Reinvestigation of the Crystal and Molecular Structures of Pentaamminenitrosylruthenium Trichloride Hydrate and trans-Tetra-amminehydroxonitrosylruthenium Dichloride

By Frank Bottomley, Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada

Abstract

The crystal and molecular structures of the title compounds have been reinvestigated and solved by Patterson and Fourier methods by use of diffractometer data. Crystals of $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{NO})\right] \mathrm{Cl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ are orthorhombic. space group $P n 2_{1} a, a=11 \cdot 864(7), b=6.878(5), c=14 \cdot 192(9) \AA, Z=4$. The structure was refined by full-matrix methods to $R 0.047$ (971 observed reflections). The ruthenium ion is octahedrally co-ordinated by six nitrogen atoms, with Ru-NO 1.770(9), $\mathrm{N}-\mathrm{O} 1.172(14)$, and $\mathrm{Ru}-\mathrm{NH}_{3} 2.017-2.133 \AA$. Because of correlation effects only two distances (cis-Ru-NH3) are regarded as true measurements of the bond lengths. Crystals of trans$\left[\mathrm{Ru}(\mathrm{OH})\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{NO})\right] \mathrm{Cl}_{2}$ are monoclinic, space group $\mathrm{C} 2 / \mathrm{m}$ (assumed), $a=11 \cdot 422(3), b=7 \cdot 365(2), c=$ 11.157 (3) $\AA, \beta=109.09(2)^{\circ}, Z=4$. Full-matrix refinement for 2398 observed reflections, gave $R 0.031$. The ruthenium ion is octahedrally co-ordinated with Ru-NO $1.735(3)$, $\mathrm{Ru}_{\mathrm{N}}-\mathrm{NH}_{3} 2.099(3)$ and 2.106(3). Ru-OH, $1 \cdot 961$ (3), N-O $1.159(5) \AA$, and $\mathrm{Ru}-\mathrm{N}-\mathrm{O} 173.8(3)^{\circ}$. The $\mathrm{Ru}-\mathrm{OH}$ distance is shorter than expected from covalent radii considerations.

The crystal structures of $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{NO})\right] \mathrm{Cl}_{3}, \mathrm{H}_{2} \mathrm{O}$, (I), and trans- $\left[\mathrm{Ru}(\mathrm{OH})\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{3}\right)\right] \mathrm{Cl}_{2}$, (II), were investigated previously by Khodashova ${ }^{1}$ and by Parpiev and Bokii ${ }^{2}$ respectively. We were interested in these structures because of our work on reactivity of metalnitrosyls, ${ }^{3-6}$ and felt they required re-investigation for several reasons. First in determinations of the structures ${ }^{7,8}$ of $\mathrm{A}_{2}\left[\mathrm{RuCl}_{5}(\mathrm{NO})\right]\left(\mathrm{A}=\mathrm{K}\right.$ or $\left.\mathrm{NH}_{4}\right)$ Veal and Hodgson found the axial $\mathrm{Ru}-\mathrm{Cl}$ to be shorter than the equatorial $\mathrm{Ru}-\mathrm{Cl}$ distances. Proceeding from an MO calculation for $\left[\mathrm{MnCl}(\mathrm{CO})_{5}\right]$, which showed the $\mathrm{Mn}-\mathrm{Cl}$ bond to be largely σ in character, ${ }^{9}$ this shortening was suggested to be due to the success of Cl^{-}in competing with NO^{+}for σ electrons. The short $\mathrm{Ru}-\mathrm{NO}$ distance (compared to the sum of the covalent radii of $\mathrm{Ru}^{\text {II }}$ and NO) was due to the excellent π-acceptor capabilities of NO^{+}, leading to multiple bonding between Ru^{2+} and $\mathrm{NO}^{+} . \dagger$ It was further suggested that similar mutually short axial distances would be found in other octahedral complexes with axial ligands, where one was largely a σ donor and the other largely a π acceptor. $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{NO})\right]^{3+}$ provides an excellent test of this, since all donor atoms are nitrogen. The previous investigation gave $\mathrm{Ru}-\mathrm{NO} 1 \cdot 804, \mathrm{Ru}^{-\mathrm{NH}_{3}}$ (axial) 2•19, and $\mathrm{Ru}-\mathrm{NH}_{3}$ (equatorial) $2 \cdot 00,2 \cdot 12,2 \cdot 09$, and $2 \cdot 14 \AA .{ }^{1}$ This is in disagreement with Veal and Hodgson's suggestion, but is in agreement with the ready replacement of the axial $-\mathrm{NH}_{3}$ in solution. ${ }^{1}$
Secondly, our investigations of metal nitrosyls show
\dagger Following the suggestion of Raynor, ${ }^{10}$ these ruthenium complexes are referred to as being of ruthenium(II) and NO^{+}, though this nomenclature is incorrect according to IUPAC rules.
${ }^{1}$ T. S. Khodashova, J. Struct. Chem., 1965, 6, 678.
${ }^{2}$ N. A. Parpiev and G. B. Bokii, Russ. J. Inorg. Chem., 1959, 4, 1127.
${ }^{3}$ F. Bottomley and J. R. Crawford, Chem. Comm., 1971, 200.
4 F. Bottomley and J. R. Crawford, J.C.S. Dalton, 1972, 2145.
5 F. Bottomley and J. R. Crawford, J. Amer. Chem. Soc., 1972, 94, 9092.
${ }^{6}$ F. Bottomley and S. B. Tong, J.C.S. Dalton, 1973, 217.
7 I. T. Veal and D. J. Hodgson, Inorg. Chem., 1972, 11, 1420.
$\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{NO})\right]^{3+}$ is reactive toward nucleophiles. ${ }^{3-5}$ Other complexes such as trans- $\left[\mathrm{Ru}(\mathrm{OH})\left(\mathrm{NO}_{2}\right)_{4}(\mathrm{NO})\right]^{2-}$ (whose structure is known ${ }^{11}$) are similarly reactive, whereas $\left[\mathrm{RuCl}_{5}(\mathrm{NO})\right]^{2-}$ and trans- $\left[\mathrm{Ru}(\mathrm{OH})\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{NO})\right]^{2+}$ are not. ${ }^{12}$ We have explained this in terms of the electron density at the nitrosyl nitrogen, which can be crudely estimated by the NO stretching frequency and force constant, ${ }^{12}$ but the reactivity should also be manifested in the structural parameters of the complexes.
Finally, the earlier investigation of (II) used projection data only and suggested an $\mathrm{Ru}-\mathrm{N}-\mathrm{O}$ bond angle of $150^{\circ} .^{2}$ This has unfortunately been cited as an example of a $\mathrm{Ru}^{\mathrm{II}-}-\mathrm{NO}^{+}$complex with a bent $\mathrm{Ru}-\mathrm{N}^{-} \mathrm{O}$ bond, though the conclusion was at best tentative. ${ }^{13}$ Since $\mathrm{Ru}^{\mathrm{II}}$ normally forms complexes with $\mathrm{Ru}-\mathrm{N}-\mathrm{O}$ linear (at least when only one NO is present), ${ }^{14}$ the 150° seemed unlikely.

