R. J. Haluska, J. Amer. Chem. Soc., 1968, 90, 5023.
${ }_{8}^{8} \mathrm{H}$. J. Linder and B. von Gross, Chem. Ber., 1972, $105,434$.
${ }^{\bullet}$ A. Gieren and W. Hoppe, Acta Cryst., 1972, B28, 2766.
respective mean $\mathrm{Fe}-\mathrm{C}$ distances are 2.05 and $2 \cdot 12 \AA$, in good agreement with values in other dienetricarbonyliron complexes, cf. 2.05 and $2.13 \AA$ in (sorbic acid)tricarbonyliron. ${ }^{13}$ The $\mathrm{Fe}-\mathrm{C}(4)$ and $\mathrm{Fe}-\mathrm{C}(7)$ distances actually show a significant asymmetry (2•151 and $2.096 \AA$) which is also a feature of (N-methoxycarbonylazepine)tricarbonyliron ${ }^{10}$ but is much less evident in the $1 H$-azepine complexes. ${ }^{\mathbf{9} 11}$ The outer ($1.431 \AA$) and central ($1 \cdot 406 \AA$) carbon-carbon bonds of the complexed C_{4}-fragment are appreciably different from those in uncomplexed butadiene (1.344 and $1 \cdot 467 \AA$), ${ }^{14}$ consistent with appreciable back donation of electrons from the

Figure 2 The crystal structure of (3-formyl- N-ethoxycarbonylazepine) tricarbonyliron, viewed along the a axis
metal atom into the lowest antibonding molecular orbital of the butadiene.
${ }_{10}$ S. M. Johnson and I. C. Paul, J. Chem. Soc. (B), 1970, 1783
11 M. G. Waite and G. A. Sim, J. Chem. Soc. (A), 1971, 1009.
${ }^{12}$ G. B. Gill, N. Gourlay, A. W. Johnson, and M. Mahendran, Chem. Comm., 1969, 631.
${ }^{13}$ R. Eiss, Inorg. Chem., 1970, 9, 1650.
${ }^{14}$ W. Haugen and M. Traetteberg, in 'Selected Topics in Structure Chemistry,' eds. P. Andersen, O. Bastiansen, and S. Furberg, Universitetsforlaget, Oslo, 1967, pp. 113-123.

Uncomplexed azepine derivatives exhibit a boat conformation with $\mathrm{C}(2), \mathrm{C}(3), \mathrm{C}(6)$, and $\mathrm{C}(7)$ effectively coplanar. ${ }^{7,8}$ In the complex (2) the ring has two nearly planar groups of atoms (i) $\mathrm{C}(4), \mathrm{C}(5), \mathrm{C}(6), \mathrm{C}(7)$, and (ii) $\mathrm{C}(7), \mathrm{N}(1), \mathrm{C}(2), \mathrm{C}(3), \mathrm{C}(4)$ inclined at a dihedral angle of 138°, and this conformation is common to the other azepinetricarbonyliron complexes. Another striking

Table 1
Atomic co-ordinates, as fractions of the cell edges, with standard deviations in parentheses

