Alkylideneamido-derivatives of Metals and Metalloids. Part VI. ${ }^{1}$ The Synthesis of Alkylideneamido(carbene)rhodium(1) Complexes and Related Chemistry; The Crystal and Molecular Structure of trans$\mathbf{R h}\left[\mathrm{N}: \mathrm{C}\left(\mathrm{CF}_{3}\right)_{2}\right]\left[\mathrm{C}\left(\mathrm{NMeCH}_{2}\right)_{2}\right]\left(\mathrm{PPh}_{3}\right)_{2}$

By Michael J. Doyle, Michael F. Lappert,* George M. McLaughlin, and John McMeeking, School of Molecular Sciences, University of Sussex, Brighton BN1 90J
Two rhodium (1) complexes, trans- $\mathrm{Rh}\left[\mathrm{N}: \mathrm{C}\left(\mathrm{CF}_{3}\right)_{2}\right]\left[\mathrm{C}\left(\mathrm{NRCH}_{2}\right)_{2}\right]\left(\mathrm{PPh}_{3}\right)_{2},\left(\mathrm{I} ; \mathrm{R}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)$ and (II; $\mathrm{R}=\mathrm{Me}$). containing both alkylideneamido- and substituted carbene ligands have been prepared. Variable temperature ${ }^{19} \mathrm{~F}$ n.m.r. spectra suggest a low barrier to planar inversion at N . It did not prove possible to rearrange these to aza-allyl/allene isomers. As a contribution to the mechanism of formation of the latter, the synthesis of a C-alkylideneamidocarbene complex (V) is reported. A $\mathrm{Pt}^{\mathrm{II}}$ imidoyl complex $\mathrm{Pt}-\mathrm{C}(\mathrm{R})=\mathrm{NR} \mathrm{R}^{\prime}$, prepared by an oxidative addition reaction, did not isomerise to the alkylideneamide $\mathrm{Pt}-\mathrm{N}=\mathrm{CRR}^{\prime}$; but with HCl the former gave a $1: 1$ adduct, presumed to be the carbene complex $\mathrm{Pt}-\mathrm{C}(\mathrm{R}) \mathrm{NHR}^{\prime}$. A single crystal X-ray analysis of (II) has been carried out to $R 0.067$ for 2853 independent terms: the complex has an approximately square planar Rh environment with disorder about N:C and Rh-N, 2•02(3) ; $\mathrm{N}=\mathrm{C}, 1 \cdot 27(3)$; Rh-P, 2-290(4) and 2-291(4): and Rh-C $\mathrm{C}_{\text {carb }}$. $2.006(15) \AA$. and $\mathrm{RhNC}=152^{\circ}$. Noteworthy are the significant departure from linearity at N and the exceptionally short mutually trans-Rh-P bond lengths : the $\mathrm{M}-\mathrm{NO} / \mathrm{M}-\mathrm{N}: N \mathrm{~N}$ analogy is extended to $\mathrm{M}-\mathrm{N}: \mathrm{CR}_{2}$.

This paper relates to our studies not only on alkylidene-amido-complexes of the type $\mathrm{LM}-\mathrm{N}=\mathrm{CR}_{2}$ (where L represents all ligands other than the alkylideneamidogroups attached to the Main Group or transition metal atom M), ${ }^{1}$ but also to transition metal carbene complexes LM-CXY. ${ }^{2}$ Here we report the preparation, spectroscopic properties, and, in one case also the crystal and molecular structure, of two novel rhodium complexes which contain both these functional groups, and some loosely related chemistry, including a chromium(0) C-alkylideneamidocarbene complex $\mathrm{Cr}(\mathrm{CO})_{5}[\mathrm{C}(\mathrm{OEt})-$ $\left.\mathrm{NCPh}_{2}\right]$, a $\mathrm{Pt}^{I I}$ imidoyl species cis- $\mathrm{Pt}[\mathrm{C}(: \mathrm{NMe}) \mathrm{Ph}] \mathrm{Cl}-$ $\left(\mathrm{PPh}_{3}\right)_{2}$, and a carbene complex derived therefrom, cis$\left[\mathrm{PtCl}\{\mathrm{C}(\mathrm{NHMe}) \mathrm{Ph}\}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{Cl}$.

The routes to the two new Rh^{I} compounds are shown in equations (1) and (2). Compounds such as (I) and (II)
$\mathrm{LiN}=\mathrm{CPh}_{2}$ to give mainly $\mathrm{Mo}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\left[\mathrm{Ph}_{2} \mathrm{CNCPh}_{2}\right]$, (IV). ${ }^{3}$ In this unusual reaction LiNCO was also detected in the reaction mixture; it is possible that the reaction pathway involves a reactive diphenylcarbene-alkylidene-amido-intermediate, (III) [equation (3)]. ${ }^{4}$ [Subsequent X-ray structure studies of (IV) confirmed it to have an aza-allene, rather than an aza-allyl structure. ${ }^{5}$] In support of this reaction sequence, we find that a Group VIa carbonyl reacts with $\mathrm{LiN}=\mathrm{CPh}_{2}$ without loss of LiNCO to give a lithio-derivative which was readily converted into the red ethoxycarbene complex (V), using triethyloxonium tetrafluoroborate $\left[c f .{ }^{6}\right.$ the similar reaction between $\mathrm{Cr}(\mathrm{CO})_{6}$ and LiNEt_{2}, equation (4)]. Hence step (3a) and (III) are authenticated by analogy. Compounds (I) and (II) are generically related to (III), but their conversion (3c) into an analogue of (IV) was

(II)
are of interest inter alia because of the possibility of realising reactions which involve interaction between the carbene ligand and either the $\mathrm{M}-\mathrm{N}$ or $\mathrm{C}=\mathrm{N}$ bonds of the alkylideneamido-group. This latter aspect relates to the report of Kilner that $\mathrm{MoCl}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{3}$ reacts with

[^0]not achieved. An attempt to prepare a related Cr^{0} carbene complex from $\mathrm{Cr}(\mathrm{CO})_{6}$ and $\mathrm{Me}_{3} \mathrm{SiN}: \mathrm{CPh}_{2}$ or $\mathrm{Me}_{3} \mathrm{SnN}: \mathrm{C}\left(\mathrm{CF}_{3}\right)_{2}$ was unsuccessful.

The reaction between rhodium alkylideneamides of the type $\mathrm{Rh}\left(\mathrm{N}=\mathrm{CR}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{3}$ and diphenyldiazomethane
${ }^{4}$ H. R. Keable and M. Kilner, J.C.S. Dalton, 1972, 153; J. McMeeking, M.Sc. Thesis, University of Sussex, 1969.
${ }^{5}$ H. M. M. Shearer and J. D. Sowerby, unpublished work, cited in ref. 4.
${ }^{6}$ E. O. Fischer and H. J. Kollmeier, Angew. Chem. Internat. Edn., 1970, 9, 309.
might reasonably be expected to give (with loss of nitrogen) related rhodium aza-allyl/allene complexes. There are, as yet few analogous $\mathrm{Rh}^{\mathbf{I}}$ allyls, ${ }^{7 a}$ although a

simple complex has been reported. ${ }^{76}$ Thermal (rather than photolytic) reactions of $\mathrm{Ph}_{2} \mathrm{CN}_{2}$ do not in general lead to diphenylcarbene derivatives but recently the
from $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ by the lithium chloride or trimethyltin chloride elimination routes led, in each case, to the products of decomposition. ${ }^{1}$ The instability of the desired complexes may be associated with their tendency to undergo loss of $\mathrm{HN}=\mathrm{CR}_{2}$ in a manner which parallels the behaviour of $\mathrm{RhMe}\left(\mathrm{PPh}_{3}\right)_{3} \cdot{ }^{9}$ Consequently the more thermally stable, readily prepared, although less suitable $\mathrm{Rh}\left[\mathrm{N}=\mathrm{C}\left(\mathrm{CF}_{3}\right)_{2}\right]\left(\mathrm{PPh}_{3}\right)_{3}$ was used. There was no reaction between this rhodium compound and $\mathrm{Ph}_{2} \mathrm{CN}_{2}$ in benzene during 8 h at room temperature, but during a further 24 h at 70° the diphenyldiazomethane was consumed, presumably ${ }^{10}$ to give benzophenone azine because there was no evidence (i.r., analysis) to suggest its incorporation, or that of $\mathrm{Ph}_{2} \mathrm{C}$, on to rhodium. The starting rhodium complex itself decomposed to give a compound which was also obtained in the absence of added diphenyldiazomethane.