EXPERIMENTAL

(I) and (II) were prepared by literature methods, ${ }^{15,16}$ and crystals obtained from aqueous solutions set aside at 5° for several days. Crystals were mounted in thin-walled glass tubes.
Crystal Data.-(I), $\mathrm{Cl}_{3} \mathrm{H}_{17} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{Ru}, M=340 \cdot 6$, Orthorhombic, $a=11 \cdot 864(7), \quad b=6 \cdot 878(5), \quad c=14 \cdot 192(9) \AA$, $U=1158.1 \AA^{3}, \quad D_{\mathrm{c}}=1.95, \quad Z=4, D_{\mathrm{m}}($ ref. 1$)=1.95$. Zr -filtered Mo- K_{α} radiation, $\lambda=0.71069 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=$ $19 \cdot 9 \mathrm{~cm}^{-1}$.
For (I) $h 0-2 l$ Weissenberg photographs ($\mathrm{Cu}-\mathrm{K}_{\alpha}$ radiation)
s J. T. Veal and D. J. Hodgson, Acta Cryst., 1972, B28, 3525.
9 R. F. Fenske and R. L. DeKock, Inorg. Chem., 1970, 9, 1053.
${ }^{10}$ J. B. Raynor, Inorg. Chim. Acta, 1972, 6, 347.
${ }_{11}$ S. H. Simonsen and M. H. Mueller, J. Inorg. Nuclear Chem., 1965, 27, 309.
${ }_{12}$ F. Bottomley, W. V. F. Brooks, S. G. Clarkson, and S. B. Tong, J.C.S. Chem. Comm., 1973, 919.
${ }_{13}{ }^{13}$ T. S. Khodashova, M. A. Porai-Koshits, V. S. Sergienko, N. A. Parpiev, and G. B. Bokii, J. Struct. Chem., 1972, 13, 1024.
${ }^{14}$ For a review, see e.g. N. G. Connelly, Inorg. Chim. Acta Rev., 1972, 47.
${ }^{15}$ J. N. Armor, H. A. Scheidegger, and H. Taube, J. Amer. Chem. Soc., 1968, $90,5928$.
${ }_{16}$ A. Werner, Ber., 1907, 40, 2714.
showed systematic absences in agreement with the space groups Pnma ($D_{2 n}^{16}$ No. 62) or $P_{n} 2_{1} a$ [non-standard setting of $P_{n a 2_{1}}\left(C_{2 v}^{9}\right.$, No. 33)] found by Khodashova; the latter was shown to be correct from the subsequent successful refinement.

Crystal Data.-(II), $\mathrm{Cl}_{2} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{Ru}, \quad M=287 \cdot 1$, Monoclinic, $a=11 \cdot 422(3), b=7 \cdot 365(2), c=11 \cdot 157(2) \AA, \beta=$ $109.09(2)^{\circ}, \quad U=886.9 \AA^{3}, \quad D_{\mathrm{c}}=2 \cdot 15, \quad Z=4, \quad D_{\mathrm{m}}$ (by flotation in $\left.\mathrm{CHCl}_{3}-\mathrm{CHBr}_{3}\right)=2 \cdot 15$. Mo- K_{α} Radiation, $\mu\left(\right.$ Mo $\left.-K_{\alpha}\right)=22.85 \mathrm{~cm}^{-1}$.
For (II), $h 0-3 l$ Weissenberg photographs (Cu- K_{α} radiation) could, at first sight, be indexed by use of the monoclinic C centred cell given by Parpiev and Bokii. ${ }^{2}$ However, the weak $h 0 l$ (l odd) reflections found by them could not then be observed, even on much over-exposed photographs. From the higher-layer photographs the cell appeared centred on B as well as C. Therefore a new C centred cell was chosen, with systematic absences $h k l: h+k=2 n$. Possible space groups were $C_{2}^{3}\left(C_{2}^{3}\right.$, No. 5), $C m\left(C_{8}^{3}\right.$, No. 8), or $C 2 / m\left(C_{2 h}^{3}\right.$, No. 12), as before. ${ }^{2}$

Collection and Reduction of Intensity Data.-The crystal of (I) used for the intensity determination was a wedgeshaped chip (ca. $0.20 \times 0.46 \times 0.05 \mathrm{~mm}$) cut from a long needle, and was mounted with the b axis $c a .12^{\circ}$ mis-set from the ϕ axis of a Picker FACS 1 diffractometer. ${ }^{17}$ The crystal of (II) was $0.15 \times 0.36 \times 0.28 \mathrm{~mm}$, and was similarly mounted. Cell dimensions were determined from 12 accurately centred reflections with $2 \theta>40^{\circ}$ for (I) and $>52^{\circ}$ for (II). For (I) a unique $h k l$ data set was collected to $2 \theta 50^{\circ}$ (1108 reflections) by the $\omega-2 \theta$ scan with instrumental settings as described before. ${ }^{18}$ A similar technique (but with a 2° scan) with (II) gave $2568 h k l$ and $\bar{h} k l$ reflections to $2 \theta 75^{\circ}$. Three standard reflections were monitored every 15 reflections for (I) and every 50 reflections for (II), but no significant changes were observed.

Absorption, Lorentz, and polarization corrections ${ }^{19}$ were then applied to the data $[\mu R 66-80 \%$ for (I) and $63-78 \%$ for (II)]. Reflections with a net count <10 or <0.05 times the background count were considered unobserved, and not used in the structure refinements. All unobserved reflections had low $\left|F_{c}\right|$ in the final structure-factor calculation. The structure of (I) was solved from 971 observed structure amplitudes and of (II) from 2398.

Structure Solution and Refinement.-(i) Structure of (I). The Patterson function was readily interpretable in terms of the Ru^{2+} and Cl^{-}positions given by Khodashova. ${ }^{1}$ Three cycles of block-diagonal, isotropic, unit weighted refinement of the ruthenium and three chloride ions in space group $P n_{2} a$ gave $R 0 \cdot 23$. The quantity minimized throughout refinement was $\sum w^{\prime}\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$. The scattering factor curve for Ru^{2+} was taken from ref. 20 and those for $\mathrm{Cl}^{-}, \mathrm{N}, \mathrm{O}$, and H from ref. 21. The Ru^{2+} and Cl^{-} curves were corrected for both the real and imaginary parts of the anomalous dispersion.