	x	y	z
	$0 \cdot 09012(7)$	$0 \cdot 20994(4)$	$0 \cdot 31160(5)$
Fe	$0 \cdot 1772(4)$	$0 \cdot 5013(3)$	$0 \cdot 2865(3)$
$\mathrm{N}(1)$	$0 \cdot 10021(5)$	$0 \cdot 5073(3)$	$0 \cdot 2120(4)$
$\mathrm{C}(2)$	$-0 \cdot 1513(5)$	$0 \cdot 4191(4)$	$0 \cdot 2140(4)$
$\mathrm{C}(3)$	$-0 \cdot 1667(5)$	$0 \cdot 3045(4)$	$0 \cdot 2952(4)$
$\mathrm{C}(4)$	$-0 \cdot 0889(5)$	$0 \cdot 2960(4)$	$0 \cdot 4377(4)$
$\mathrm{C}(5)$	$0 \cdot 1035(6)$	$0 \cdot 3445(4)$	$0 \cdot 4764(4)$
$\mathrm{C}(6)$	$0 \cdot 2191(5)$	$0 \cdot 3954(3)$	$0 \cdot 3705(4)$
$\mathrm{C}(7)$	$0 \cdot 3282(5)$	$0 \cdot 5996(3)$	$0 \cdot 2831(4)$
$\mathrm{C}(8)$	$0 \cdot 4255(7)$	$0 \cdot 7983(4)$	$0 \cdot 1970(5)$
$\mathrm{C}(9)$	$0 \cdot 3369(9)$	$0 \cdot 8929(5)$	$0 \cdot 1066(6)$
$\mathrm{C}(10)$	$-0 \cdot 3188(5)$	$0 \cdot 4402(4)$	$0 \cdot 1210(4)$
$\mathrm{C}(11)$	$0 \cdot 1243(5)$	$0 \cdot 2170(4)$	$0 \cdot 1257(4)$
$\mathrm{C}(12)$	$-0 \cdot 0495(6)$	$0 \cdot 0558(4)$	$0 \cdot 3116(5)$
$\mathrm{C}(13)$	$0 \cdot 3105(6)$	$0 \cdot 1500(4)$	$0 \cdot 3728(4)$
$\mathrm{C}(14)$	$0 \cdot 4821(4)$	$0 \cdot 5994(3)$	$0 \cdot 3480(3)$
$\mathrm{O}(1)$	$0 \cdot 2767(4)$	$0 \cdot 6911(3)$	$0 \cdot 2021(3)$
$\mathrm{O}(2)$	$0 \cdot 4677(4)$	$0 \cdot 3699(3)$	$0 \cdot 1045(4)$
$\mathrm{O}(3)$	$0 \cdot 1398(5)$	$0 \cdot 2252(4)$	$0 \cdot 0095(3)$
$\mathrm{O}(4)$	$-0 \cdot 1322(6)$	$-0 \cdot 0425(4)$	$0 \cdot 3124(5)$
$\mathrm{O}(5)$	$0 \cdot 4497(5)$	$0 \cdot 1128(3)$	$0 \cdot 4102(4)$
$\mathrm{O}(6)$	$-0 \cdot 010(5)$	$0 \cdot 582(3)$	$0 \cdot 162(4)$
$\mathrm{H}(2)$	$-0 \cdot 290(5)$	$0 \cdot 256(3)$	$0 \cdot 274(3)$
$\mathrm{H}(4)$	$-0 \cdot 157(7)$	$0 \cdot 239(4)$	$0 \cdot 495(5)$
$\mathrm{H}(5)$	$0 \cdot 159(6)$	$0 \cdot 340(4)$	$0 \cdot 567(4)$
$\mathrm{H}(6)$	$0 \cdot 349(5)$	$0 \cdot 406(3)$	$0 \cdot 404(4)$
$\mathrm{H}(7)$	$0 \cdot 548(8)$	$0 \cdot 763(5)$	$0 \cdot 150(6)$
$\mathrm{H}(9 \mathrm{a})$	$0 \cdot 445(7)$	$0 \cdot 837(5)$	$0 \cdot 283(5)$
$\mathrm{H}(9 \mathrm{~b})$	$0 \cdot 312(10)$	$0 \cdot 861(6)$	$0 \cdot 018(7)$
$\mathrm{H}(10 \mathrm{a})$	$0 \cdot 407(8)$	$0 \cdot 965(6)$	$0 \cdot 105(5)$
$\mathrm{H}(10 \mathrm{~b})$	$0 \cdot 214(10)$	$0 \cdot 914(7)$	$0 \cdot 157(7)$
$\mathrm{H}(10 \mathrm{c})$	$-0 \cdot 307(6)$	$0 \cdot 528(4)$	$0 \cdot 076(4)$
$\mathrm{H}(11)$			

Table 2
Bond lengths (\AA) in (A) (3-formyl- N-ethoxycarbonylazepine) tricarbonyliron, (B) (N-methoxycarbonylazepine)tricarbonyliron, (C) (3-acetyl- $1 H$-azepine)tricarbonyliron, and (D) ($1 H$-azepine)tricarbonyliron; bonds numbered as in (2)

