Crystal and Molecular Structure of Tricarbonyliodotris(dimethylphenylphosphino)tungsten(II) Tetraphenylborate

By Michael G. B. Drew,* Department of Chemistry, The University, Whiteknights, Reading RG6 2AD John D. Wilkins, Donnan Laboratories, University of Liverpool, Liverpool L69 3BX

Abstract

Crystals of the title compound are triclinic, space group P1, $Z=1$, with $a=12 \cdot 216(9), b=10 \cdot 100(8), c=$ $10 \cdot 287(11) \AA, \alpha=100 \cdot 55(9), \beta=104 \cdot 87(12), \gamma=89 \cdot 31(8)^{\circ}$. The structure was solved by heavy-atom methods from 3866 independent reflections, collected by counter methods and refined to $R 0.052$. The cation is a seven-coordinate monomer; the co-ordination sphere has a (1:2:2:2) C_{s} geometry which is intermediate between the capped trigonal prism and the capped octahedron though more similar to the former. The iodine atom occupies the unique position [W-1(1) $2 \cdot 840(1) A$]. This ligand has four nearest neighbours, two carbonyl groups [$W-\mathrm{C}$ $1 \cdot 994(18), 2 \cdot 000(16) A$] and two phosphorus atoms $[W-P 2 \cdot 576(4), 2 \cdot 614(5) A]$. The third carbonyl group $[W-C 1 \cdot 933(20) A]$ and third phosphorus atom [W-P $2 \cdot 528(5) A]$ are in the remaining edge. The twisting of the phenyl rings in the anion is as expected.

THE geometry of most seven-co-ordinate complexes as determined by X-ray crystallography can be related to one of three ideal types [pentagonal bipyramid, (1:5:1), $D_{5 h}, \mathrm{~PB}$; capped trigonal prism, (1:4:2), $C_{2 v}$, CTP; capped octahedron, $\left.(\mathbf{1}: 3: 3), C_{3 v}, \mathrm{CO}\right]$. Many attempts have been made ${ }^{1-4}$ to predict the geometry of a complex of particular stoicheiometry assuming that one of these polyhedra would be found. Two of the factors thought important are (a) a correspondence of stoicheiometry with the symmetry of the polyhedron ${ }^{1}$ and (b) a require-
${ }^{1}$ D. F. Lewis and S. J. Lippard, Inorg. Chem., 1972, 11, 621.
${ }^{2}$ M. G. B. Drew and J. D. Wilkins, J.C.S. Dalton, 1973, 1830.
ment that the least-crowded sites in a particular polyhedron are occupied first by multiply-bonded atoms and second by halogen atoms in preference to other ligands. ${ }^{2,3}$ We have determined, and report here, the crystal structure of a complex $\left[\mathrm{W}(\mathrm{CO})_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3} \mathrm{I}\right]^{+} \mathrm{BPh}_{4}{ }^{-}$, where (a) and (b) conflict. The cation (I) has the stoicheiometry I:3:3 and thus one might expect its geometry to be CO with iodine in the capping position. This is sterically feasible as a large halogen atom can

[^0]occupy this unique position [cf. bromine in MoBr_{4} $\left.\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}{ }^{5}\right]$ and $\mathrm{PMe}_{2} \mathrm{Ph}$ ligands can occupy the capped face (also in ref. 5). According to (b), however, in a CO a halogen atom would occupy the least sterically crowded site, in the uncapped face, as in e.g. $\mathrm{MoBr}_{2}(\mathrm{CO})_{2}-$ (dam) ${ }_{2} \quad$ dam $=$ bis(diphenylarsino)methane $\left.{ }^{6}\right]$ and $\mathrm{MoBr}_{2}(\mathrm{CO})_{3}(\mathrm{dpe}) \quad[\mathrm{dpe}=1,2$-bis $($ diphenylphosphino)ethane $\left.{ }^{7}\right]$. These examples contain two halogens; of those structures containing one halogen, most are CTP with one halogen in the unique (and least-crowded) capping position. ${ }^{3}$

experimental

The complex was prepared by a procedure based on the method of ref. 8 . Iodine (0.23 g) in carbon tetrachloride (45 ml) was slowly added (ca. 30 min) to a solution of $W(\mathrm{CO})_{3}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}$ in carbon tetrachloride (40 ml$)$. The sticky brown solid product was dissolved in methanol (20 $\mathrm{ml})$ and a solution of sodium tetraphenylborate $(0.4 \mathrm{~g})$ in methanol (20 ml) was added. The complex $\left[\mathrm{W}(\mathrm{CO})_{3}{ }^{-}\right.$ $\left.\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]^{+} \mathrm{BPh}_{4}^{-}$was filtered off, air dried, and recrystallised from toluene-dichloromethane.