A Fourier synthesis phased on these atoms revealed all other non-hydrogen atom positions, but was complicated either by false symmetry (due to the proximity of all heavy atoms to $y=1 / 4$) or by genuine disorder such that the true space group would be Pnma. The effect of this was to produce two oxygen atom peaks (for the NO group) in the Fouricr, one close to N(1) and the other to N(4) (see Figure

[^0]1 for the numbering scheme). Refinement was continued in $P n 2_{1} a$ with the peak close to $\mathrm{N}(1)$ arbitrarily chosen as the oxygen of a nitrosyl group. Four cycles of isotropic, unit weighted, refinement of all non-hydrogen atoms gave $R 0.075$, and a difference Fourier synthesis showed no evidence of disorder in the NO oxygen atom. $P n 2_{1} a$ is therefore confirmed as the correct space group. This difference synthesis also showed the necessity for anisotropic refinement of all atoms, and revealed the positions of the hydrogen atoms. Anisotropic refinement was therefore begun, using a weighting scheme of the form given before, ${ }^{18}$ with $P_{1}=25 \cdot 0$ and $P_{2}=35 \cdot 0$. After several cycles the hydrogen atoms were introduced as fixed contributions to F_{c}. The positional parameters for the hydrogen atoms were calculated (but conforming to the difference Fourier) using the idealized values of $1.01 \AA$ for $\mathrm{N}-\mathrm{H}$ and 109.5° for $\mathrm{Ru}-\mathrm{N}-\mathrm{H}$ and $\mathrm{H}-\mathrm{N}-\mathrm{H}$, and $0.95 \AA$ for $\mathrm{O}-\mathrm{H}$ and 109.5° for

Figure 1 Numbering scheme for the $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{NO})\right]^{3+}$ cation of (I)
$\mathrm{H}-\mathrm{O}-\mathrm{H}$. All hydrogen atoms were given isotropic thermal parameters of $5 \cdot 0 \AA^{2}$ except those of the water of crystallization which were $7.0 \AA^{2}$. After several cycles of fullmatrix refinement this model converged at $R 0.047$ and $R^{\prime} 0.058$ \{where $\left.R^{\prime}=\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma w\left(F_{\mathrm{o}}\right)^{2}\right]^{1 / 2}\right\}$. On the final cycle no shift was $>0 \cdot 5 \sigma$.

A difference-Fourier synthesis had highest positive and lowest negative peaks of 0.65 and $-0.56 \mathrm{e}^{-3}$. An error analysis as a function of $\left|F_{0}\right|, \sin \theta$, and l, k, and l showed poor agreement for the very weakest reflections. Since these have a low weight this will not have significantly affected the final parameters. No other trends were found from the error analysis. The estimated standard deviation of an observation of unit weight was 1.41 electrons. Table 1 lists the parameters from the last cycle, with the hydrogen positions used given in Table 2. Observed and calculated structure factors for (I) and (II) are listed in Supplementary Publication No. 21011 (40 pp ., 1 microfiche).*
(ii) Structure of (II). The ruthenium atom position was determined from a Patterson synthesis, and all other nonhydrogen atoms from a subsequent Fourier synthesis. Block-diagonal, unit weighted, refinement in $C 2 / m$ and with anisotropic thermal parameters for all atoms proceeded smoothly to $R \quad 0.039$. A difference synthesis revealed the hydrogen atom positions, which were then

19 Programs used in this work were: the set by F. R. Ahmed, the National Research Council, Ottawa, Canada; ORFLS by W. R. Busing, H. A. Levy, and R. O. Martin, modified by D. Hall, University of Alberta, and further modified by P. Siew; CFIT, a programme for calculating atomic positions, W. V. F. Brooks.
${ }_{20}$ L. H. Thomas and K. Umeda, J. Chem. Phys., 1957, 26, 293.
21 'International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1965.
included as fixed contributions to $F_{\mathrm{c}}\left(\begin{array}{lll}B & 3 \cdot 5 & \left.\AA^{2}\right)\end{array}\right.$ with geometry as before. Final refinement was by full-matrix, with the same weighting scheme as before ($P_{1}=23 \cdot 0$, $P_{2}=33.0$), and converged to $R 0.031, R^{\prime} 0.041$. All shifts
positions. The atom numbering scheme is shown in Figure 2.

Parpiev and Bokii reported (II) to be piezoelectric and, from optical measurements, to belong to the dihedral class

Table l
Positional and thermal * parameters for (I)

Atom	x	y	z	$10^{4} \beta_{11}$	$10^{4} \beta_{22}$	$10^{4} \beta_{22}$	$10^{4} \beta_{12}$	$10^{4} \beta_{13}$	$10^{4} \beta_{23}$
Ru	0.22075(6)	$0 \cdot 25$	0.10195(4)	41.0(4)	199(1)	24.5(3)	0	$-0.4(6)$	0
$\mathrm{Cl}(\mathrm{I})$	$0 \cdot 3329(3)$	$0 \cdot 7526(16)$	$0 \cdot 2372(2)$	170(4)	$160(5)$	37(1)	$23(15)$	$-26(2)$	$2(10)$
$\mathrm{Cl}(2)$	$0 \cdot 3833(2)$	$0 \cdot 2554(13)$	$0 \cdot 4587(1)$	42 (1)	178(5)	$31(1)$	6(8)	$1(1)$	$-19(7)$
$\mathrm{Cl}(3)$	$0 \cdot 0687(2)$	0.2559(17)	$0 \cdot 3608(2)$	37(1)	420 (10)	34(1)	12(12)	7(1)	-15(11)
N(1)	$0 \cdot 1327(8)$	$0 \cdot 4393$ (14)	$0 \cdot 1434(6)$	48(6)	$133(20)$	$40(5)$	42(10)	7 (5)	16(9)
$\mathrm{N}(2)$	$0 \cdot 3289(9)$	0.0507(15)	0.0499 (7)	76(8)	$159(23)$	47(6)	47(13)	12 (6)	18(10)
N(3)	$0 \cdot 3346(9)$	$0 \cdot 4704(16)$	$0.0560(8)$	68(8)	164(25)	63(6)	1(13)	1 (6)	3 (11)
N(4)	$0 \cdot 1140$ (8)	0.0366(16)	$0 \cdot 1472$ (7)	$50(7)$	231(28)	41 (5)	-76(12)	9 (5)	20(10)
N(5)	$0 \cdot 3075$ (6)	$0 \cdot 2449$ (43)	$0 \cdot 2309(5)$	59(6)	300(28)	$32(4)$	-2(35)	$-13(4)$	$55(24)$
N(6)	$0 \cdot 1442$ (8)	$0 \cdot 2500(65)$	$-0.0309(6)$	73(7)	380(35)	34(4)	3(43)	-16 (4)	38(33)
$\mathrm{O}(1)$	$0.0653(8)$	$0 \cdot 7268(16)$	$0 \cdot 1712(7)$	85(8)	252(24)	58(5)	59(13)	8(6)	$-1(10)$
$\mathrm{O}(2)$	$0 \cdot 0873$ (11)	$0 \cdot 8410$ (49)	$0 \cdot 3803(7)$	150(11)	418(67)	65(5)	-79(30)	-33(6)	43(22)