An alternative route to rhodium aza-allyl/allene complexes was also explored [equation (1)]. Under the conditions of reaction (1 h , reflux) a compound identified

Table 1
Selected data on new alkylideneamido-complexes

Complex $\overbrace{\mathrm{C}}^{$ Analyses (\%) Found (Required) $}$				${ }^{1} \mathrm{H}$ N.m.r. (τ) ${ }^{\text {a }}$		${ }_{\left.(t)^{\circ} \mathrm{C}\right)}^{19} \mathrm{~N} . \mathrm{m}^{\mathrm{b}}$	$\underset{\left(t /{ }^{\text {M }} \mathrm{C}\right)}{\mathrm{M} . \mathrm{p}}$	
	C	H	N	$\mathrm{CH}_{2}-\mathrm{CH}_{2}$	$\mathrm{N}-()-\mathrm{CH}_{3}$			
$\underset{(\mathrm{I})}{\mathrm{Rh}}\left[\mathrm{~N}=\mathrm{C}\left(\mathrm{CF}_{3}\right)_{2}\right] \mathrm{L}^{\mathrm{Tol}}\left(\mathrm{PPh}_{3}\right)_{2}$	$63 \cdot 4(64 \cdot 6)$	4.8 (4.6)	3.9 (4.0)	7-29s	7.73 s	$\begin{gathered} +68.53(\mathrm{t}) \\ J\left(^{31} \mathrm{P}^{-19 \mathrm{~F}) 2.0 \mathrm{~Hz}}\right. \\ +68.5(\mathrm{bs}) \end{gathered}$	$\begin{aligned} & +80 \\ & +25 \end{aligned}$	$\underset{(\mathrm{dec} .)}{205-212}$
$\underset{(\mathrm{II})}{\mathrm{Rh}\left[\mathrm{~N}=\mathrm{C}\left(\mathrm{CF}_{3}\right)_{2}\right] \mathrm{L}^{\mathrm{Me}}\left(\mathrm{PPh}_{3}\right)_{2}}$	58.8 (59.4)	$4 \cdot 6$ (4.5)	$4 \cdot 8(4 \cdot 7)$	7.75s	7.05s	$\begin{gathered} +68.68(\mathrm{t}) \\ J{ }^{\left({ }^{31} \mathrm{P}-19 \mathrm{~F}\right) 2.0 \mathrm{~Hz}} \\ +68.6(\mathrm{bs}) \end{gathered}$	$\begin{aligned} & +25 \\ & -80 \end{aligned}$	$\underset{(\mathrm{dec} .)}{141-143}$
${ }^{\text {a }} \mathrm{C}_{6} \mathrm{H}_{6}$ solvent. ${ }^{b} \mathrm{C}_{8} \mathrm{D}_{8}$ solvent; δ in p.p.m. relative to CFCl_{3}. (t) triplet, (s) singlet, (bs) broad singlet.								
(I): $3065 \mathrm{w}, 3040 \mathrm{w}, 1670 \mathrm{vw}, 1583 \mathrm{w}, 1570 \mathrm{w}, 1555 \mathrm{vw}, 1508 \mathrm{~m}$, sh, $1500 \mathrm{~m}, 1280 \mathrm{~ms}, 1230 \mathrm{mw}, 1212 \mathrm{~m}, 1192 \mathrm{vs}, 1159 \mathrm{mw}, 1130 \mathrm{~s}, 1113 \mathrm{~ms}$, $1090 \mathrm{~ms}, 1085 \mathrm{~ms}$, sh, $1068 \mathrm{~m}, 1028 \mathrm{w}, 1000 \mathrm{w}, 92 \mathrm{lms}, 751 \mathrm{~ms}, 742 \mathrm{~ms}, 700 \mathrm{vs}, 696 \mathrm{~m}, \mathrm{sh}, 670 \mathrm{w}, 643 \mathrm{w}, 520 \mathrm{vs}, 512 \mathrm{~s}, 505 \mathrm{~s}, 491 \mathrm{~m}, 455 \mathrm{w}, 433 \mathrm{w}$, $415 \mathrm{~m}, 400 \mathrm{w}$, sh. No peaks $400-250 \mathrm{~cm}^{-1}$.								
(II): $3060 \mathrm{w}, 3022 \mathrm{mw}, 1580 \mathrm{w}, 1569 \mathrm{w}, 1555 \mathrm{vw}$, sh, 1505 m , (1385 ms ?), $1312 \mathrm{~m}, 1285 \mathrm{~m}, \mathrm{sh}, 1271 \mathrm{~s}, 1243 \mathrm{~m}, 1227 \mathrm{w}, 1211 \mathrm{~m}, 1190 \mathrm{vs}, 1137 \mathrm{~s}$, $1110 \mathrm{~m}, \mathrm{sh}, 1089 \mathrm{~ms}, 1040 \mathrm{w}, 1025 \mathrm{w}, 997 \mathrm{w}, 950 \mathrm{w}, 914 \mathrm{~m}, 843 \mathrm{vw}, 811 \mathrm{~s}, 755 \mathrm{~ms}, 749 \mathrm{~s}, 743 \mathrm{~s}, 724 \mathrm{w}, 695 \mathrm{vs}, 670 \mathrm{~ms}, 648 \mathrm{~ms}, 620 \mathrm{w}, 573 \mathrm{vs}, 545 \mathrm{w}$,								

thermal reaction between $\mathrm{Ph}_{2} \mathrm{CN}_{2}$ and $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ has been reported to yield a number of such carbene complexes. ${ }^{8}$ Unfortunately, neither $\mathrm{Rh}\left(\mathrm{N}=\mathrm{CPh}_{2}\right)\left(\mathrm{PPh}_{3}\right)_{3}$ nor $\operatorname{Rh}\left[\mathrm{N}=\mathrm{C}\left(p-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)_{2}\right]\left(\mathrm{PPh}_{3}\right)_{3}$ were available for use in our reactions, because their attempted preparation

[^1]as (I) (see Table 1) was obtained in preference to the possible rearrangement product. Additionally, the mass spectrum showed no peaks attributable to an aza-allene group. The reaction between $\mathrm{RhN}=\mathrm{C}\left(\mathrm{CF}_{3}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ and an electron-rich olefin [equation (2)] gave a similar product (II). As with the trimethyltin chloride route,

[^2]${ }^{10}$ Cf. D. Bethell, D. Whittaker, and J. D. Callister, J. Chem. Soc., 1965, 2466.
the resultant complexes appear (see Table 1) to contain discrete and independent carbene and alkylideneamidoligands, although an unambiguous structural assignment depends on the X-ray analysis described below.

Rhodium complexes of the type

$$
\mathrm{RhX}\left(\mathrm{C} \cdot \mathrm{NR} \cdot \mathrm{CH}_{2} \cdot \mathrm{CH}_{2} \mathrm{NR}\right)\left(\mathrm{PPh}_{3}\right)_{2}
$$

($\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$) are known from earlier work in our laboratory. ${ }^{11}$ These compounds, despite their low solubility in solvents such as xylene and benzene, are active catalysts for electron-rich olefin metatheses; ${ }^{12}$ a result which implies some lability of the carbene fragment. The alkylideneamido-group in the two novel rhodium complexes confers increased solubility in these solvents, and also enhanced air-stability in solution.

It is not yet clear which factors control carbene lability on a transition metal. ${ }^{11}$ In the molybdenum case, ${ }^{3}$ the diphenylcarbene ligand would be expected to be considerably more electrophilic, and the nitrogen atom of the alkylideneamido-group somewhat more nucleophilic, than in the rhodium complex, thus favouring ligand migration only for the former. However, steric factors may be important. We have reported the phosphine catalysed tautomeric hydrogen transfer from platinum to the $-\mathrm{N}=\mathrm{C}\left(\mathrm{CF}_{3}\right)_{2}$ ligand [equation (5)]. Under similar conditions, methyl and phenyl groups show no tendency to migrate. For reaction (5), it is probable that a necessary intermediate is the cis-isomer of (VI). The difficulty of formation of the $c i s$-isomer of (I) may be the reason for its reluctance to undergo tautomerism.

> (III)

Metal alkylideneamides, $\mathrm{LM}-\mathrm{N}=\mathrm{CR}_{2}$, are isomeric with imidoyl complexes $\mathrm{LM}-\mathrm{C}(\mathrm{R})=\mathrm{NR}$. We were interested in the possible interconversion of the two forms (cf. the Beckmann Rearrangement). A novel procedure was used for the preparation of the latter--the oxidative addition reaction of an imidoyl halide to a low-valent transition metal compound [equation (6)]. Such a reaction has been explored previously with LM a Rh^{T} complex. ${ }^{13}$ Although an intermediate such as (VII) was

(VII)
postulated, the isolated product was a $\mathrm{Rh}^{\text {III }}$ carbene complex $\mathrm{Rh}^{\mathrm{III}-\mathrm{C}}\left(\mathrm{R}^{\prime}\right) \mathrm{NRC}\left(\mathrm{R}^{\prime}\right)=\mathrm{NR}^{13}$ or $\mathrm{Rh}^{\mathrm{III}-\mathrm{C}\left(\mathrm{R}^{\prime}\right) \text { - }}$ NHR. ${ }^{14}$ Platinum imidoyl complexes had already
${ }^{11}$ Cf. D. J. Cardin, B. Cetinkaya, M. J. Doyle, and M. F. Lappert, Chem. Soc. Rev., 1973, 2, 99.
${ }_{12}$ D. J. Cardin, M. J. Doyle, and M. F. Lappert, J.C.S. Chesn. Comm., 1972, 927.