Crystal I)ata.-- $\mathrm{C}_{51} \mathrm{H}_{53} \mathrm{BIO}_{3} \mathrm{P}_{3} \mathrm{~W}, M=1127 \cdot 8$, Triclinic, $a=12 \cdot 216(9), \quad b=10 \cdot 100(8), \quad c=10 \cdot 287(11) \quad \AA, \quad \alpha=$ $100 \cdot 55(9), \beta=104 \cdot 87(12), \gamma=89 \cdot 31(8)^{\circ}, U=1204 \cdot 6 \AA^{3}$, $D_{\mathrm{m}}=1.57(3), Z=1, D_{c}=1.55, \quad F(000)=560 . \quad \mathrm{Mo}-K_{\alpha}$ radiation, $\lambda=0.7107 \AA ; \mu\left(\mathrm{Mo}-K_{\alpha}\right)=34.98 \mathrm{~cm}^{-1}$. Space group $P 1$.

A crystal with dimensions ca. $0.8 \times 0.6 \times 1.5 \mathrm{~mm}$ was mounted with the (111) planes perpendicular to the instrument axis of a General Electric XRD 5 apparatus which was used to measure diffraction intensities and cell dimensions. For the latter, 15 high-angle reflections were used in a least-squares procedure. The apparatus was equipped with a manual goniostat, scintillation counter, and pulse-height discriminator. Zirconium-filtered molybdenum X-radiation was used with the stationary-crystal-stationary-counter method, and a counting time of 10 s . Individual backgrounds were taken for those reflections which were seriously affected by the streaking of other orders. For other reflections, backgrounds were taken from plots of background as a function of 20 . Several standard reflections were monitored during the course of the experiment but no significant change in intensity was detected. 4268 Independent reflections were measured with $2 \theta<50^{\circ}$. The standard deviation $\sigma(I)$ of the reflections was taken to be $\left[I+2 E+\left(0.03 I^{2}\right)\right]^{\frac{1}{2}}$, where E is the estimated background of the reflection. 3866 Reflections with $I>3 \sigma(I)$ were used in subsequent calculations. No extinction correction was applied. An absorption correction was applied, minimum and maximum values of the transmission coefficient ranging between 0.24 and 0.36 , by use of program ABSORB. ${ }^{9}$

Structure Determination.-The tungsten atom was placed at the origin, and successive Fourier syntheses used to locate the positions of the remaining atoms. The structure was refined with tungsten and iodine anisotropic and the remaining 58 atoms isotropic by block-matrix least-squares

[^1]using just four blocks. The weighting scheme, chosen to give average values of $w \Delta^{2}$ for groups of reflections independent of the value of F_{0} and $\sin \theta / \lambda$, was $\sqrt{ } w=1$ for $F_{0}<50$ and $\sqrt{ } w=F_{0} / 50$ for $F_{0}>50$. Calculations were made on a CDC 7600 computer at the University of London Computer Centre with programs described in ref. 9, and on a 1904 S computer at Reading University. Atomic scattering factors for tungsten, iodine, phosphorus, carbon, oxygen, and boron were taken from ref. 10, as were the corrections for the real and imaginary part of the anomalous dispersion for tungsten, iodine, and phosphorus. The anisotropic temperature factor is defined as $\exp -0.25 \sum_{i} \sum_{j} h_{i} h_{j} U_{i j} b_{i} b_{j}(i, j=1,2,3)$ where b_{i} is the $i^{\text {th }}$ reciprocal lattice dimension. The isotropic thermal parameter is $\exp \left(-8 \pi^{2} U \sin ^{2} \theta / \lambda^{2}\right)$. The final R was $0 \cdot 052$. The equivalent refinement with all co-ordinates reversed gave $R 0.072$ and the present enantiomorph was considered correct. In the final cycle of refinement all shifts were $<0.080 \sigma$. Final co-ordinates and thermal parameters, together with their standard deviations are listed in Table 1. Bond distances and angles are given in Table 2. Final observed and calculated structure factors are listed in a Supplementary Publication (No. SUP 21014, 12 pp., 1 microfiche).*