* The form of the thermal ellipsoid is: $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} h^{2}+\beta_{33} l^{2}+2 \beta_{12} h k+2 \beta_{13} h l+2 \beta_{23} h l\right)\right]$.
were essentially zero on the last cycle. The highest positive and lowest negative peaks in the final difference synthesis

Table 2
Positional parameters for the hydrogen atoms of (I)

Atom *	x	y	z
$\mathrm{H}(\mathbf{1})[\mathrm{O}(2)]$	0.040	0.841	$0 \cdot 380$
$\mathrm{H}(2)[\mathrm{O}(2)]$	0.040	0.615	$0 \cdot 380$
$\mathrm{H}(3)[\mathrm{N}(2)]$	0.367	-0.020	0.098
$\mathrm{H}(4)$ [$\mathrm{N}(2)]$	0.381	0.115	0.003
$\mathrm{H}(5)[\mathrm{N}(2)]$	$0 \cdot 280$	-0.048	$0 \cdot 009$
$\mathrm{H}(6)[\mathrm{N}(3)]$	0.311	0.532	-0.001
$\mathrm{H}(7)[\mathrm{N}(3)]$	0.414	0.407	0.047
$\mathrm{H}(8)[\mathrm{N}(3)]$	0.345	0.571	$0 \cdot 110$
$\mathrm{H}(9)$ [$\mathrm{N}(4)$]	0.062	-0.002	0.097
$\mathrm{H}(10)[\mathrm{N}(4)]$	0.075	0.078	0.205
$\mathrm{H}(11)[\mathrm{N}(4)]$	$0 \cdot 164$	-0.085	$0 \cdot 165$
$\mathrm{H}(12)[\mathrm{N}(5)]$	0.254	0.303	$0 \cdot 283$
$\mathrm{H}(13)[\mathrm{N}(5)]$	0.371	0.357	0.227
$\mathrm{H}(14)[\mathrm{N}(5)]$	0.339	$0 \cdot 128$	0.247
$\mathrm{H}(15)[\mathrm{N}(6)]$	$0 \cdot 193$	0.317	-0.077
$\mathrm{H}(16)[\mathrm{N}(6)]$	$0 \cdot 136$	$0 \cdot 103$	-0.052
$\mathrm{H}(17)[\mathrm{N}(6)]$	0.068	$0 \cdot 306$	-0.027

* Atoms in square brackets are those to which the hydrogen is attached. For numbering scheme see Figure 1.
were 1.03 and $-1.2 \mathrm{e}^{-3}$, the former near Ru^{2+} and the latter near a Cl^{-}. An error analysis again showed poor
of the monoclinic system. They therefore assumed space group C2. ${ }^{2}$ A piezoelectric test on the crystals used in this work was negative. An E statistics test did not favour either the centric or non-centric cases. Because of the very low R it was felt no useful information would result from a non-centric refinement. $C 2 / m$ is therefore an assumed space group.

DISCUSSION

Description of the Structures.-As expected, hydrogen bonding links the cation, Cl^{-}, and, where present, water of crystallization. Tables 5 and 6 list the important hydrogen bonds (the distances are dependent on the assumed NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ geometry). In both structures all NH_{3} ligands are linked to Cl^{-}by at least one hydrogen bond. In (I) (for which a diagram of the unit cell is given in ref. 1) there is strong hydrogen bonding between the trans $-\mathrm{NH}_{3}$ and the water of crystallization, but the latter is only weakly bonded to Cl^{-}. This is shown also by the i.r. spectrum, in which the NH_{3} vibrations are broadened by hydrogen bonding whereas the OH stretching vibration is quite sharp. ${ }^{22}$ There is no significant interaction between the water and the

Table 3
Positional and thermal * parameters for (II)

Atom	x	y	z	$10^{5} \beta_{11}$	$10^{5} \beta_{22}$	$10^{5} \beta_{33}$	β_{12}	$10^{5} \beta_{13}$	β_{23}
Ru	$0 \cdot 12396(2)$	0.0	$0 \cdot 23893$ (2)	262(1)	542 (4)	216(1)	0	48(1)	0
$\mathrm{Cl}(1)$	$0 \cdot 41271$ (9)	$0 \cdot 0$	$0 \cdot 13204(10)$	$464(7)$	967(15)	529(8)	0	195(6)	0
$\mathrm{Cl}(2)$	$0 \cdot 31220(9)$	0.5	$0 \cdot 36201(10)$	446(7)	1175(18)	511(8)	0	140 (6)	0
				$10^{4} \beta_{11}$	$10^{4} \beta_{32}$	$10^{4} \beta_{33}$	$10^{4} \beta_{12}$	$10^{4} \beta_{13}$	$10^{4} \beta_{23}$
N(1)	$0 \cdot 2762(3)$	0.0	$0 \cdot 3400(3)$	33(2)	$89(5)$	32(2)	0	4(2)	0
N(2)	$0 \cdot 1513(2)$	0.1980(4)	$0 \cdot 1154(2)$	51 (2)	98(4)	40(2)	-3(2)	13(1)	17(2)
$\mathrm{N}(3)$	$0 \cdot 0754(2)$	$0 \cdot 2048(4)$	$0 \cdot 3458(2)$	$59(2)$	84(4)	$42(2)$	$9(2)$	18(2)	$-13(2)$
$\mathrm{O}(\mathbf{1})$	$0.3735(3)$	$0 \cdot 0$	$0 \cdot 4164(3)$	$34(2)$	$215(9)$	$50(3)$	0	-8(2)	0
$\mathrm{O}(2)$	-0.0499(2)	0.0	$0 \cdot 1295(3)$	31 (2)	$113(5)$	$33(2)$	0	$5(1)$	0

agreement for very weak reflections, but no other trends. The estimated standard deviation of an observation of unit weight was 1.54 electrons. Table 3 gives the parameters from the last cycle, and Table 4 the hydrogen atom
oxygen of the NO. In (I), $\nu(\mathrm{NO})$ is split into two bands, but only one is observed for its solution, or the anhydrous

[^1]form, ${ }^{22}$ and this may therefore be due to the environment of NO with respect to Cl^{-}. In (II) the trans- OH forms a strong hydrogen bond to a Cl^{-}. In addition

Table 4
Positional parameters for the hydrogen atoms of (II)

Atom *					x	y	z
$\mathrm{H}(1)[\mathrm{O}(2)]$	-0.1049	0.0	0.2145				
$\mathrm{H}(2)[\mathrm{N}(2)]$	0.2377	0.1860	0.1099				
$\mathrm{H}(3)[\mathrm{N}(2)]$	0.0880	0.1828	0.0286				
$\mathrm{H}(4)[\mathrm{N}(2)]$	0.1423	0.3235	0.1492				
$\mathrm{H}(5)[\mathrm{N}(3)]$	0.0735	0.3262	0.3022				
$\mathrm{H}(6)[\mathrm{N}(3)]$	-0.0068	0.1782	0.3544				
$\mathrm{H}(7)[\mathrm{N}(3)]$	0.1412	0.2109	0.4332				

* Atoms in square brackets are those to which the hydrogen atom is attached. For numbering scheme see Figure 2.