13 P. B. Hitchcock, M. F. Lappert, G. M. McLaughlin, and A. J. Oliver, J.C.S. Dalton, 1974, 68.

14 M. F. Lappert and A. J. Oliver, J.C.S. Dalton, 1974, 65.
been prepared by insertion of isocyanides into platinumcarbon bonds. ${ }^{15}$
The reaction between N-methylbenzimidoyl chloride and tetrakis(triphenylphosphine)platinum(0) gave three main products: cis-dichlorobis(triphenylphosphine)platinum(II); the expected imidoyl complex (VIII); ${ }^{15}$ and a third, as yet unidentified product. The separation and purification of the products proved to be extremely difficult. Compound (VIII) readily formed a $1: 1$ adduct with hydrogen chloride, which is probably the carbene complex (IX), partly on the basis of prior art. ${ }^{14}$ There was no evidence for the formation of platinum alkylideneamides during these reactions.

(VIII)

(IX)

CRYSTALLOGRAPHIC STUDIES
Crystal Data.- $\mathrm{C}_{44} \mathrm{H}_{40} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{P}_{2} \mathrm{Rh}, M=889 \cdot 3$, Monoclinic, $\quad a=20 \cdot 228(4), \quad b=20 \cdot 714(4), \quad c=9 \cdot 836(2) \AA$, $\beta=96.08(7)^{\circ}, U=4098 \cdot 1 \AA^{3}, D_{\mathrm{m}}=1.48, Z=4, D_{\mathrm{c}}=$ $1 \cdot 44, F(000)=1816$, space group $P 2_{1} / n\left(C_{2, h}^{5}\right)^{16}$ from systematic absences: $h 0 l$ for $h+l=2 n+1$, and $0 k 0$ for $k=2 n+1$. Mo- K_{α} radiation (graphite crystal monochromator), $\lambda=0.70926 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=5.52 \mathrm{~cm}^{-1}$.

Preliminary values of the cell dimensions were obtained from precession photographs and were subsequently adjusted by least-squares refinement of the setting angles of twelve reflections measured on a Hilger and Watts Y290 four circle diffractometer using Mo- K_{α} radiation with a graphite crystal monochromator. The data crystal was a small orange coloured parallelipiped of dimensions $0.34 \times 0.22 \times 0.18 \mathrm{~mm}$. Intensity data were collected by the $\theta-2 \theta$ scan step procedure, each reflection being scanned in 50 one second steps of 0.01° from $0 \cdot 25^{\circ}$ below to $0 \cdot 25^{\circ}$ above $20_{\text {calc. }}$. Stationary background counts were measured for 25 s at each end of the scan range. The intensities of three standard reflections were monitored periodically to check crystal and electronic stability. Intensities were collected for reflections with $\theta\left(\mathrm{Mo}-K_{\alpha}\right) \leqslant 22^{\circ}$, and 2853 reflections for which $I \geqslant 3 \sigma(I)[\sigma(I)=$ total peak intensity + total background intensity $\left.\left.+(0.04 I)^{2}\right\} \frac{1}{2}\right]$ were accepted as being significantly above background. These were corrected for Lorentz and polarisation effects, but not for absorption.

Structure Analysis.-Approximate co-ordinates of the Rh atom were derived from a 3 -dimensional Patterson synthesis. A structure factor calculation based on this gave $R 0 \cdot 36$. The co-ordinates of the remainder of the
15 P. M. Treichel and R. W. Hess, J. Amer. Chem. Soc., 1970, 92, 473I; Y. Yamamoto and H. Yamazaki, Bull. Chem. Soc. Japan, 1970, 43, 3634.
${ }_{16}$ A non-standard form of the space group $P 2_{1} / c$ No. 14, International Tables for X-ray Crystallography, vol. 1, Kynoch Press, Birmingham, 1962.
atoms were derived from subsequent electron density distributions. Least-squares refinement of positional and isotropic thermal parameters, using the programme CRYLSQ in the blocked mode, ${ }^{17}$ gave $R 0.091$. The function minimised was $\Sigma \omega\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$, where $\omega=$ $\mathrm{l} / \sigma^{2}\left(F^{2}\right)$. Scattering factors were taken from ref. 18,

Table 2(a)
Final fractional co-ordinates ($\times 10^{4}$) and isotropic thermal parameters ($\AA \times 10^{3}$, the numbering refers to Figure 1)

	x	y	z	U
Rh	8069(0)	2352(0)	725(1)	*
$\mathrm{P}(1)$	8367(2)	3284(2)	-301(3)	
$\mathrm{P}(2)$	7806(2)	1422(2)	1806(3)	*
F(1)	9431(7)	561 (5)	-836(14)	*
F (2)	8657(8)	1150 (8)	-1816(22)	
$\mathrm{F}(3)$	9664(9)	1255 (6)	$-2193(12)$	*
$\mathrm{F}(4)$	10400(6)	1268(7)	488(20)	*
$\mathrm{F}(5)$	10321(7)	2155(11)	$-342(23)$	
$F(6)$	10092(12)	2052(9)	1546(19)	
N(1)	7257(6)	$3114(5)$	2518(12)	,
N(2)	6664(5)	2817 (6)	572(15)	*
C(1)	7251 (7)	2785 (6)	1271 (14)	,
$\mathrm{C}(2)$	6573(11)	3346(10)	2631 (30)	*
$\mathrm{C}(3)$	6173(8)	$3199(10)$	$1296(25)$	*
$\mathrm{C}(4)$	7788(9)	$3136(8)$	3593(15)	*
C(5)	6492 (8)	2561 (10)	-787(18)	*
$\mathrm{C}(6)$	9338(8)	1663(8)	-136(19)	*
C(7)	9283(9)	$1148(10)$	-1259(22)	*
C(8)	10038(11)	1763 (9)	$424(22)$	*
$\mathrm{N}(3 \mathrm{a})$	8718(12)	1836(11)	-247(25)	73(7)
$\mathrm{N}(3 \mathrm{~b})$	8999(9)	2027(8)	568(18)	$36(5)$
$\mathrm{C}(9)$	7676 (6)	3828(6)	-969(13)	$54(3)$
$\mathrm{C}(10)$	7460 (8)	3802 (7)	$-2383(17)$	$84(5)$
$\mathrm{C}(11)$	6885 (9)	4205(9)	-2841(19)	112(6)
C(12)	$6595(9)$	4569(9)	-1929(20)	109(6)
C(13)	6800(8)	4600 (8)	$-589(19)$	$99(5)$
C(14)	7367(7)	4210(7)	-61(15)	76(4)
C(15)	8830 (6)	3186(6)	-1797(12)	$55(3)$
C(16)	8631 (7)	2698(8)	-2682(16)	86(4)
C(17)	8972(9)	2582 (8)	$-3853(18)$	103(5)
C(18)	9487(8)	2989 (8)	-4105(17)	$93(5)$
C(19)	9699 (8)	3464(8)	-3234(16)	$83(5)$
C(20)	9369(7)	3588(7)	-2037(14)	70 (4)
C(21)	8927(6)	3827(6)	768(13)	$54(3)$
C(22)	9354(7)	3539(7)	$1761(15)$	$72(4)$
$\mathrm{C}(23)$	9848(8)	3929(8)	2531 (16)	84(5)
C(24)	9852(8)	4605(8)	2304 (16)	$88(5)$
$\mathrm{C}(25)$	$9407(8)$	4877(8)	1326(16)	84(5)
C(26)	8927 (7)	4507(7)	498(14)	71 (4)
C(27)	$8532(6)$	954(6)	$2415(12)$	51 (3)
C(28)	9014 (7)	1267(7)	3274(15)	77(4)
C(29)	9632(9)	900(9)	3779(17)	$100(5)$
$\mathrm{C}(30)$	$9685(9)$	282(9)	3345(18)	98(5)
C(31)	9234(9)	-20 (8)	2429(18)	98(5)
$\mathrm{C}(32)$	8621 (7)	319(7)	1974(15)	75(4)
C(33)	7341 (6)	1486(6)	3316(13)	53(3)
C(34)	6672 (6)	1671(6)	3066(13)	59 (4)
C(35)	6280(7)	1726(7)	4180(16)	80 (4)
$\mathrm{C}(36)$	6591 (9)	1627(9)	5513(19)	103(6)
C (37)	$7242(9)$	1443(9)	5750(18)	106 (6)
$\mathrm{C}(38)$	7636(7)	1358(7)	4623(15)	73 (4)
$\mathrm{C}(39)$	7289(5)	836(5)	812(12)	$43(3)$
$\mathrm{C}(40)$	7260(7)	858(7)	- 096 (15)	$78(4)$
C(41)	6876(9)	362 (9)	-1394(19)	109 (6)
$\mathrm{C}(42)$	6547(8)	- 104(8)	-742(18)	94(5)
$\mathrm{C}(43)$	$6578(8)$	$-127(7)$	630(17)	82(5)
C(44)	6949(7)	344(7)	1485(14)	$73(4)$

[^3]except those for hydrogen. ${ }^{19}$ Anomalous dispersion was accounted for by using Comer's ${ }^{20}$ values of Δf^{\prime} and

Table 2(b)