Bond	(A)	(B)	(C)	(D)
$\mathrm{N}(1)-\mathrm{C}(2)$	1-379(4)	$1.382(11)$	1-343(8)	1-352(7)
$N(1)-C(7)$	1-447(5)	1-436(11)	1.391 (10)	1-402(6)
$\mathrm{C}(2)-\mathrm{C}(3)$	1-343(5)	$1.334(14)$	$1 \cdot 364(12)$	1-322(7)
$\mathrm{C}(3)-\mathrm{C}(4)$	$1 \cdot 465$ (5)	$1 \cdot 439(14)$	$1.458(11)$	1.451 (7)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.431 (5)	$1 \cdot 398(14)$	1.457(10)	$1.414(7)$
$\mathrm{C}(5)-\mathrm{C}(6)$	1-406(6)	$1 \cdot 409(13)$	1-392(13)	$1.407(7)$
$\mathrm{C}(6)-\mathrm{C}(7)$	1.431 (5)	1-440(12)	1.464(13)	$1.409(7)$
$\mathrm{C}(3)-\mathrm{C}(11)$	1-458(5)		1-467(9)	
$\mathrm{N}(1)-\mathrm{C}(8)$	1-406(5)	1-372(11)		
$\mathrm{C}(8)-\mathrm{O}(1)$	$1 \cdot 201(5)$	1-192(12)		
$\mathrm{C}(8)-\mathrm{O}(2)$	1-325(5)	1-334(12)		
$\mathrm{O}(2)-\mathrm{C}(9)$	$1 \cdot 461$ (5)	$1 \cdot 465(15)$		
$\mathrm{C}(9)-\mathrm{C}(10)$	$1 \cdot 507(7)$			
$\mathrm{Fe}-\mathrm{C}(4)$	$2 \cdot 151$ (4)	$2 \cdot 145$ (10)	2.182(7)	2.206(5)
$\mathrm{Fe}-\mathrm{C}(5)$	$2 \cdot 053(4)$	$2 \cdot 059(10)$	$2 \cdot 063(8)$	$2 \cdot 033(5)$
$\mathrm{Fe}-\mathrm{C}(6)$	2.051 (4)	2.041 (9)	2.055(9)	$2 \cdot 039$ (5)
$\mathrm{Fe}-\mathrm{C}(7)$	2.096(4)	$2 \cdot 091$ (8)	2-168(9)	2.174(4)
$\mathrm{Fe}-\mathrm{C}(12)$	1-805(4)	1-713(11)	1.791 (8)	$1.765(4)$
$\mathrm{Fe}-\mathrm{C}(13)$	1-807(4)	1-784(10)	1.799(10)	$1 \cdot 779$ (4)
$\mathrm{Fe}-\mathrm{C}(14)$	1-799(4)	$1 \cdot 779$ (10)	1-802(6)	1-782(4)
$\mathrm{C}(12)-\mathrm{O}(4)$	$1 \cdot 125(5)$	$1 \cdot 153(14)$	$1 \cdot 138(10)$	$1 \cdot 142(6)$
$\mathrm{C}(13)-\mathrm{O}(5)$	$1 \cdot 134(6)$	1-123(12)	$1 \cdot 148(14)$	$1 \cdot 138(5)$
$\mathrm{C}(14)-\mathrm{O}(6)$	$1 \cdot 136(5)$	1-142(13)	1-137(9)	$1 \cdot 144(6)$

Table 3
Valency angles (${ }^{\circ}$)