Figure 2 Numbering scheme for the $\left[\mathrm{Ru}(\mathrm{OH})\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{NO})\right]^{2+}$ cation of (II)

Table 5
Hydrogen bond distances (\AA) in (I)

Bond A	. $\mathrm{H}-\mathrm{B}$
	$\mathrm{H}(4)-\mathrm{N}(2)$
	. $\mathrm{H}(3)-\mathrm{N}(2)$
	- $\mathrm{H}(5)-\mathrm{N}(2)$
	- $\mathrm{H}(8)-\mathrm{N}(3)$
$\mathrm{Cl}(3)$	- $\mathrm{H}(7)-\mathrm{N}(3)$
$\mathrm{Cl}(2)$. $\mathrm{H}(9)-\mathrm{N}(4)$
$\mathrm{Cl}(1)$	- $\mathrm{H}(11)-\mathrm{N}(4)$
$\mathrm{Cl}(1)$	$\mathrm{H}(14)-\mathrm{N}(5)$
$\mathrm{Cl}(3)$. $\mathrm{H}(13)-\mathrm{N}(5)$
$\mathrm{Cl}(2)$. $\mathrm{H}(17)-\mathrm{N}(6)$
$\mathrm{Cl}(1)$	- $\mathrm{H}(15)-\mathrm{N}(6)$
$\mathrm{Cl}(3)$	- $\mathrm{H}(1)-\mathrm{O}(2)$
$\mathrm{Cl}(1)$	- $\mathrm{H}(2)-\mathrm{O}(2)$

A-B	A \cdot. ${ }^{\text {H }}$
$2 \cdot 87$	1.94
$3 \cdot 36$	$2 \cdot 55$
$3 \cdot 48$	$2 \cdot 47$
3.30	$2 \cdot 20$
$3 \cdot 36$	$2 \cdot 48$
$3 \cdot 30$	$2 \cdot 66$
$3 \cdot 49$	2.51
$3 \cdot 48$	$2 \cdot 59$
3.36	2.75
$3 \cdot 38$	$2 \cdot 42$
$3 \cdot 30$	$2 \cdot 69$
$3 \cdot 66$	$2 \cdot 89$
$3 \cdot 45$	3.11

Table 6
Hydrogen bond distances (\AA) in (II)

Bond A . . $\mathrm{H}-\mathrm{B}$	A-B	A \cdots. H
$\mathrm{O}(2) \cdots \mathrm{H}(3)-\mathrm{N}(2)$	$2 \cdot 77$	$2 \cdot 15$
$\mathrm{Cl}(1) \cdots \mathrm{H}(1)-\mathrm{O}(2)$	$3 \cdot 45$	$2 \cdot 15$
$\mathrm{Cl}(1) \cdots \mathrm{H}(2)-\mathrm{N}(2)$	$3 \cdot 49$	$2 \cdot 45$
$\mathrm{Cl}(1) \cdots \mathrm{H}(4)-\mathrm{N}(2)$	$3 \cdot 49$	$2 \cdot 79$
$\mathrm{Cl}(1) \cdots \mathrm{H}(5)-\mathrm{N}(3)$	$3 \cdot 28$	$2 \cdot 47$
$\mathrm{Cl}(2) \cdots \mathrm{H}(6)-\mathrm{N}(3)$	$3 \cdot 42$	$2 \cdot 47$
$\mathrm{Cl}(2) \cdots \mathrm{H}(7)-\mathrm{N}(3)$	$3 \cdot 42$	$2 \cdot 67$

there is a hydrogen bond from NH_{3}, via $\mathrm{H}(3)[\mathrm{N}(2)]$, of one cation to OH^{-}of an adjacent cation. Thus the

[^2]cations form a zig-zag chain, with Cl^{-}surrounding it. This is illustrated in ref. 2 (the changes in c and β do not affect the gross structure). An unusually close-packed structure results, as is shown by the high density ($D_{\mathrm{m}} 2 \cdot 15$); similar complexes have densities near $1 \cdot 8 .{ }^{18,23}$
The trans- $\left[\mathrm{Ru}(\mathrm{OH})\left(\mathrm{NH}_{3}\right)_{4} \mathrm{NO}\right]^{2+}$ cation has strict crystallographically imposed C_{s} symmetry, the plane bisecting the $\mathrm{N}(2)-\mathrm{Ru}-\mathrm{N}\left(2^{\prime}\right)$ and $\mathrm{N}(3)-\mathrm{Ru}-\mathrm{N}\left(3^{\prime}\right)$ angles. Consideration of intramolecular distances, angles, and a selection of mean planes (Tables 7 and 8) shows the

Table 7
Intramolecular geometry in the cation of (II)
(a) Distances (\AA)

$\mathrm{Ru}-\mathrm{N}(1)$	$1 \cdot 735(3)$	$\mathrm{Ru}-\mathrm{O}(2)$	$\mathrm{l} \cdot 961(3)$
$\mathrm{Ru}-\mathrm{N}(2)$	$2 \cdot 099(3)$	$\mathrm{N}(1)-\mathrm{O}(1)$	$1 \cdot 159(5)$
$\mathrm{Ru}-\mathrm{N}(3)$	$2 \cdot 106(3)$		
(b) Angles (deg.)			
$\mathrm{N}(1)-\mathrm{Ru}-\mathrm{O}(2)$	$178 \cdot 2(1)$	$\mathrm{N}(2)-\mathrm{Ru}-\mathrm{N}(3)$	$89 \cdot 9(1)$
$\mathrm{N}(1)-\mathrm{Ru}-\mathrm{N}(2)$	$95 \cdot 4(1)$	$\mathrm{N}(2)-\mathrm{Ru}-\mathrm{N}\left(2^{\prime}\right)$	$88 \cdot 0(1)$
$\mathrm{N}(1)-\mathrm{Ru}-\mathrm{N}(3)$	$91 \cdot 5(1)$	$\mathrm{N}(3)-\mathrm{Ru}-\mathrm{N}\left(3^{\prime}\right)$	$91 \cdot 5(1)$
$\mathrm{O}(2)-\mathrm{Ru}-\mathrm{N}(2)$	$85 \cdot 9(1)$	$\mathrm{Ru}-\mathrm{N}(1)-\mathrm{O}(1)$	$173 \cdot 8(3)$
$\mathrm{O}(2)-\mathrm{Ru}-\mathrm{N}(3)$	$87 \cdot 2(1)$		

only significant deviation from idealized $C_{4 v}$ symmetry is the $\mathrm{Ru}-\mathrm{N}-\mathrm{O}$ angle of $173 \cdot 8(3)^{\circ}$. The equatorial NH_{3} groups are displaced $0 \cdot 12 \AA$ towards NO^{+}.