DISCUSSION

The cation (I) is a discrete monomer in which the tungsten atom is bonded to an iodine atom, three carbonyl groups, and three phosphorus atoms. The (1:3:3) CO structure which corresponds to the $1: 3: 3$

Figure I The co-ordination sphere of (I), showing that the geometry can be viewed either as a CTP with I(1) in the capping position or as a CO with $\mathrm{P}(3)$ in the capping position
stoicheiometry of the cation is not found. Instead, the iodine has four nearest neighbours in the co-ordination sphere (see Figure 1), $\mathrm{P}(\mathbf{1}), \mathrm{P}(2), \mathrm{C}(1)$, and $\mathrm{C}(2)$. The co-ordination sphere has approximate C_{s} symmetry with none of the equivalent angles differing by more than 1.5°. The geometry of (I) is close to two ideal geometries, either a CTP with $\mathrm{I}(\mathbf{1})$ in the capping position (L_{cp}), $\dagger \mathrm{C}(\mathbf{1}), \mathrm{C}(2), \mathrm{P}(1), \mathrm{P}(2)$ in the capped quadrilateral face (L_{qf}) and $\mathrm{P}(3), \mathrm{C}(3)$ in the remaining edge (L_{e}), or as a CO with $\mathrm{P}(3)$ in the capping position

[^2]$\left(\mathrm{L}_{\text {cp }}\right), \mathrm{C}(1)-(3)$ in the capped face $\left(\mathrm{L}_{\mathrm{c}}\right)$, and $\mathrm{P}(1), \mathrm{P}(2)$, $\mathrm{I}(\mathbf{l})$ in the uncapped face ($\mathrm{L}_{\mathbf{u}}$).

Only the angles involving $I(1)$ differ from the mean values in a CTP by more than $2^{\circ} ; \mathrm{I}(1)-\mathrm{W}-\mathrm{L}_{\mathrm{qf}}\left[\mathrm{L}_{\mathrm{qf}}=\right.$ $\mathrm{C}(1), \mathrm{C}(2), \mathrm{P}(1), \mathrm{P}(2)]$ are $77 \cdot 8,78 \cdot 3,86 \cdot 2$, and $85 \cdot 2^{\circ}$ (mean $81 \cdot 9^{\circ}$). The $\mathrm{I}(1)-\mathrm{W}-\mathrm{L}_{\mathrm{e}}$ angles $\left[\mathrm{L}_{\mathrm{e}}=\mathrm{P}(3), \mathrm{C}(3)\right]$

Table 1
Final positional parameters $\left(\times 10^{4}\right)$ and thermal parameters $\left(\times 10^{3}\right)$, with estimated standard deviations in parentheses