$\mathrm{C}(12)-\mathrm{Fe}-\mathrm{C}(13)$	$100 \cdot 3(2)$	$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{O}(2)$	$113 \cdot 3(3)$
$\mathrm{C}(12)-\mathrm{Fe}-\mathrm{C}(14)$	$99 \cdot 8(2)$	$\mathrm{O}(1)-\mathrm{C}(8)-\mathrm{O}(2)$	$125 \cdot 5(3)$
$\mathrm{C}(13)-\mathrm{Fe}-\mathrm{C}(14)$	$93 \cdot 4(2)$	$\mathrm{C}(8)-\mathrm{O}(2)-\mathrm{C}(9)$	$114 \cdot 2(3)$
$\mathrm{Fe}-\mathrm{C}(12)-\mathrm{O}(4)$	$176 \cdot 9(4)$	$\mathrm{O}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	$106 \cdot 0(4)$
$\mathrm{Fe}-\mathrm{C}(13)-\mathrm{O}(5)$	$178 \cdot 0(4)$	$\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{O}(3)$	$125 \cdot 2(4)$
$\mathrm{Fe}-\mathrm{C}(14)-\mathrm{O}(6)$	$179 \cdot 3(4)$	$\mathrm{C}(3)-\mathrm{C}(11)-\mathrm{H}(11)$	$114(2)$
$\mathrm{Fe}-\mathrm{C}(4)-\mathrm{C}(5)$	$66 \cdot 5(2)$	$\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{H}(11)$	$121(2)$
$\mathrm{Fe}-\mathrm{C}(4)-\mathrm{C}(3)$	$114 \cdot 2(2)$	$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	$116(2)$
$\mathrm{Fe}-\mathrm{C}(7)-\mathrm{C}(6)$	$68 \cdot 1(2)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	$119(2)$
$\mathrm{Fe}-\mathrm{C}(7)-\mathrm{N}(1)$	$120 \cdot 6(2)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	$110(2)$
$\mathrm{C}(4)-\mathrm{Fe}-\mathrm{C}(5)$	$39 \cdot 7(1)$	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	$114(2)$
$\mathrm{C}(4)-\mathrm{Fe}-\mathrm{C}(6)$	$71 \cdot 2(2)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	$118(3)$
$\mathrm{C}(4)-\mathrm{Fe}-\mathrm{C}(7)$	$82 \cdot 5(1)$	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	$121(3)$
$\mathrm{C}(5)-\mathrm{Fe}-\mathrm{C}(6)$	$40 \cdot 1(2)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	$122(2)$
$\mathrm{C}(5)-\mathrm{Fe}-\mathrm{C}(7)$	$72 \cdot 3(1)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	$119(3)$
$\mathrm{C}(6)-\mathrm{Fe}-\mathrm{C}(7)$	$40 \cdot 4(1)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	$110(2)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$124 \cdot 3(3)$	$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{H}(7)$	$109(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$127 \cdot 8(3)$	$\mathrm{O}(2)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{a})$	$108(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(11)$	$115 \cdot 2(3)$	$\mathrm{O}(2)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~b})$	$107(3)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(11)$	$117 \cdot 0(3)$	$\mathrm{H}(9 \mathrm{a})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~b})$	$118(4)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$125 \cdot 8(3)$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{a})$	$111(3)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$119 \cdot 1(3)$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~b})$	$105(3)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$119 \cdot 1(3)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{a})$	$111(4)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(1)$	$125 \cdot 0(3)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~b})$	$114(4)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(2)$	$123 \cdot 2(3)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{c})$	$104(4)$
$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{C}(8)$	$115 \cdot 9(3)$	$\mathrm{H}(10 \mathrm{a})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~b})$	$109(6)$
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(2)$	$120 \cdot 9(3)$	$\mathrm{H}(10 \mathrm{a})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{c})$	$114(6)$
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{O}(1)$	$123 \cdot 1(3)$	$\mathrm{H}(10 \mathrm{~b})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{c})$	$105(5)$

Table 4
Intermolecular separations (\AA)