Table 8
Equations * of weighted mean planes and, in square brackets, distances (\AA) of atoms from the plane for the cation of (II)
Plane (1)
$\mathrm{Ru}, \mathrm{N}(2), \mathrm{N}\left(2^{\prime}\right), \mathrm{N}(3), \quad-0.8190 X-0.5738 Z=-1.8887$
$\mathrm{N}\left(3^{\prime}\right)$
$[\mathrm{Ru}-0.002(0), \mathrm{N}(2) 0.120(3), \mathrm{N}(3) 0.124(3)]$
Plane (2)
$\mathrm{Ru}, \mathrm{N}(1), \mathrm{N}(2), \quad 0.4232 X-0.7074 Y-0.5661 Z=-1.1958$ $\mathrm{N}\left(\mathbf{3}^{\prime}\right), \mathrm{O}(2)$
$\left[\begin{array}{cc}\mathrm{Ru} & 0(0), \mathrm{N}(1)-0.023(2), \mathrm{N}(2) \\ 0.029(3), & \mathrm{N}\left(3^{\prime}\right) \quad 0.029(3),\end{array}\right.$ $\mathrm{O}(2)-0.018(2)]$

* X, Y, and Z are orthogonal co-ordinates in \AA, related to
the crystallographic axes by: $X=a x-c \cos \beta, Y=b y$, and $Z=c \sin \beta$.

For $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{NO})\right]^{3+}$, on which no crystallographic symmetry is imposed, consideration of distances, angles, and mean planes (Tables 9 and 10) shows distortions from idealized $C_{4 v}$ symmetry to be severe, apparently in the equatorial $\mathrm{Ru}-\mathrm{N}$ distances, the angles all being acceptably close to 90°.
Unequal distances for chemically equivalent bonds have been observed before, ${ }^{24-26}$ but can be explained in terms of thermal motion, ${ }^{27}$ crystal decomposition, ${ }^{26}$ or other large systematic errors. In the present case there was no similar explanation even after examination

[^3]of all possible sources of error. However, the correlation matrix from the refinement revealed correlations up to 0.9 between the parameters of $\mathrm{N}(1)$ and $\mathrm{N}(4)$ and of $\mathrm{N}(2)$ and $\mathrm{N}(3)$. These atoms appear related by a

Table 9
Intramolecular geometry in (I)
(a) Distances (\AA)

$\mathrm{Ru}-\mathrm{N}(1)$	$1 \cdot 770(9)$	$\mathrm{Ru}-\mathrm{N}(5)$	$2 \cdot 100(8)$
$\mathrm{Ru}-\mathrm{N}(2)$	$2 \cdot 017(11)$	$\mathrm{Ru}-\mathrm{N}(6)$	$2 \cdot 093(9)$
$\mathrm{Ru}-\mathrm{N}(3)$	$2 \cdot 133(11)$	$\mathrm{N}(1)-\mathrm{O}(1)$	$1 \cdot 172(14)$
$\mathrm{Ru}-\mathrm{N}(4)$	$2 \cdot 042(11)$		
(b) Angles $\left.{ }^{\circ}{ }^{\circ}\right)$			
$\mathrm{N}(1)-\mathrm{Ru}-\mathrm{N}(2)$	$175 \cdot 4(4)$	$\mathrm{N}(2)-\mathrm{Ru}-\mathrm{N}(6)$	$86 \cdot 3(8)$
$\mathrm{N}(1)-\mathrm{Ru}-\mathrm{N}(3)$	$87 \cdot 3(4)$	$\mathrm{N}(3)-\mathrm{Ru}-\mathrm{N}(4)$	$179 \cdot 0(4)$
$\mathrm{N}(1)-\mathrm{Ru}-\mathrm{N}(4)$	$93 \cdot 3(4)$	$\mathrm{N}(3)-\mathrm{Ru}-\mathrm{N}(5)$	$86 \cdot 7(6)$
$\mathrm{N}(1)-\mathrm{Ru}-\mathrm{N}(5)$	$89 \cdot 1(6)$	$\mathrm{N}(3)-\mathrm{Ru}-\mathrm{N}(6)$	$90 \cdot 6(8)$
$\mathrm{N}(1)-\mathrm{Ru}-\mathrm{N}(6)$	$93 \cdot 2(8)$	$\mathrm{N}(4)-\mathrm{Ru}-\mathrm{N}(5)$	$92 \cdot 6(6)$
$\mathrm{N}(2)-\mathrm{Ru}-\mathrm{N}(3)$	$88 \cdot 2(4)$	$\mathrm{N}(4)-\mathrm{Ru}-\mathrm{N}(6)$	$90 \cdot 1(8)$
$\mathrm{N}(2)-\mathrm{Ru}-\mathrm{N}(4)$	$91 \cdot 2(4)$	$\mathrm{N}(5)-\mathrm{Ru}-\mathrm{N}(6)$	$176 \cdot 4(9)$
$\mathrm{N}(2)-\mathrm{Ru}-\mathrm{N}(5)$	$9 \mathrm{I} \cdot 2(6)$	$\mathrm{Ru}-\mathrm{N}(1)-\mathrm{O}(1)$	$172 \cdot 8(9)$

pseudo-mirror-plane through $\mathrm{Ru}, \mathrm{N}(5)$, and $\mathrm{N}(6)$ (see Figure 1). The correlated atoms are chemically nonequivalent, and this is presumed to be the reason for the observed variation in the equatorial distances. There

Table 10

Equations * of weighted mean planes and, in square brackets, distances (\AA) of atoms from the plane of the cation of (I)
Plane (1): Ru, N(1)-(4)
$-0.4698 X+0.0287 Y-0.8823 Z=-2.4577$
$[\operatorname{Ru} 0.000(1), \mathrm{N}(1) 0.007(9), \mathrm{N}(2) 0.008(10), \mathrm{N}(3)-0.016(12)$, $\mathrm{N}(4)-0.013(10)]$

Plane (2): Ru, N(1), N(2), N(5), N(6)
$0.6174 X+0.7065 Y-0.3458 Z=2.3320$
[Ru $0(0), \mathrm{N}(1) 0.072(9), \mathrm{N}(2) 0.081(11), \mathrm{N}(5) 0.033(21), \mathrm{N}(6)$ $0.069(32)]$

Plane (3): Ru, N(3)-(6)
$0.6367 X-0.6986 Y-0.3265 Z=-0.0060$
$[\mathrm{Ru} 0(0), \mathrm{N}(3) 0.014(11), \mathrm{N}(4) 0.012(10), \mathrm{N}(5) 0.026(21), \mathrm{N}(6)$ $0.058(32)]$

* X, Y, and Z are orthogonal co-ordinates in \AA related to the crystallographic axes by: $X=a x, Y=b y$, and $Z=c z$.
is little correlation between the parameters of $N(5)$ and $\mathrm{N}(6)$, and the distances involving these atoms are similar $[2 \cdot 100(8)$ and $2 \cdot 093(9) \AA]$ and essentially identical to those in (II) $[2 \cdot 099(3)$ and $2 \cdot 106(3) \AA]$.