Atom	x	y	z	U
W	$0000{ }^{\text {a }}$	$0000{ }^{\text {a }}$	$0000{ }^{\text {a }}$	b
I(1)	2151(1)	0569(1)	-0393(1)	b
$\mathrm{P}(1)$	-0134(4)	-2061(5)	-1932(5)	50(1)
P (2)	1148(4)	-1067(5)	2045 (5)	$53(1)$
$\mathrm{P}(3)$	-1753(4)	1305(4)	$0164(4)$	$46(1)$
C(1)	-0420(14)	0818(17)	- 1676(17)	47(4)
$\mathrm{O}(1)$	-0623(11)	1258(14)	-2652(14)	79(3)
C (2)	0521(14)	1659(17)	1422(17)	47(4)
$\mathrm{O}(2)$	0802(12)	2643(14)	$2231(15)$	$83(4)$
C(3)	- 1107(15)	-1189(18)	0290(18)	$51(4)$
$\mathrm{O}(3)$	-1751(13)	-1887(15)	0513(15)	88(4)
C(11)	0761(16)	-3469(19)	-1548(19)	56(4)
C (12)	0347(18)	-4494(22)	-1047(22)	$67(5)$
$\mathrm{C}(13)$	1118(19)	-5574(22)	-0751(23)	71 (5)
C(14)	2190(18)	-5553(22)	-0900(22)	68 (5)
$\mathrm{C}(15)$	2571(20)	-4545(24)	-1416(22)	68(5)
$\mathrm{C}(16)$	1861(18)	-3466(22)	-1712(22)	68(5)
$\mathrm{C}(18)$	0194(17)	-1758(21)	-3471(21)	64(5)
C(19)	$-1578(20)$	-2824(23)	-2636(24)	74(6)
$\mathrm{C}(21)$	1749(16)	0162(19)	3568(20)	57(4)
$\mathrm{C}(22)$	2786(21)	0801(25)	3741 (26)	80 (6)
C(23)	3241(24)	1833(30)	4867(30)	96(7)
$\mathrm{C}(24)$	2624(23)	2184(27)	5863(28)	87(7)
$\mathrm{C}(25)$	1661(20)	1613(24)	5757(24)	77(6)
C (26)	1153(20)	0592(23)	4567(23)	73(6)
$\mathrm{C}(28)$	2340(20)	-2031(23)	1763(23)	72(5)
$\mathrm{C}(29)$	0346(22)	-2280(27)	2650(27)	86(7)
C(31)	-3086(14)	0518(16)	-0980(17)	45(4)
$\mathrm{C}(32)$	-3330(17)	0586(20)	-2350(21)	$64(5)$
$\mathrm{C}(33)$	-4367(21)	-0050(25)	-3239(25)	79(6)
$\mathrm{C}(34)$	-5089(23)	-0658(27)	-2662(23)	87(7)
$\mathrm{C}(35)$	-4829(21)	-0728(26)	-1319(25)	81(6)
$\mathrm{C}(36)$	-3816(19)	-0145(21)	-0450(22)	$67(5)$
$\mathrm{C}(38)$	-1996(18)	1608(21)	1876(22)	67(5)
$\mathrm{C}(39)$	-1748(16)	2995 (19)	-0156(19)	$57(4)$
B	6011(19)	5896(23)	2801(23)	56(5)
C(51)	6209(15)	7487(18)	3042(18)	52(4)
$\mathrm{C}(52)$	5359(17)	8279(21)	2388(21)	$64(5)$
C (53)	5375(18)	9642(21)	$2617(22)$	66 (5)
$\mathrm{C}(54)$	6350(21)	10340(24)	3556(23)	76(6)
$\mathrm{C}(55)$	7204(20)	9679(24)	4227(24)	75(6)
$\mathrm{C}(56)$	7125(17)	8314(21)	3969(21)	62(5)
C (61)	7183(16)	5204(20)	3576 (20)	59(5)
C (62)	7188(21)	4342(25)	4591(26)	71(6)
C(63)	8261 (25)	3760 (28)	$5161(30)$	93(7)
C(64)	9189(25)	4049(31)	4937(30)	$99(8)$
C(65)	9256(23)	4913(27)	3978(28)	88(7)
C (66)	8222(18)	5419(21)	3289(22)	66(5)
C(71)	4976(15)	5656(18)	3425(19)	54(4)
C (72)	5068(26)	$6113(30)$	4838(29)	89(8)
$\mathrm{C}(73)$	4094(24)	5989(28)	5392(29)	92(7)
C (74)	3108(23)	5442 (28)	4581(28)	$87(7)$
C (75)	$3001(24)$	4997(29)	3154(29)	94(7)
C (76)	3881 (18)	$5060(22)$	$2645(22)$	$68(5)$
C(81)	5818(16)	5182(19)	$1162(19)$	$55(4)$
$\mathrm{C}(82)$	6060(17)	5891 (21)	0226(21)	63(5)
C (83)	5901(20)	5364(24)	-1112(24)	$75(6)$
C(84)	5429(21)	4071(25)	-1606(25)	80 (6)
C(85)	5205(21)	3285(25)	-0758(23)	$79(6)$
$\mathrm{C}(86)$	5400(18)	$3839(21)$	0674(22)	65(5)

${ }^{a}$ Parameters fixed. ${ }^{6}$ Anisotropic thermal parameters $\begin{array}{lcccccc}\left(\times 10^{4}\right): & & & & & U_{12} \\ & U_{11} & U_{22} & U_{33} & U_{12} & U_{13} & U_{23} \\ \mathrm{~W} & 407(3) & 407(3) & 382(3) & 62(2) & 97(2) & 66(2) \\ \mathrm{I}(1) & 497(7) & 643(8) & 727(9) & 42(6) & 203(6) & 182(6)\end{array}$

Table 2
Molecular dimensions, distances (\AA) and angles (${ }^{\circ}$)
(a) The cation