Thermal parameters ($\AA \times 10^{3}$) of atoms refined anisotropically expressed in the form: $\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+\right.\right.$ $U_{22}{ }^{k 2} b^{* 2}+U_{33} l^{2} c^{* 2}+2 U_{12} h k a^{*} b^{*}+2 U_{13} h l a^{*} c^{*}+$ $\left.\left.2 U_{23} k l b^{*} c^{*}\right)\right]$ (for atom numbering, see Figure 1)

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	$U_{\mathbf{2 3}}$
Rh	$38(1)$	$36(1)$	$47(1)$	$0(1)$	$10(0)$	$0(1)$
$\mathrm{P}(1)$	$44(2)$	$39(2)$	$49(1)$	$-2(2)$	$7(2)$	$3(2)$
$\mathrm{P}(2)$	$40(2)$	$40(2)$	$41(2)$	$0(2)$	$5(2)$	$0(2)$
$\mathrm{F}(1)$	$231(14)$	$83(8)$	$193(12)$	$25(8)$	$25(11)$	$-11(8)$
$\mathrm{F}(2)$	$176(15)$	$188(15)$	$403(26)$	$-28(12)$	$-88(17)$	$-24(16)$
$\mathrm{F}(3)$	$317(20)$	$151(11)$	$107(9)$	$69(11)$	$63(11)$	$-5(8)$
$\mathrm{F}(4)$	$108(10)$	$194(14)$	$360(22)$	$29(10)$	$-68(12)$	$-27(16)$
$\mathrm{F}(5)$	$146(13)$	$378(28)$	$362(26)$	$-143(16)$	$1(14)$	$158(22)$
$\mathrm{F}(6)$	$410(29)$	$214(18)$	$228(18)$	$-94(19)$	$-2(19)$	$-101(15)$
$\mathrm{N}(1)$	$103(10)$	$54(8)$	$102(9)$	$28(7)$	$51(8)$	$8(7)$
$\mathrm{N}(2)$	$45(7)$	$89(10)$	$183(14)$	$16(7)$	$18(8)$	$63(10)$
$\mathrm{C}(1)$	$81(10)$	$42(9)$	$79(10)$	$6(7)$	$33(8)$	$13(7)$
$\mathrm{C}(2)$	$117(19)$	$91(15)$	$278(31)$	$47(14)$	$140(20)$	$12(19)$
$\mathrm{C}(3)$	$51(12)$	$117(17)$	$197(24)$	$35(11)$	$48(13)$	$46(17)$
$\mathrm{C}(4)$	$139(15)$	$100(13)$	$60(10)$	$-44(11)$	$8(10)$	$-16(9)$
$\mathrm{C}(5)$	$83(12)$	$153(18)$	$124(15)$	$-32(12)$	$-41(11)$	$25(13)$
$\mathrm{C}(6)$	$61(11)$	$61(10)$	$143(16)$	$10(4)$	$47(11)$	$42(11)$
$\mathrm{C}(7)$	$99(15)$	$113(17)$	$157(20)$	$5(12)$	$-12(13)$	$-13(15)$
$\mathrm{C}(8)$	$138(19)$	$110(16)$	$177(21)$	$-39(14)$	$67(17)$	$-9(14)$

Table 3
(a) Bond lengths (\AA), excluding those involving $N(3)$ (for atom numbering, see Figure 1)

$\mathrm{Rh}-\mathrm{P}(1)$	2.290(4)	$\mathrm{P}-\mathrm{C}_{\text {Ph }}$	$1 \cdot 836(6)^{\text {a }}$
$\mathrm{Rh}-\mathrm{P}(2)$	2.291(4)	F-C	$1 \cdot 284(15)$
$\mathrm{Rh}-\mathrm{C}(1)$	2.006(15)	$\mathrm{C}_{\mathrm{Pb}}-\mathrm{C}_{\mathrm{Ph}}$	$1 \cdot 404(5)^{\text {b }}$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.402(18)$	$\mathrm{N}(2)-\mathrm{C}(1)$	$1 \cdot 308(17)$
$\mathrm{N}(1)-\mathrm{C}(2)$	$1 \cdot 480$ (26)	$\mathrm{N}(2)-\mathrm{C}(3)$	$1 \cdot 507(25)$
$\mathrm{N}(1)-\mathrm{C}(4)$	1-424(19)	$\mathrm{N}(2)-\mathrm{C}(5)$	1-446(23)
$\mathrm{C}(2)-\mathrm{C}(3)$	1-498(35)	$\mathrm{C}(6)-\mathrm{C}(7)$	$1-531(27)$
		$\mathrm{C}(6)-\mathrm{C}(8)$	1-479(27)

(b) Bond angles (${ }^{\circ}$), excluding those involving $\mathrm{N}(3)$

$\mathrm{P}(1)-\mathrm{Rh}-\mathrm{P}(2)$	$178 \cdot 0$ (1)	$\mathrm{Rh}-\mathrm{C}(1)-\mathrm{N}(1)$	121.4(9)
$\mathrm{P}(1)-\mathrm{Rh}-\mathrm{C}(1)$	90-3(4)	$\mathrm{Rh}-\mathrm{C}(1)-\mathrm{N}(2)$	127.6(10)
$\mathrm{P}(2)-\mathrm{Rh}-\mathrm{C}(1)$	$90 \cdot 7$ (4)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	110.9(12)
$\mathrm{Rh}-\mathrm{P}-\mathrm{C}_{\text {Ph }}$	$116 \cdot 1(2){ }^{\text {a }}$	$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	106.9(20)
$\mathrm{Crph}^{-\mathrm{P}}-\mathrm{Crgh}^{\text {r }}$	$102 \cdot 1(3){ }^{a}$	$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(2)$	$101 \cdot 5(15)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	107.6(14)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(8)$	$111.0(15)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)$	126.9(12)	$\mathrm{F}-\mathrm{C}-\mathrm{F}$	106.5(10) ${ }^{\text {a }}$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(4)$	124•7(16)	$\mathrm{C}-\mathrm{C}-\mathrm{F}$	112.2(9) ${ }^{\text {a }}$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	$112 \cdot 7(14)$	${ }^{\mathrm{P}}-\mathrm{C}_{\mathrm{Ph}}-\mathrm{C}_{\mathrm{Ph}}$	$118.9(5){ }^{\text {a }}$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(5)$	125.6(13)	$\mathrm{C}_{\mathrm{Ph}}-\mathrm{C}_{\mathrm{Ph}}-\mathrm{C}_{\mathrm{Ph}}$	$120 \cdot 0(4){ }^{\text {b }}$
$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{C}(5)$	121-6(13)		

Table 4
Geometry around $\mathrm{N}(3)$ (for atom numbering, see Figure 1)

$\mathrm{Rh}-\mathrm{N}(3)$	Model 1 (refined) high anisotropy	Model 2 (refined) $\mathrm{N}(3)$ only disordered	Model 3 (calculated) $N(3)$ and $C(6)$ disordered
	1-966(17)	$2 \cdot 013(26)$	$2.02 \AA$
	$1 \cdot 179(24)$	$2 \cdot 020$ (20)	$1 \cdot 27$ A
$\mathrm{N}(3)-\mathrm{C}(6)$		$1 \cdot 297(28)$	
		$1 \cdot 272(25)$	
$\mathrm{Rh}-\mathrm{N}(3)-\mathrm{C}(6)$	172.4(15)	141.3(18)	152°
		143•1(14)	
$\mathrm{P}(1)-\mathrm{Rh}-\mathrm{N}(3)$	$89 \cdot 2(5)$	$91 \cdot 3(7)$	89°
		87.5(5)	
$\mathrm{P}(2)-\mathrm{Rh}-\mathrm{N}(3)$	$89 \cdot 8(5)$	$88 \cdot 3(7)$	90°
		$91 \cdot 2(5)$	
$\mathrm{N}(3)-\mathrm{Rh}-\mathrm{C}(1)$	177.9(7)	164.5(7)	165°
		$166 \cdot 4(6)$	
$\mathrm{N}(3)-\mathrm{C}(6)-\mathrm{C}(7)$	126.2(16)	97.9 (16)	120°
		143.5(16)	
$\mathrm{N}(3)-\mathrm{C}(6)-\mathrm{C}(8)$	122.6(16)	$150 \cdot 7(19)$	120°
		$105 \cdot 3(16)$	

Table 5
Least-squares planes, expressed in the form $P z+Q y+$ $R z=S$, with displacements (\AA) of atoms from these planes. σ Is the mean standard deviation of the atoms defining the plane from the plane (for atom numbering, see Figure 1)
Plane (a): Rh, N(1), N(2), C(1), C(2), C(3)
$\mathrm{Rh}-0.005, \mathrm{~N}(1) 0.034, \mathrm{~N}(2)-0.013, \mathrm{C}(1)-0.003, \mathrm{C}(2)$ $-0.042, \mathrm{C}(3) 0.029, \mathrm{C}(4)-0.060, \mathrm{C}(5) 0.020$
Plane (b): Rh, $\mathrm{N}(3 \mathrm{a}), \mathrm{N}(3 \mathrm{~b}), \mathrm{C}(6), \mathrm{C}(7), \mathrm{C}(8)$
$\mathrm{Rh}-0.020, \mathrm{~N}(3 \mathrm{a}) 0.101, \mathrm{~N}(3 \mathrm{~b})-0.059, \mathrm{C}(6)-0.004, \mathrm{C}(7)$ $-0.041, \mathrm{C}(8) 0.023$