Because of the high correlation the only distances in $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{NO})\right]^{3+}$ useful for comparison purposes are $\mathrm{Ru}-\mathrm{N}(5)$ and $\mathrm{Ru}-\mathrm{N}(6)$. We could not therefore test Veal and Hodgson's suggestion as to the trans-influence of NO^{+}, nor compare $\mathrm{Ru}-\mathrm{NO}$ and $\mathrm{N}-\mathrm{O}$ distances in (I) and (II). It can only be stated that ready replace-

[^4]ment of the axial- NH_{3} in $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{NO})\right]^{3+}$ does not require this distance to be longer than the equatorial distances. The replacement reactions always involve alkaline solutions, although the initial product(s) of these reactions are not always isolated. , $^{4,28-30}$ We find $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{NO})\right]^{3+}$ is essentially unaffected by acid, ${ }^{22}$ but in alkaline solution $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{NO})\right]^{3+}$ is in equilibrium with $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right]^{+} .{ }^{4}$ In the latter there is a marked lengthening of the axial- $\mathrm{NH}_{3}[2 \cdot 199(6) \AA$ vs. mean equatorial distance of $\left.2 \cdot 127(5) \AA^{18}\right]$. Hence substitution can take place via $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NO}_{2}\right]^{+}$\{alkaline solutions of $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{NO})\right]^{3+}$ irreversibly form trans$\left[\mathrm{RuOH}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{NO})\right]^{2+}($ ref. 4$\left.)\right\}$. A kinetic trans-effect of NO^{+}seems less likely because of the unreactivity of $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{NO})\right]^{3+}$ towards acids. Initial replacement of a cis $-\mathrm{NH}_{3}$ followed by isomerisation cannot be completely discounted either.

The mean $\mathrm{Ru}-\mathrm{N}(\mathrm{eq})$ distance in (II) is $\mathbf{2} \cdot \mathbf{1 0 2 _ { 5 }} \AA$, and the mean of $\mathrm{Ru}-\mathrm{N}(5)$ and $\mathrm{Ru}-\mathrm{N}(6)$ in (I) is $2 \cdot 096_{5} \AA$. These may be compared to $2 \cdot 144(5)$ in $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{I}_{2}{ }^{31}$ and mean $\mathrm{Ru}-\mathrm{N}(\mathrm{eq})$ 2.124(15) in $\left[\left\{\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right\}_{2} \mathrm{~N}_{2}\right]\left[\mathrm{BF}_{4}\right]_{2}, 2 \mathrm{H}_{2} \mathrm{O},^{32}$ and $2 \cdot 127(5) ~ \AA$ in $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{NO})_{2}\right] \mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}^{18}$ The $\mathrm{Ru}-\mathrm{N}(\mathrm{eq})$ shortening in the last-named two, when compared to that in $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{I}_{2}$, is ascribed to withdrawal of electrons from Ru^{2+} by $d_{\pi}-\pi^{*}\left(\mathrm{~N}_{2}\right.$ or $\left.\mathrm{NO}_{2}{ }^{-}\right)$bonding. ${ }^{18,32}$ Assuming electron withdrawal increases with the π-acceptor capability of the ligand, the distances determined here indicate NO^{+}to be a better π-acceptor than N_{2} or $\mathrm{NO}_{2}{ }^{-}$. This is in agreement with a recent i.r. study of $\left[\mathrm{RuCl}(\text { das })_{2}(\mathrm{AB})\right]^{n+} \quad[$ das $=o$-phenylenebisdimethylarsine, $\mathrm{AB}=\mathrm{N}_{2}, \mathrm{CO}(n=1)$, or $\left.\mathrm{NO}^{+}(n=2)\right]$, where the π-acceptor capability is: $\mathrm{NO}^{+}>\mathrm{CO}>\mathrm{N}_{2}{ }^{33}$ Further evidence for the high π-acceptor capability of NO^{+} comes from the $\mathrm{Ru}-\mathrm{NO}$ distance $[1.735(3) \AA]$ in (II), which is compared with other $\mathrm{Ru}^{\mathrm{II}-} \mathrm{N}$ multiple bonded distances in Table 11. Ru-NO distances are ca. $0 \cdot 15 \AA$

Table 11

Multiple bonded Ru-N distances (\AA) in some ruthenium complexes

${ }^{a}$ This work. ${ }^{b}$ Ref. 32. ${ }^{c}$ Ref. 26. ${ }^{d}$ Ref. 18. ${ }^{e}$ Ref. 8. f Ref. 7. $\quad g$ Ref. 11.
shorter than $\mathrm{Ru}-\mathrm{N}_{2}$ or $\mathrm{Ru}-\mathrm{NO}_{2}$, which are in turn ca. $0 \cdot 2 \AA$ shorter than the σ-bonded NH_{3} discussed earlier. Assuming the decrease in the $\mathrm{Ru}^{-} \mathrm{N}$ distance
${ }^{31}$ H. C. Stynes and J. A. Ibers, Inorg. Chem., 1971, 10, 2304.
${ }^{32}$ I. M. Treitel, M. T. Flood, R. E. Marsh, and H. B. Gray, J. Amer. Chem. Soc., 1969, 91, 6512.
${ }^{33}$ M. S. Quinby and R. D. Feltham, Inorg. Chem., 1972, 11, 2648.
to be due to π-bonding, it is clear that NO^{+}is the most effective π-bonding ligand, and N_{2} and $\mathrm{NO}_{2}{ }^{-}$are about equal, at least when bonded to $\mathrm{Ru}^{\mathrm{II}}$. Differences in the $\mathrm{Ru}-\mathrm{NO}$ distances for the nitrosyl complexes are small. Because of their different charges, and without an accurate $\mathrm{Ru}-\mathrm{NO}$ distance for $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{NO})\right]^{3+}$, it is not possible to relate the $\mathrm{Ru}-\mathrm{NO}$ distance to reactivity.
The N-O distance of $1 \cdot 159(5) \AA$ in (II) is in the range generally observed for NO^{+}in ruthenium complexes, $1 \cdot 11-1 \cdot 20 \AA .{ }^{7,8,11,14}$ It is somewhat longer than in $\mathrm{K}_{2}\left[\mathrm{RuCl}_{5} \mathrm{NO}\right] 1 \cdot 112(7),{ }^{8}\left[\mathrm{NH}_{4}\right]_{2}\left[\mathrm{RuCl}_{5} \mathrm{NO}\right] 1 \cdot 131(3),{ }^{7}$ or trans $-\mathrm{Na}_{2}\left[\mathrm{Ru}(\mathrm{OH})\left(\mathrm{NO}_{2}\right)_{4}(\mathrm{NO})\right], \mathrm{l} \cdot 127(7) \AA,{ }^{11}$ and (II) does have the lowest $v(\mathrm{NO})$ and $F(\mathrm{~N}-\mathrm{O})$ of these complexes. ${ }^{12}$ There appears to be some correlation between reactivity and $\mathrm{N}-\mathrm{O}$ bond length.
The $\mathrm{Ru}^{-} \mathrm{N}-\mathrm{O}$ angle $\left[173.8(3)^{\circ}\right]$ is reasonably close to 180° and the previous conclusion ${ }^{2}$ of a markedly bent $\mathrm{Ru}-\mathrm{N}^{-\mathrm{O}}$ moiety is not substantiated. For a $C_{4 v}$ complex there is every theoretical reason to expect a strictly linear $\mathrm{Ru}-\mathrm{N}-\mathrm{O},{ }^{34,35}$ but there is, as yet, insufficient accurate structural data for metal nitrosyls to establish whether the slight bending is significant for the bonding scheme. Certainly the angle is one of the lowest of those observed so far for NO^{+}complexes. $7,8,11,14$