W-I (1)	$2 \cdot 840(1)$	W-C(1)	$1 \cdot 994(18)$
W-P(1)	$2 \cdot 576(4)$	W-C(2)	$2 \cdot 000(16)$
W-P (2)	$2 \cdot 614(5)$	W-C(3)	$1.933(20)$
W-P(3)	$2 \cdot 528(5)$		

$\mathrm{L} \cdot \cdots \mathrm{L}$ distances and $\mathrm{L}-\mathrm{W}-\mathrm{L}$ angles in the co-ordination sphere

(b) The anion
$\mathrm{B}-\mathrm{C}(n 1)$
$\mathrm{C}(n 1)-\mathrm{C}$
$\begin{array}{lllll}\mathrm{C}(n 1)-\mathrm{C}(n 2) & 1.41(3) & 1.48(4) & 1.42(3) & 1.39(3) \\ \mathrm{C}(n 2)-\mathrm{C}(n 3) & 1.35(3) & 1.46(4) & 1.46(5) & 1.35(3) \\ \mathrm{C}(n 3)-\mathrm{C}(n 4) & 1.42(3) & 1.26(5) & 1.34(4) & 1.39(3)\end{array}$
$\begin{array}{lllll}\mathrm{C}(n 3)-\mathrm{C}(n 4) & 1.42(3) & 1.26(5) & 1.34(4) & 1.39(3\end{array}$
$\begin{array}{lllll}\mathrm{C}(n 4)-\mathrm{C}(n 5) & 1.34(3) & 1.45(5) & 1.43(4) & 1.36(4) \\ \mathrm{C}(n 5)-\mathrm{C}(n 6) & 1.36(3) & 1.42(3) & 1.32(4) & 1.44(3 \\ \mathrm{C}(n 6)-\mathrm{C}(n 1) & 1.43(2) & 1.40(3) & 1.44(3) & 1.41(3\end{array}$
$\begin{array}{lclrr}\mathrm{C}(n 6)-\mathrm{C}(n 1) & 1.43(2) & 1.40(3) & 1.44(3) & 1.41(3) \\ \mathrm{C}(51)-\mathrm{B}-\mathrm{C}(61) & 109 \cdot 8(15) & \mathrm{C}(61)-\mathrm{B}-\mathrm{C}(71) & 111.7(18)\end{array}$

$\mathrm{C}(51)-\mathrm{B}-\mathrm{C}(71)$	$106 \cdot 0(16)$	$\mathrm{C}(61)-\mathrm{B}-\mathrm{C}(81)$	$103 \cdot 2(16)$
$\mathrm{C}(51)-\mathrm{B}-\mathrm{C}(81)$	$112 \cdot 0(18)$	$\mathrm{C}(71)-\mathrm{B}-\mathrm{C}(81)$	$114 \cdot 3(15)$

$\mathrm{B}-\mathrm{C}(n 1)-\mathrm{C}(n 2)$	$119 \cdot 9(15)$	$122 \cdot 3(20)$	$120 \cdot 0(18)$	$121 \cdot 1(17)$
$\mathrm{B}-\mathrm{C}(n 1)-\mathrm{C}(n 6)$	$128 \cdot 8(17)$	$121 \cdot 0(19)$	$125 \cdot 3(17)$	$121 \cdot 3(19)$
$\mathrm{C}(n 2)-\mathrm{C}(n 1)-\mathrm{C}(n 6)$	$111 \cdot 0(17)$	$116 \cdot 6(19)$	$114 \cdot 5(21)$	$117 \cdot 6(18)$
$\mathrm{C}(n 1)-\mathrm{C}(n 2)-\mathrm{C}(n 3)$	$125 \cdot 5(17)$	$116 \cdot 9(25)$	$120 \cdot 2(22)$	$123 \cdot 2(20)$
$\mathrm{C}(n 2)-\mathrm{C}(n 3)-\mathrm{C}(n 4)$	$117 \cdot 3(19)$	$124 \cdot 0(30)$	$120 \cdot 7(27)$	$119 \cdot 1(25)$
$\mathrm{C}(n 3)-\mathrm{C}(n 4)-\mathrm{C}(n 5)$	$121 \cdot 9(21)$	$122 \cdot 0(28)$	$119 \cdot 6(29)$	$121 \cdot 7(23)$
$\mathrm{C}(n 4)-\mathrm{C}(n 5)-\mathrm{C}(n 6)$	$117 \cdot 8(20)$	$116 \cdot 9(26)$	$120 \cdot 5(23)$	$119 \cdot 0(21)$
$\mathrm{C}(n 5)-\mathrm{C}(n 6)-\mathrm{C}(n 1)$	$126 \cdot 5(19)$	$123 \cdot 1(23)$	$124 \cdot 3(21)$	$119 \cdot 2(22)$

are $136 \cdot 1,152 \cdot 6$ (mean $144 \cdot 4^{\circ}$). As these deviations from a CTP are towards values which would be found in the CO,* it is clear that the (1:2:2:2) geometry