Plane (c): Rh, $\mathrm{P}(1), \mathrm{P}(2), \mathrm{N}(3 \mathrm{a}), \mathrm{N}(3 \mathrm{~b}), \mathrm{C}(1)$
$\mathrm{Rh}-0.005, \mathrm{P}(1) 0.018, \mathrm{P}(2) 0.045, \mathrm{~N}(3 \mathrm{a})-0.518, \mathrm{~N}(3 \mathrm{~b})$ 0.487, C(1) -0.027

	P	Q	R	S	σ
(a)	6.389	17.673	-4.393	9.000	0.028
(b)	3.667	14.954	-6.722	6.009	0.057
(c)	$\mathbf{8 . 7 5 7}$	6.121	$\mathbf{7 . 8 7 0}$	9.083	0.319

Angles between the planes: (a)-(b) $18 \cdot 1^{\circ},(a)-(c) 88 \cdot 0^{\circ}$, (b)-(c) 73.9°

Figure 1 View of the molecule showing the numbering system used and thermal motion of atoms refined anisotropically (30% probability ellipsoids)
$\Delta f^{\prime \prime}$ for rhodium and phosphorus. A difference synthesis calculated at this point indicated anisotropic motion of the rhodium and fluorine atoms. Allowance was therefore made for anisotropic vibration of rhodium, the 2 phosphorus atoms and the $2 \mathrm{CF}_{3}$ groups which upon refinement reduced R to $0 \cdot 076$. The resulting difference map indicated anisotropic thermal vibration in both carbene and ketimide ligands especially atom $\mathrm{N}(3)$; after acounting for this, further refinement converged at R 0.067 . However, because of the high anisotropy of $\mathrm{N}(3)\left[U_{11} 0 \cdot 16, U_{22} 0 \cdot 10, U_{33} 0.29, U_{12} 0.08, U_{13} 0 \cdot 18\right.$, $\left.U_{23} 0 \cdot 11\right]$ and the short $\mathrm{Rh}^{-N(3)}$ and $\mathrm{N}(3)-\mathrm{C}(6)$ bond lengths (Table 4, model 1), this atom was removed and after another cycle of refinement a further difference map with a grid resolution of $0.25 \AA$ was calculated. This clearly showed 2 maxima in the elongated peak separated by ca. $1 \AA$. A' $\frac{1}{2}$ nitrogen atom' was attributed to each maximum and further refinement again
converged at $R \quad 0 \cdot 067$. This model gave chemically more reasonable bond lengths and a bent $\mathrm{Rh}-\mathrm{N}(3)-\mathrm{C}$

Figure 2 View of the $\mathrm{P}-\mathrm{Rh}-\mathrm{P}$ bonds showing the geometry of the carbene ligand and the disordered models for the keti-mido-ligand. Model 1 (normal), model 2 (long broken lines), and model 3 (long and short broken lines)
angle of 141°, but yielded unfavourable $\mathrm{N}(3)-\mathrm{C}(6)-\mathrm{C}$ angles (Table 4, model 2). An unsuccessful attempt was made to resolve disorder in $C(6)$, but separating ' $\frac{1}{2}$ atom centres ' by only $0.5 \AA$ along the principal axis of thermal vibration yielded satisfactory geometry (Table 4, model

Figure 3 Unit cell contents viewed down C^{*}. I corresponds to the final co-ordinates of the molecule as listed in Table 1. II is related to I by a centre of symmetry at the centre of the cell. III is related to I by the symmetry operation $\frac{1}{2}-x+1$, $\frac{1}{2}+y, \frac{1}{2}-z$ and IV is related to III again by a centre of symmetry at the centre of the cell
3). Hydrogen atom positions were not clearly distinguishable above the general background of $\pm 0 \cdot 4 e$ in the final difference map and therefore were not included in any subsequent calculation. During the final cycle of refinement all variable parameter shifts were $<0 \cdot \mathbf{4 \sigma}$ and the adequacy of the weighting scheme was indicated by a subsequent analysis of $\omega\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$ against F_{o} and $\sin \theta / \lambda$ which showed no systematic trends.

Both the weighted and normal discrepancy indices of the ordered (model 1) and disordered (model 2) structures were the same. The atomic parameters [excluding $N(3)$] were within 2σ as were bond lengths and angles. The values referred to in Tables 2, 3, and 5 are for model 2 , as is the listing of observed and calculated structure factors available in Supplementary Publication No. SUP 20978 (4 pp.).*

Results and Discussion of Structure.-The structural features of interest for metal alkylideneamides centre on (i) the state of molecular aggregation and (ii) the angle at N. ${ }^{21}$ In terms of the monomer, the possibility of association arises because of the presence of potential donor (the N -atom, with a lone pair of electrons) and acceptor (the metal) sites; accordingly, the alkylidene-amido-ligand in various complexes is known both as a terminal and a bridging (for dimers) moiety. Terminal metal dialkylamides $\mathrm{L}_{n} \mathrm{M}-\ddot{\mathrm{N}}_{2}$ are invariably found with approximately trigonal environment around N , corresponding to $s p^{2}$-hybridisation at N possibly because of $\mathrm{N} p_{z} \rightarrow \mathrm{M} \pi$-bonding. It might therefore be expected that terminal alkylideneamides will approximate to a linear arrangement at $(s p) \mathrm{N}$, unless $\mathrm{N} \rightarrow \mathrm{M} \pi$-bonding is precluded. In solution, alkylideneamides are bent at N , with a high barrier to planar inversion at N (ca. 30 $\mathrm{kcal} \mathrm{mol}{ }^{-1}$) which, however, is appreciably lowered by an electronegative substituent in place of $\mathrm{H}\left[v i z .,{ }^{22} 9 \cdot 2 \mathrm{kcal}\right.$ mol^{-1} in $\left.\mathrm{Me}_{3} \mathrm{GeN}=\mathrm{C}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{CF}_{3}-p\right]$. A low barrier to planar inversion at N is suggested by the ${ }^{19} \mathrm{~F}$ n.m.r. spectrum of (II). At $25^{\circ} \mathrm{C}$, in deuteriotoluene, a well resolved triplet is observed (Table 1) indicating the two trifluoromethyl groups to be equivalent, and coupled to two equivalent ${ }^{31} \mathrm{P}$ nuclei. The triplet collapses on cooling to $-60^{\circ} \mathrm{C}$ and at $-80^{\circ} \mathrm{C}$ only a broad singlet is observed. Separate signals, however, due to syn- and anti-trifluoromethyl groups, would be expected if inversion at N was 'frozen out' at this temperature. The broadening may be due to a slowing down of inversion at N ; however, a decrease in the rate of rotation about

* For details of Supplementary Publications see Notice to Authors No. 7 in J.C.S. Dalton, 1973, Index issue. Items less than 10 pp . are sent as full-size copies.
${ }^{21}$ Part III, M. F. Lappert, J. McMeeking, and D. E. Palmer, J.C.S. Dalton, 1973, 151.
${ }_{22}$ R. J. Cook and K. Mislow, J. Amer. Chem. Soc., 1971, 93, 6703.
${ }^{23}$ (a) M. F. Lappert and J. S. Poland, Chem. Comm., 1969, 1061; (b) G. W. Parshall, J. Amer. Chem. Soc., 1965, 87, 2133; 1967, 89, 1822.
${ }^{24}$ (a) V. Duckworth, P. G. Douglas, R. Mason, and B. L. Shaw, Chem. Comm., 1970, 1083; (b) A. P. Gaughan, B. L. Haymore, J. A. Ibers, W. H. Myers, T. E. Nappier, and D. W. Meek, J. Amer. Chem. Soc., 1973, 95, 6859; (c) B. A. Frenz and J. A. Ibers, M.T.P. Int. Rev. Sci. Phys. Chem., 1972, 11, 33.
the $R h-N$ bond, even with rapid inversion would be expected to give the same effect. It is noteworthy that the variable-temperature ${ }^{19} \mathrm{~F}$ n.m.r. spectrum of (II) differs from that of (I) in which the N -substituent on the carbene ligand is the more bulky p-tolyl group. At 25° a broad singlet is observed, which with increasing temperature gives the expected well resolved triplet. The change in bulk of the N -substituent would be expected inter alia to change the rotational properties of the carbene ligand about the $\mathrm{Rh}-\mathrm{C}_{\text {carb }}$ bond, and in this way, therefore, may also influence the profile of the variable-temperature ${ }^{19} \mathrm{~F}$ spectra to some extent. The alkylideneamido- $\left(\mathrm{R}_{2} \mathrm{C}=\mathrm{N}-\right)$ and alkyldiazo- $(\mathrm{R}-\mathrm{N}=\mathrm{N}-)$ ligands are electronically related. The latter ligand is presumably capable of acting as a three-electron donor in $(\mathrm{CO})_{2} \mathrm{CpMo} \stackrel{\curvearrowleft}{\mathrm{N}}=\mathrm{NCH}_{2} \mathrm{SiMe}_{3}{ }^{23 a}$ in order to give Mo the favourable 18-electron count, or a one-electron donor in trans $-\mathrm{Cl}\left(\mathrm{Et}_{3} \mathrm{P}\right)_{2} \mathrm{Pt}-\mathrm{N}=\mathrm{NAr}{ }^{23 b}$ a d^{8} metal complex for which a 16 -electron count is usual. The Mo complex
might therefore be expected to have the angle MNN more nearly linear than the Pt species; examples of linear $\left[e . g .,{ }^{24 a} \mathrm{Re}^{\mathrm{III}} \mathrm{Cl}_{2}\left(\mathrm{~N}_{2} \mathrm{Ph}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]$ and bent, ${ }^{24 b}$ $\left[\mathrm{RhCl}\left(\mathrm{N}_{2} \mathrm{Ph}\right)\left\{\mathrm{Ph}_{2} \mathrm{P}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{PPh}_{2}\right\}\right]^{+} \mathrm{PF}_{6}{ }^{-}$, $\mathrm{PhN}: \mathrm{N}-$ ligands are known. A similar correlation of angle at N with bonding is, of course, best established for the metal nitrosyls. ${ }^{24 c}$