From calculations involving the covalent radii of $\mathrm{Ru}^{\mathrm{II}}$ and $\mathrm{O}, \mathrm{Ru}-\mathrm{OH}$ is $1 \cdot 99-2 \cdot 10 \AA$. In (II) the
${ }_{34}$ J. H. Encmark, Inorg. Chem., 1971, 10, 1952.
${ }^{35}$ S. F. A. Kettle, Inorg. Chem., 1965, 4, 1661.
${ }^{36}$ J. E. Fergusson, J. L. Love, and W. T. Robinson, Inorg. Chem., 1972, 11, 1662.
${ }_{37}$ J. A. Stanko and S. Chaipayungpundhu, J. Amer. Chem. Soc., 1970, 92, 5580.
${ }^{38}$ G. A. Bentley, K. A. Laing, W. R. Roper, and J. M. Waters, Chem. Comm., 1970, 998.
distance $[1.961(3) \AA]$ is shorter than expected, and close to that $[1.950(2) \AA]$ in trans $-\mathrm{Na}_{2}\left[\mathrm{Ru}(\mathrm{OH})\left(\mathrm{NO}_{2}\right)_{4}(\mathrm{NO})\right],{ }^{11}$ in agreement with Veal and Hodgson's suggestion. ${ }^{7,8}$ This effect seems confined to NO^{+}. In $\left[\mathrm{Os}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{~N}_{2}\right]^{2+}$ (as noted previously ${ }^{7,8}$) all $\mathrm{Os}-\mathrm{NH}_{3}$ distances are equal. ${ }^{36}$ In $\left[\left\{\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right\}_{2} \mathrm{~N}_{2}\right]^{4+}$ the axial $\mathrm{Ru}-\mathrm{NH}_{3}$ distance is $0.02 \AA$ longer than the mean equatorial $\mathrm{Ru}-\mathrm{NH}_{3} .{ }^{32}$ In trans- $\left[\mathrm{RuCl}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{CO})\right]^{2-}$ the $\mathrm{Ru}-\mathrm{OH}_{2}$ distance may be as much as $0.09 \AA$ longer than expected. ${ }^{37}$ However, in addition to the short axial distances in $\left[\mathrm{RuCl}_{5}(\mathrm{NO})\right]^{2+}$, trans $-\left[\mathrm{Ru}(\mathrm{OH})\left(\mathrm{NH}_{3}\right)_{4} \mathrm{NO}^{2+}\right.$, and trans $-\left[\mathrm{Ru}(\mathrm{OH})\left(\mathrm{NO}_{2}\right)_{4^{-}}\right.$ (NO) $]^{2-},\left[\mathrm{OsCl}_{2}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}(\mathrm{HgCl}) \mathrm{NO}\right]$ has a trans- Cl distance of $2 \cdot 37(2) \AA$ but a cis- Cl distance of $2 \cdot 42(2) \AA$. ${ }^{38}$ There is much evidence that the π-electron acceptor capabilities of $\mathrm{NO}^{+}, \mathrm{CO}$, and N_{2} fall in the order $\mathrm{NO}^{+}>\mathrm{CO}>\mathrm{N}_{2}$, and the σ-electron donor capabilities $\mathrm{NO}^{+} \leqslant \mathrm{N}_{2}<$ CO. ${ }^{33,39-43}$ It seems that only the very powerful π-acceptor and very weak σ-donor NO^{+}produces mutually short axial distances.

I thank Dr. H. Lynton for providing the X-ray facilities and advice, Dr. W. V. F. Brooks, P. Siew, and R. Dunphy for use of their computer programmes, Johnson, Matthey, and Mallory (Montreal) for a loan of ruthenium salts, and the National Research Council of Canada and University of New Brunswick Research Fund for financial support.
[3/2112 Received, 15th October, 1973]
${ }^{39}$ K. F. Purcell, Inorg. Chim. Acta, 1969, 3, 540.
${ }^{40}$ J. Chatt, D. P. Melville, and R. L. Richards, J. Chem. Soc. (A), 1969, 2841.
${ }_{41}$ D. J. Darensbourg and C. L. Hyde, Inorg. Chem., 1971, 10, 431.
${ }_{42}$ P. K. Maples, F. Basolo, and R. G. Pearson, Inorg. Chem., 1971, 10, 765.
${ }^{43}$ G. M. Bancroft, R. E. B. Garrod, A. G. Maddiock, M. J. Mays, and B. E. Prater, J. Amer. Chem. Soc., 1972, 94, 647.

[^0]: * For details of Supplementary Publications, see Notice to Authors No. 7 in J.C.S. Dalton, 1973, Index issuc.
 ${ }^{17}$ W. H. Zachariasen, Acta Cryst., 1965, 18, 705.
 ${ }^{18}$ F. Bottomley, J.C.S. Dalton, 1972, 2148.

[^1]: ${ }^{22}$ F. Bottomley and S. G. Clarkson, unpublished results.

[^2]: ${ }^{23}$ F. Bottomley and S. C. Nyburg, Acta Cryst., 1968, B24, 1289.
 ${ }^{24}$ M. Black, R. H. B. Mais, and P. G. Owston, Acta Cryst., 1969, B25, 1753.

[^3]: ${ }^{25}$ M. A. Spinnler and L. N. Becka, J. Chem. Soc. (A), 1967, 1194.
 ${ }^{26}$ B. R. Davis and J. A. Ibers, Inorg. Chem., 1970, 9, 2768.
 ${ }^{27}$ W. R. Busing and H. A. Levy, Acta Cryst., 1964, 17, 142.

[^4]: ${ }^{28}$ A. F. Schreiner, S. W. Lin, P. J. Hauser, E. A. Hopcus, D. J. Hamm, and J. D. Gunter, Inorg. Chem., 1972, 11, 880.
 ${ }^{29}$ K. Gleu and I. Bueddecker, Z. anorg. Chem., 1952, 268, 202.
 ${ }^{30}$ N. M. Sinitsyn and O. E. Zvyagintsev, Doklady Akad. Nauk. S.S.S.R., Ser. khinı., 1962, 145, 109.