$O(3) \cdots \mathrm{O}\left(4^{\text {I }}\right.$)	$3 \cdot 05$	$\mathrm{O}(3) \cdots \mathrm{C}\left(9^{\mathrm{v}}\right)$	3-34
$\mathrm{O}(6) \cdots \mathrm{O}\left({ }^{\text {II }}\right.$)	$3 \cdot 11$	$\mathrm{O}(2) \cdots \mathrm{O}\left(3^{\mathrm{v}}\right)$	$3 \cdot 36$
$\mathrm{O}(3) \cdots \mathrm{C}\left(12^{\mathrm{I}}\right)$	$3 \cdot 16$	$\mathrm{O}(2) \cdots \mathrm{C}\left(11^{\mathrm{v}}\right)$	$3 \cdot 36$
$\mathrm{O}(1) \cdots \mathrm{C}(11 \mathrm{III})$	$3 \cdot 17$	$\mathrm{O}(3) \cdots \mathrm{C}\left(11^{\mathrm{vI}}\right)$	$3 \cdot 38$
$\mathrm{O}(1) \cdots \mathrm{C}\left(6^{\mathbf{I V}}\right)$	$3 \cdot 22$	$\mathrm{O}(3) \cdots \mathrm{C}\left(8^{\mathbf{I}}\right)$	$3 \cdot 39$
$\mathrm{O}(\mathrm{l}) \cdots \mathrm{C}\left(7^{\text {rV }}\right)$	$3 \cdot 26$	$\mathrm{O}(5) \cdots \mathrm{C}\left(9^{\mathbf{V I I}}\right)$	$3 \cdot 44$
$\mathrm{O}(1) \cdots \mathrm{O}\left(3^{\text {III }}\right)$	$3 \cdot 33$	$\mathrm{N}(\mathrm{l}) \cdots \mathrm{C}\left(5^{\mathrm{VIII}}\right)$	$3 \cdot 44$

The superscripts refer to the following transformations of the atomic co-ordinates:

$$
\begin{array}{lr}
\text { I }-1+x, y, z & \text { V }-x, 1-y,-z \\
\text { II } 1-x,-y, 1-z & \text { VI }-1-x, 1-y,-z \\
\text { III 1 } 1 x, y, z & \text { VII }-1+x,-1+y, z \\
\text { IV 1-x,1-y,1-z } & \text { VIII }-x, 1-y, 1-z
\end{array}
$$

Table 5
Displacements (\AA) of the atoms from various planes; atoms not included in the derivation of a plane are italicized
Plane (a): C(4) -0.007, C(5) 0.014, C(6) $-0.014, \mathrm{C}(7) 0.007$, $H(4) 0 \cdot 17, H(5) 0 \cdot 28, H(6) 0 \cdot 00, H(7) 0.19, F e 1.588$
Plane (b): $\mathrm{C}(7) 0.023, \mathrm{~N}(1)-0.029, \mathrm{C}(2) 0.004, \mathrm{C}(3) 0.022$, $C(4)-0.021, C(8)-0.097, C(11) 0.135$
Plane (c): C(3) 0, C(4) 0, C(5) 0, H(4) -0.54
Plane (d): C(6) 0, C(7) 0, N(1) 0, H(7) -0.63
Plane (e): C(7) 0, C(8) 0, C(2) 0, N(1) -0.006
Plane $(f): C(8)-0.007, \mathrm{O}(1)-0.007, \mathrm{O}(2) 0.011, \mathrm{C}(9) 0.019$, $\mathrm{C}(10)-0.017, N(1)-0.051$
Plane $(g): C(13)-0.021, \mathrm{C}(14) 0.022, \mathrm{X}(4,5) * 0.027 \mathrm{X}(6,7)^{*}$ -0.027, Fe 0.521