There are very few X-ray determinations of metal alkylideneamide structures. ${ }^{25}$ Data (MNC bond angles in parentheses) relate to $\left(1,3,5-\mathrm{Me}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right)_{2} \mathrm{BN}=\mathrm{CPh}_{2}$ $\left[173(2)^{0}\right],{ }^{26} \mathrm{LiAl}\left(\mathrm{N}=\mathrm{CBu}_{2}^{\mathrm{t}}\right)_{4}\left(167 \cdot 2^{\circ}\right),{ }^{27}\left[\mathrm{Me}_{2} \mathrm{AlN}=\mathrm{C}(\mathrm{Me})-\right.$ $\left.\mathrm{Bu}^{\dagger}\right]_{2},{ }^{28} \quad\left[\mathrm{Ph}_{2} \mathrm{AlN}=\mathrm{C}(\mathrm{Ph}) \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{Br}-p\right]_{2},{ }^{29} \quad(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{MoN}=$ $\mathrm{CBu}_{2}^{\mathrm{t}}\left(172^{\circ}\right),{ }^{\mathbf{3 0}}\left[(\mathrm{OC})_{3} \mathrm{FeN}=\mathrm{C}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right)_{2}\right]_{2}{ }^{31}$ and $(\mathrm{OC})_{3}-$ $\underset{\mathrm{FeN}}{\mathrm{N}}=\mathrm{C}(\mathrm{Ph}) \mathrm{CH}=\mathrm{C}(\mathrm{Ph}) \mathrm{CH}_{2} \mathrm{C}(\mathrm{Ph})=\mathrm{NFe}(\mathrm{CO})_{3}{ }^{32} \quad$ Although useful information was obtained in the present investigation, it is unfortunate that the disorder problem described above, involving $\mathrm{N}(3)$ and $\mathrm{C}(6)$, provides a limitation on detailed discussion.

The plane of the alkylideneamido-ligand makes a dihedral angle of 73.9° with the co-ordination plane of the rhodium (Table 5). The $\mathrm{Rh}^{-\mathrm{N}}(3)-\mathrm{C}(6)$ angle of 152° (Table 4, model 3) is significantly bent, in marked contrast to the almost linear value of 172° for the $\mathrm{Mo}-\mathrm{N}-\mathrm{C}$ angle in $(\mathrm{OC})_{2}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{MoN}=\mathrm{C}\left(\mathrm{Bu}^{\mathrm{t}}\right)_{2},{ }^{30}$ which is similar to the value of $172 \cdot 4^{\circ}$ for model 1 .

The $\mathrm{Rh}-\mathrm{N}(3)$ distance of $2.02(2) \AA$ is $c a .0 .1 \AA$ shorter than the essentially single bond $\mathrm{Rh}^{\mathrm{I}-\mathrm{N}} s p^{2}$ value of

[^4]$2 \cdot 127(7) \AA$ in $\mathrm{RhCl}(\mathrm{CO})_{2}$ (diazepine). ${ }^{33}$ The $\mathrm{N}(3)-\mathrm{C}(6)$ bond length of $1 \cdot 27(3) \AA$ has the same value as in $(\mathrm{OC})_{2}(\mathrm{cp}) \mathrm{MoN}=\mathrm{C}\left(\mathrm{Bu}^{\mathrm{t}}\right)_{2}{ }^{30}$ and is comparable with double bonds in organic compounds [e.g., 1-284(5) \AA in glyoxime $\left.{ }^{34}\right]$. As with other structures containing $-\mathrm{CF}_{3}$ groups (e.g., ref. 35), these appear to suffer from slight disorder which is reflected in the high anisotropic thermal parameters. However, the average bond lengths and angles quoted in Table 3 are close to accepted values.

The mutually trans-Rh-P distances of $2 \cdot 290(4)$ and $2 \cdot 291(4) \AA$ are unusually short (see Table 6): it will be
$\mathrm{Rh}-\mathrm{P}$ bond lengths are caused by significant $\mathrm{Rh}-\mathrm{P}$ $(d-d) \pi$-bonding in this compound.

The geometry associated with the triphenylphosphine groups agrees well with that observed in free triphenylphosphine. ${ }^{47}$

Assuming an increase in atomic radius of Rb^{r} compared with $\mathrm{Rh}^{\text {III }}$ of $0.06 \AA$ (vide supra) the presently established $\mathrm{Rh}^{\mathrm{I}}-\mathrm{C}_{\text {carb }}$ distance of $2 \cdot 006(\mathbf{1 5}) \AA$ compares favourably with the $\mathrm{Rh}^{1 \amalg 1}-\mathrm{C}_{\text {carb }}$ distances of $1 \cdot 961(11) \AA$ in $\left[\mathrm{RhCl}_{3}{ }^{-}\right.$ $\left.\left(\mathrm{PEt}_{3}\right)_{2}\left(\mathrm{CHNMe}_{2}\right)\right]^{40}$ and $1-968(13) \AA$ in $\left[\mathrm{RhI}_{3}(\mathrm{CO}) \mathrm{CPh}-\right.$ NMeCPhNMe]. ${ }^{13}$

Table 6
Mutually trans-rhodium-phosphorus bond lengths

Compound$\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Rh}\left[\mathrm{NC}\left(\mathrm{CF}_{3}\right)_{2}\right]\left[\mathrm{C}\left(\mathrm{NMeCH}_{2}\right)_{2}\right]$	
$\left[(\text { diphos })_{2} \mathrm{Rh}\right]+\mathrm{ClO}_{4}{ }^{-}$	
$\left(\mathrm{PBu}^{\mathrm{t}} \mathrm{Pr}^{\mathrm{n}}\right)_{2} \mathrm{RhHHCl}_{2}$	
$\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{RhCl}$	
$\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{RhHCl}\left(\mathrm{SiCl}_{3}\right)$	
$\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{RhH}(\mathrm{CO})$	
$\left(\mathrm{PPb}_{3}\right)_{2} \mathrm{RhI}_{2} \mathrm{Me}$	
$\left[(\mathrm{diphos})_{2} \mathrm{Rh}\left(\mathrm{O}_{2}\right)\right]+\left[\mathrm{PF}_{6}\right]^{-}$ $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{RhCl}(\mathrm{CO})\left(\mathrm{SO}_{2}\right)$	
$\left(\mathrm{PEt}_{3}\right)_{2} \mathrm{RhCl}_{3}\left(\mathrm{CHNMe}_{2}\right)$	
$\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{RhCl}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$	
	$\left(\mathrm{PBu}_{3}\right)_{2} \mathrm{P}(\mathrm{OMe})_{3} \mathrm{RhCl}_{3}$

Oxidation state	Geometry	$\mathrm{Rh}-\mathrm{P}$ length (\AA)	Ref.
I	Square planar	$2 \cdot 290(4), 2 \cdot 291(4)$	\boldsymbol{a}
I	Square planar	$2 \cdot 289(6), 2 \cdot 310(6), 2 \cdot 310(6), 2 \cdot 313(7)$	45
III	Square pyramidal	$2 \cdot 31$ (8)	43
I	$\left\{\begin{array}{l} \text { Tetrahedrally distorted } \\ \text { Square planar } \end{array}\right.$	$2 \cdot 315(8), 2 \cdot 327(8)$	37
I	Square planar	$2 \cdot 335(2), 2 \cdot 337(2)$	36
III	Trigonal bipyramidal	$2 \cdot 332$ (4), $2 \cdot 344$ (4)	38
I	Trigonal bipyramidal	2.34(1)	42
III	Square pyramidal	$2 \cdot 350$ (4)	44
I	Trigonal bipyramidal	$2 \cdot 354(4), 2 \cdot 362(4)$	39
I	Tetragonal pyramidal	$2 \cdot 367(2), 2 \cdot 371(2)$	38
III	Octahedral	$2 \cdot 368(3), 2 \cdot 372(3)$	40
I	$\left\{\begin{array}{l}\text { Tetrahedrally distorted } \\ \text { Square planar }\end{array}\right.$	$2 \cdot 370(8), 2 \cdot 374(8)$	37
III	Octahedral	$2 \cdot 379(5), 2 \cdot 400(5)$	41
	" This work.		

seen that for the two compounds with closest $\mathrm{Rh}-\mathrm{P}$ distances to those now reported, $\left[(\text { diphos })_{2} \mathrm{Rh}^{+} \mathrm{ClO}_{4}{ }^{-}\right.$ and $\left(\mathrm{PBu}^{\mathrm{t}} \mathrm{Pr}_{2}{ }_{2}\right)_{2} \mathrm{RhHCl}_{2}$, there are clear reasons (cation, chelate effect, bulky ligand, high oxidation state) for short bonds. Structurally related complexes show substantially longer mutually trans- $\mathrm{Rh}^{1-}-\mathrm{P}$ distances of $2 \cdot 335(2)$ and $2 \cdot 337(2) \AA$ in $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Rh}(\mathrm{CS}) \mathrm{Cl}^{36}$ and $2 \cdot 327-$ (8) and $2 \cdot 315(8) \AA$ in $\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{RhCl}^{37}$. Mutually trans-$\mathrm{Rh}-\mathrm{P}$ distances fall within the range $2 \cdot 31-2 \cdot 40 \AA \AA^{36-45}$ irrespective of the oxidation state or geometry of the rhodium. Remarkably, the octahedral $\mathrm{Rh}^{\mathrm{III}}-\mathrm{P}$ bond $[2 \cdot 368(3)-2 \cdot 400(5) \AA]^{40,41}$ seems significantly longer than the square planar $R h^{\mathrm{T}}-\mathrm{P}$ bond $[2 \cdot 290(4)-2 \cdot 337(2) \AA$] (see also this work), ${ }^{\mathbf{3 6 , 4 5}}$ contrary to expectation; the estimated radius of $\mathrm{Rh}^{\mathrm{I}}\left(\mathbf{1} \cdot \mathbf{4 0 7} \AA^{33}\right)$ is greater than that of $R h^{\text {III }}\left(1.34 \AA^{46}\right)$. It is difficult to escape the presently unfashionable conclusion, especially comparing with trans- $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Rh}(\mathrm{CS}) \mathrm{Cl}$, that our short mutually trans-
${ }^{33}$ R. A. Smith, D. P. Madden, A. J. Carty, and G. J. Palenik, Chem. Comm., 1971, 427.
${ }^{34}$ M. Calleri, G. Ferraris, and D. Viterbo, Acta Cryst., 1966, 20, 73.
${ }^{35}$ N. A. Bailey and R. Mason, Proc. Roy. Soc. (A), 1966, 292, 61.
${ }_{36}$ J. L. de Boer, D. Rogers, A. C. Skapski, and P. G. H. Troughton, Chem. Comm., 1966, 756.
${ }^{37}$ P. B. Hitchcock, M. McPartlin, and R. Mason, Chem. Comm., 1969, 1367.
${ }^{38}$ K. W. Muir and J. A. Ibers, Inovg. Chem., 1969, 8, 1921 ; 1970, 9, 440.
${ }_{39}$ J. A. McGinnety, N. C. Payne, and J. A. Ibers, J. Amer. Chem. Soc., 1969, 91, 6301.
${ }^{40}$ B. Cetinkaya, M. F. Lappert, G. M. McLaughlin, and K. Turner, J.C.S. Dalton, 1974, in the press.

The geometry of the carbene ligand is similar to that already determined for cis- and trans $-\mathrm{PtCl}_{2}\left[\mathrm{C}\left(\mathrm{NPhCH}_{2}\right)_{2}{ }^{\top}-\right.$ $\mathrm{PEt}_{3}{ }^{48}$ with the exception that in the cis-form of the latter the $\mathrm{C}_{\text {carb }}-\mathrm{N}$ bonds are constrained crystallographically to be equal whereas in the present case they appearto be different $[1.308(17)$ and $1 \cdot 402(18) \AA]$, though account must be taken of the fact that the bond lengths quoted here have not been corrected for librational motion which is obviously present (see final anisotropic thermal parameters and Figure 2). The average of the two $[\mathbf{1} \cdot 355(18) \AA]$ agrees well with the corresponding distances in the Pt isomers of $1 \cdot 327(11)$ (cis-form) and $1 \cdot 348(18) \AA$ (average, trans-form) and is similar to other $\mathrm{C}_{\text {carb }}-\mathrm{N}$ distances ($\mathbf{1} \cdot 31-1 \cdot 38 \AA$) already determined. ${ }^{11,49}$ As in the Pt isomers, the plane of the 5 -membered carbene ring is approximately perpendicular to the coordination plane of the metal.

[^5]
EXPERIMENTAL

The preparation of starting materials and general techniques have been described elsewhere. ${ }^{13,14,21}$

Reaction of [1,1-Bis(trifluoromethyl)methyleneamido]tris(triphenylphosphine)rhodium(1) with Diphenyldiazomethane. -The rhodium complex $(0.200 \mathrm{~g}, 0.19 \mathrm{mmol})$ was added to a stirred solution of diphenyldiazomethane $(0.037 \mathrm{~g}, c a .0 \cdot 19$ mmol) in benzene (40 ml). The deep red-brown reaction mixture was stirred for 8 h at room temperature. The volume of solvent was reduced to $c a .10 \mathrm{ml}$ and n -hexane (40 ml) was added to this solution to give a yellow precipitate, which was filtered off and shown (i.r.) to be largely unchanged rhodium methyleneamide. The filtrate, when cooled to -30°, yielded a second crop of the starting rhodium complex. The mother liquor was shown to contain mainly unchanged diphenyldiazomethane.

Similar quantities of starting materials were heated at 70° for 24 h . Addition of n -hexane (30 ml) to the concentrated benzene solution gave a dirty tan precipitate, which was filtered off and shown (i.r.) to be identical to the product obtained by heating the rhodium methyleneamide alone in benzene. The filtrate contained none of the starting diphenyldiazomethane.

Reaction of 1,1-Bis(trifluoromethyl)methyleneamino(trimethyl)stannane with trans-Chloro(1,3-di-p-tolylimidazolidin-$2-y l i d e n e) b i s(t r i p h e n y l p h o s p h i n e) r h o d i u m(\mathrm{r})$.-The tin reagent ($0.20 \mathrm{ml}, 1.0 \mathrm{mmol}$) was added (by pipette) to a stirred solution of the rhodium complex $(0.456 \mathrm{~g}, 0.50$ mmol) in benzene (50 ml). The reaction mixture was heated under reflux for 1 h , solvent was removed under reduced pressure, and the residue was washed with n-hexane $(2 \times 30 \mathrm{ml})$ to give, as an air-stable orange powder, trans-[1,1-bis(trifluoromethyl) methyleneamido]bis(triphenylphosphine) ($1,3-$ di- p -tolylimidazolidin-2-ylidene) rhodium $(\mathrm{I})(0 \cdot 42 \mathrm{~g}$, 80%).

Reaction between [1,1-Bis(trifluoromethyl)methyleneamido]tris(triphenylphosphine)rhodium(1) and 1, 1',3,3'-Tetramethyl-2,2'-bi-imidazolidinylidene.-There was no reaction between the rhodium complex $(0.527 \mathrm{~g}, 0.5 \mathrm{mmol})$ and the olefin $(0.294 \mathrm{~g}, 1.5 \mathrm{mmol})$ in xylene $(50 \mathrm{ml})$ during 16 h at 49°. There was, however, a rapid reaction when the mixture was heated at $120-130^{\circ}$ for $c a .5 \mathrm{~min}$. The product was recrystallised (xylene-hexane) and identified as trans-[1,1-bis(trifluoromethyl) methyleneamido]bis(triphenylphosphine) (1,3-dimethylimidazolidin-2-ylidene)rhodium $(\mathrm{I})(>80 \%)$. In this way, suitable crystals were obtained for the X-ray structure determination.
Reaction of 1,1-Diphenylmethyleneamidolithium with Chromium Hexacarbonyl. - The lithium compound ($\mathbf{1 0 . 0}$ mmol) in diethyl ether (100 ml) was added dropwise during 1 h to a slurry of chromium hexacarbonyl ($2.2 \mathrm{~g}, 10.0 \mathrm{mmol}$) in diethyl ether (200 ml). When addition was completed, the reaction mixture was stirred for 1 h at room temperature. Solvent was then removed under reduced pressure and was replaced with methylene dichloride (50 ml). To this solution, triethyloxonium tetrafluoroborate ($1.90 \mathrm{~g}, 10.0 \mathrm{mmol}$) in methylene dichloride (50 ml) was then added dropwise, and the red solution was stirred for a further 1 h . Solvent was removed under reduced pressure to give an oily orangebrown solid, which was extracted into n -hexane (3×100 ml). The combined extracts were reduced to $c a .50 \mathrm{ml}$ and cooling to -30° afforded buff crystals, shown by analysis to be slightly impure chromium hexacarbonyl. The solu-
tion was filtered and more solvent was removed from the filtrate. The concentrated solution was recooled to -30° to give as bright red crystals [diphenylimino(ethoxy)methylidene]pentacarbonylchromium $(0)(1.7 \mathrm{~g}, 40 \%) \mathrm{m} . \mathrm{p} .88-90^{\circ}$ [Found: C, $58.6 ; \mathrm{H}, 3.6 ; \mathrm{N}, 3.3 \% ; M$ (mass spectrometrically), 429. $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{CrNO}_{6}$ requires $\mathrm{C}, 58 \cdot 7 ; \mathrm{H}, 3.5$; $\mathrm{N}, 3.3 \% ; M, 429], v(\mathrm{C}: \mathrm{O})$ (hexane), $2062,1940,1930 \mathrm{~cm}^{-1}$.
Lack of Reaction between 1,1-Diphenylmethyleneamino(trimethyl)silane and Chromium Hexacarbonyl.-The silane $(0.205 \mathrm{~g}, c a .0 .2 \mathrm{ml}, 0.8 \mathrm{mmol})$ in methylene dichloride $(10 \mathrm{ml})$ was added dropwise during 5 min to a stirred solution of chromium hexacarbonyl $(0.220 \mathrm{~g}, 1.0 \mathrm{mmol})$ in methylene dichloride (10 ml) at 0°. There was no colour change. The solution was allowed to warm to room temperature and was stirred for a further 5 h . Methylene dichloride was removed under reduced pressure and the residue was washed with n-hexane to give an almost quantitative yield of starting chromium hexacarbonyl.