* $X(4,5)$ and $X(6,7)$ are the midpoints of the $C(4)-C(5)$ and $C(6)-C(7)$ bonds.
difference between the complex and uncomplexed azepine rings is the greater planarity about the nitrogen atom in the complexes; in $N-p$-bromobenzenesulphonylazepine ${ }^{7}$ and N-phenoxycarbonylazepine ${ }^{8}$ the nitrogen atom is displaced by 0.22 and $0.13 \AA$, respectively, from the plane defined by the atoms bound to nitrogen, whereas in (N-methoxycarbonylazepine)tricarbonyliron ${ }^{10}$ and (3-formyl- N-ethoxycarbonylazepine)tricarbonyliron the corresponding displacements are only 0.020 and $0.006 \AA$,
indicating a much closer approximation to $s p^{2}$ hybridization for the nitrogen atom in the complexes. The $\mathrm{N}-\mathrm{C}(2)$ bond in a complexed azepine ring is consistently shorter than the $\mathrm{N}-\mathrm{C}(7)$ bond, e.g., 1.343 and $1.391 \AA$ in (3 -acetyl- $1 H$-azepine)tricarbonyliron, ${ }^{11}$ and introduction of an unsaturated exocyclic N-substituent results in a significant lengthening of both $\mathrm{N}-\mathrm{C}$ ring bonds, $c f .1 \cdot 379$ and $1.447 \AA$ in (2). These results are consistent with competing conjugative interactions leading to the extensive delocalization of the nitrogen ' lone pair '.

When the molecule is viewed in projection on to the $\mathrm{C}(4), \mathrm{C}(5), \mathrm{C}(6), \mathrm{C}(7)$-butadiene plane, two of the carbonyl ligands eclipse the outer carbon-carbon bonds of the

Figure 3 Projection of the molecular structure on to the plane defined by $\mathrm{C}(4), \mathrm{C}(5), \mathrm{C}(6)$, and $\mathrm{C}(7)$

Table 6
The $\mathrm{C}-\mathrm{H}$ bond lengths (\AA)

$\mathrm{C}(2)-\mathrm{H}(2)$	$0.95(3)$	$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{a})$	$1.10(5)$
$\mathrm{C}(4)-\mathrm{H}(4)$	$0.96(3)$	$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~b})$	$0.8(5)$
$\mathrm{C}(5)-\mathrm{H}(5)$	$0.95(5)$	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{a})$	$0.88(7)$
$\mathrm{C}(6)-\mathrm{H}(6)$	$0.92(4)$	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~b})$	$0.87(6)$
$\mathrm{C}(77-\mathrm{H}(7)$	$0.93(3)$	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{c})$	$1.06(7)$
$\mathrm{C}(11)-\mathrm{H}(11)$	$1.04(4)$		

diene (Figure 3), a standard arrangement in dienetricarbonyliron complexes. The co-ordination of the iron atom may be described as distorted square pyramidal with the iron atom $0.52 \AA$ above the plane through the carbonyl carbon atoms $C(13)$ and $C(14)$ and the midpoints of the $C(4)-C(5)$ and $C(6)-C(7)$ bonds. The non-equivalence of basal and apical carbonyl groups is not reflected in the $\mathrm{Fe}-\mathrm{CO}$ bond lengths but is apparent, however, in the angle between the basal $\mathrm{Fe}-\mathrm{CO}$ bonds, $93 \cdot 4^{\circ}$, being
significantly smaller than the angles between basal and apical bonds, 99.8 and $100 \cdot 3^{\circ}$.

The $\mathrm{C}-\mathrm{H}$ bond lengths range from 0.87 to $1 \cdot 10 \AA$ (see Table 6) with a mean of $0.96 \AA$. The contraction from expected internuclear separations of $c a .1 \cdot 07 \AA$ has been noted in other X-ray studies and has been attributed to the displacement of the hydrogen electron density towards the carbon atom on bond formation.

EXPERIMENTAL

Crystal Data.-(3-Formyl- N-ethoxycarbonylazepine)tricarbonyliron, $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{FeNO}_{6}, M=333 \cdot 0$, Triclinic, $a=$ $7 \cdot 022(3), \quad b=10 \cdot 550(4), \quad c=9 \cdot 500(3) \AA, \quad \alpha=92^{\circ} 49(2)^{\prime}$, $\beta=94^{\circ} 32(2)^{\prime}, \quad \gamma=96^{\circ} 8(2)^{\prime}, \quad U=696.4 \AA^{3}, \quad D_{\mathrm{m}}=1.58$, $Z=2, D_{\mathrm{c}}=1 \cdot 587, F(000)=340$. Space group $P \overline{1}$. MoK_{α} radiation, $\lambda=0.7107 \AA, \mu=11.5 \mathrm{~cm}^{-1}$.