Similarly, there was no significant reaction when a slurry of chromium hexacarbonyl in n-hexane was stirred at room temperature with 1,1-bis(trifluoromethyl)methyleneamino(trimethyl)stannane.
Reaction of N-Methylbenzimidoyl Chlovide with Tetrakis(triphenylphosphine)platinum (0).-The chloride $(0 \cdot 15 \mathrm{ml}, c a$. $1 \cdot 1 \mathrm{mmol}$) was added, by pipette, to a stirred solution of the Pt complex ($1.243 \mathrm{~g}, 1.0 \mathrm{mmol}$) in benzene (30 ml) at 25°. The reaction mixture was stirred (1 l) at room temperature and was then heated under reflux for 3 h . Solvent was removed under reduced pressure to give an oily yellow solid, which was redissolved in benzene (ca. 8 ml) and reprecipitated with n -hexane (30 ml). The solid was filtered off from the pale yellow solution and reprecipitated from benzene solution using n-hexane. The precipitate was again filtered off and added to benzene (40 ml). In this way, a white precipitate and a pale yellow solution were obtained. The solution was filtered and benzene was removed from the filtrate. Benzene (30 ml) was added to the filtrate residue to give again a small quantity of white solid and a pale yellow solution. The solution was filtered and solvent was once more removed from the filtrate and the cycle of operations was repeated. Eventually a pale yellow benzene solution was obtained. To this, n -hexane $(30 \mathrm{ml})$ was added to give a pale yellow powder, which was filtered off, washed with n-hexane ($2 \times 30 \mathrm{ml}$), and dried $(1 \mathrm{~h}, 0.001 \mathrm{mmHg})$. The product, an off-white powder, was chloro(N-methylbenzimidoyl) bis(triphenylphosphine)platinum(II) (ca. 15\% yield), m.p. 230-232 (Found: C, 60.3; $\mathrm{H}, 4.5 ; \mathrm{N}, 1 \cdot 7$. Calc. for $\mathrm{C}_{44} \mathrm{H}_{38} \mathrm{ClNP}_{2} \mathrm{Pt}: \mathrm{C}, 60.5 ; \mathrm{H}, 4 \cdot 4$; $\mathrm{N}, 1 \cdot 6 \%), v_{\mathrm{CN}} 1595 \mathrm{~cm}^{-1}, \mathrm{v}(\mathrm{PtCl}) 265 \mathrm{~cm}^{-1}$.

Reaction of $\mathrm{Pt}(\mathrm{Cl})(\mathrm{PhC}: \mathrm{NMe})\left(\mathrm{PPh}_{3}\right)_{2}$ with Hydrogen Chloride.-Hydrogen chloride (0.12 mmol) in diethyl ether $(0.05 \mathrm{ml})$ was added to a solution of the platinum complex $(0.100 \mathrm{~g}, 0.11 \mathrm{mmol})$ in benzene $(25 \mathrm{ml})$ at $c a .5^{\circ}$. The solution was stirred for 2 h at room temperature, the solvent was removed under reduced pressure, and the residue was washed with n -hexane to give, as a white powder, the $1: 1$ complex (100% yield), m.p. 251-254 ${ }^{\circ}$ (Found: C, $60 \cdot 6$; H, $4 \cdot 7 ; \mathrm{N}, 1 \cdot 6 . \mathrm{C}_{44} \mathrm{H}_{39} \mathrm{Cl}_{2} \mathrm{NP}_{2} \mathrm{Pt}$ requires $\mathrm{C}, 60.5 ; \mathrm{H}, 4.5 ; \mathrm{N}$, $1 \cdot 6 \%), v(\mathrm{PtCl}) 313 \mathrm{~cm}^{-1}$.
We thank the European Office of the U.S. Army and S.R.C. for their support.
[3/2296 Received, 8th November, 1973]

[^0]: ${ }^{1}$ Part V, B. Cetinkaya, M. F. Lappert, and J. McMeeking, J.C.S. Dalton, 1973, 1975.
 ${ }_{2}$ B. Cetinkaya, P. Dixneuf, and M. F. Lappert, J.C.S. Dalton, 1974, in the press and earlier papers in that series.
 ${ }^{3}$ K. Farmery, M. Kilner, and C. Midcalf, J. Chem. Soc. (A), 1970. 2279.

[^1]: 7 (a) S. O'Brien, Chem. Comm., 1968, 757; (b) T. Kashiwagi, N. Yasuoka, N. Kasai, and M. Kukudo, Chem. Comm., 1969, 317.
 ${ }^{8}$ P. Hong, N. Nishii, K. Sonogashira, and N. Hagihara, J.C.S. Chem. Comm., 1972, 993.

[^2]: ${ }^{9}$ W. Keim, J. Organometallic Chem., 1968, 14, 179.

[^3]: 17 ' X-Ray System' version July 1970 , eds. J. M. Stewart, F. A. Kundell, and J. C. Baldwin, as implemented on the ICL 1906A at the S.R.C. Atlas Computer Laboratory, Chilton, Berks.
 ${ }^{18}$ D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.
 ${ }^{19}$ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.
 ${ }^{20}$ D. T. Cromer, Acta Cryst., 1965, 18, 17.

[^4]: ${ }_{25}$ M. Kilner, Adv. Organometallic Chem., 1972, 10, 115.
 ${ }^{26}$ G. J. Bullen, J.C.S. Dalton, 1973, 858.
 ${ }^{27}$ H. M. M. Shearer, R. Snaith, J. D. Sowerby, and K. Wade, Chem. Comm., 1971, 1275.
 ${ }^{28}$ J. King and H. M. M. Shearer, unpublished work, cited in G. E. Coates, M. L. H. Green, and K. Wade, ' Organometallic Compounds,' Methuen, 1967, vol. I, p. 311.
 ${ }_{30}^{29}$ W. J. MacDonald, Acta Cryst., 1969, B25, 1385.
 ${ }^{30}$ H. M. M. Shearer and J. D. Sowerby, unpublished work, cited in ref. 11.
 ${ }^{31}$ D. Bright and O. S. Mills, Chem. Comm., 1967, 245.
 ${ }^{32}$ A. J. Carty, D. P. Madden, M. Mathew, G. J. Palenik, and T. Birchall, Chem. Comm., 1970, 1664.

[^5]: ${ }^{41}$ F. A. Allen, G. Chang, K. K. Cheung, T. F. Lai, L. M. Lee, and A. Pidcock, Chem. Comm., 1970, 1297.

 42 S. J. La Placa and J. A. Ibers, Acta Cryst., 1965, 18, 511.
 ${ }^{43}$ C. Masters, W. S. McDonald, G. Raper, and B. L. Shaw, Chem. Comm., 1971, 210.
 ${ }_{44}$ P. G. H. Troughton and A. C. Skapski, Chem. Comm., 1968, 575.
 ${ }^{45}$ M. C. Hall, B. T. Kilbourn, and K. A. Taylor, J. Chem. Soc. (A), 1970, 2539.
 ${ }_{46}$ R. Mason and A. D. C. Towl, J. Chem. Soc. (A), 1970, 1601.
 47 J. J. Daly, J. Chem. Soc., 1964, 3799.
 ${ }^{48}$ D. J. Cardin, B. Cetinkaya, E. Cetinkaya, M. F. Lappert, Lj. Manojlović-Muir, and K. W. Muir, J. Organometallic Chem., 1972, 44, C59.

 49 D. J. Cardin, B. Cetinkaya, and M. F. Lappert, Chem. Rev., 1972, 72, 545; F. A. Cotton and C. M. Lukehart, Progr. Inorg. Chem., 1972, 16, 487.