Crystallographic Measurements.-Preliminary values of the cell dimensions were obtained from precession photographs of a crystal with dimensions $0.10 \times 0.35 \times 0.50$ mm^{3}. The cell parameters were subsequently adjusted by a least-squares treatment of the θ, χ, and ϕ setting angles of a number of reflections measured on a Hilger and Watts Y290 automatic diffractometer with $\mathrm{Mo}-K_{\alpha}$ radiation. The intensity measurements were made by the $\theta-20$ step scan procedure, each reflection being scanned in 80 equal steps from 0.8° below to 0.8° above $2 \theta_{\text {calc. }}$. Each step was scanned 1 s and background counts were taken at each end of the total range for 20 s . The intensities of two standard reflections were monitored after every 40 reflections and only small random fluctuations noted. Intensities were collected for reflections with h positive within $\theta\left(\mathrm{Mo}-K_{\alpha}\right) \leqslant$ 25°. The scan counts (P) and the background counts (B_{1}, B_{2}) were combined to yield the integrated intensity $I=P-2\left(B_{1}+B_{2}\right)$. Intensities were corrected for Lorentz-polarization effects, but absorption was neglected. In all, 2467 independent values of $\left|F_{0}\right|$ were obtained and when reflections with $P<2\left(B_{1}+B_{2}\right)$ were eliminated 2363 values remained.

Structure Analysis.--The initial co-ordinates of the iron atom were deduced from the three-dimensional Patterson synthesis and the positions of the carbon, nitrogen, and oxygen atoms were then obtained from a three-dimensional electron-density distribution phased by the iron atom (R 46%).

Accurate atomic parameters were derived by a series of least-squares calculations with the programme developed by D. W. J. Cruickshank, J. G. F. Smith, and J. G. Sime for the KDF 9 computer at Glasgow University. The function minimized was $\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ where w is a weight given by the expression: $w=\left[1-\exp \left\{-p_{1}(\sin \theta / \lambda)^{2}\right\}\right][1+$ $\left.p_{2}\left|F_{0}\right|+p_{3}\left|F_{0}\right|^{2}\right]$. The values of p_{1}, p_{2}, and p_{3} were adjusted at several stages to ensure approximate constancy of $\left\langle w \Delta^{2}\right\rangle$ over various ranges of $\left|F_{0}\right|$ and $\sin \theta$, and the final values employed were $50.0,0 \cdot 1$, and 0.001 , respectively. The scattering factors used in the analysis were taken from ref. 15 and the values for iron were corrected for dispersion.

Two cycles of full-matrix refinement with isotropic thermal parameters reduced R to $10 \cdot 6 \%$. The atoms were then assigned anisotropic thermal parameters and a block diagonal procedure employed; two rounds of calculations gave $R \mathbf{6 . 2} \%$. A difference electron-density distribution enabled all the hydrogen atoms to be located unambiguously,
${ }^{15}$ ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.
the average peak height being $0.6 \mathrm{e} \AA^{-3}$. The hydrogen atoms were then included in the least-squares calculations

* The thermal parameters of the atoms and the observed and calculated structure factors are published in Supplementary Publication No. SUP 20969 (6 pp .). For details of Supplementary Publications see Notice to Authors No. 7 in J.C.S. Dalton, 1972, index issue (items less than 10 pp . are sent as full-size copies).
with isotropic thermal parameters and after four rounds of calculations convergence was reached at $R \mathbf{4 . 6 \%}$.*

We thank Professor A. W. Johnson for crystals of the azepine complex and the S.R.C. for a studentship (to D. I. W.).
[3/2542 Received, 13th December, 1973]

[^0]: \dagger No reprints available.
 ${ }^{1}$ Part XIV, A. D. U. Hardy and G. A. Sim, J.C.S. Dalton, 1972, 2305.
 ${ }_{2}$ R. Pettit and G. F. Emerson, Adv. Organometallic Chem., 1964, 1, 1.