* The $\mathrm{L}_{\mathrm{at}}=\mathrm{C}(1), \mathrm{C}(2)$ angles would be $\mathrm{L}_{\mathrm{c}}-\mathrm{W}-\mathrm{L}_{\mathrm{a}}$ angles (mean $77 \cdot 7^{\circ}$) and $L_{q f}=P(1), P(2)$ angles would be $L_{c}-W-L_{c}$ angles
(mean 89.9°). Similarly $L_{e}=P(3)$ is a $L_{c p}-W-L_{u}$ angle (mean (mean 89.9°). Similarly $\mathrm{L}_{\mathrm{e}}=\mathrm{P}(3)$ is a $\mathrm{L}_{\mathrm{cp}}-\mathrm{W}-\mathrm{L}_{\mathrm{u}}$ angle (mean
with C_{s} symmetry is intermediate between the two ideal geometries.
Probable seven-co-ordinate geometries have been calculated ${ }^{11}$ for molecules of the type AB_{7} based solely upon mutual repulsion of ligands or electron pairs on the surface of a sphere, by use of the formula $E=$ $\sum_{i \neq j} r_{i j}{ }^{-n}$, where $r_{i j}$ is the distance between pairs of ligands and n is a constant. For certain values of n, C_{s} and C_{2} geometries * are found to have lower energies than the three ideal types CO, CTP, and PB. It is therefore possible that in (I) the arrangement of the seven ligands has the minimum energy considering only repulsions between pairs of ligands. An alternative explanation that the distortions from the CTP are due to some inter- or intra-molecular effect involving atoms not directly bonded to the metal is possible and will now be discussed.

The orientations of the methyl and phenyl groups around the W-P bonds are illustrated in Figure 2 and

Figure 2 The cation
the relevant dihedral angles and intramolecular distances are listed in Tables 3 and 4. $\mathrm{P}(3)$ Has three near neighbours, $C(1)-(3)$, and the three carbon atoms bonded to $P(3)$ are staggered with respect to these three carbonyl groups such that all nine dihedral angles of the type $\mathrm{C}(n)-\mathrm{W}-\mathrm{P}(3)-\mathrm{C}(3 m) \quad(n=1,2,3, m=1,8,9)$ are greater than 47°. The other two phosphorus atoms have four nearest neighbours and dihedral angles involving $\mathrm{I}(1)$ are large $\left(>40^{\circ}\right)$. The smallest dihedral angles for $\mathrm{P}(1)$ are $\mathrm{P}(2)-\mathrm{W}-\mathrm{P}(1)-\mathrm{C}(11)-12 \cdot 4$, $\mathrm{C}(1)-\mathrm{W}-\mathrm{P}(1)-\mathrm{C}(18) 29 \cdot 6$, and $\mathrm{C}(3)-\mathrm{W}-\mathrm{P}(1)-\mathrm{C}(19) 36 \cdot 1^{\circ}$ giving close contacts $\mathrm{C}(1), \mathrm{O}(1) \cdots \mathrm{C}(18) 3 \cdot 10,3 \cdot 23$ and $\mathrm{C}(3), \mathrm{O}(3) \cdots \mathrm{C}(19) 3 \cdot 07,3 \cdot 27 \AA$. The orientation of the $\mathrm{P}(1)-\mathrm{C}(11)$ bond almost in the plane of the $\mathrm{W}, \mathrm{P}(1), \mathrm{P}(2)$ atoms ensures that the orientation of groups around $P(2)$ is different, as the equivalent orientation would lead to a close $\mathrm{C}(11) \cdots \mathrm{C}(2 m)$ contact. \dagger Even so, the actual orientation around $\mathrm{P}(2)$

[^3]is surprising and may therefore be due to intramolecular forces. The three $\mathrm{P}(2)-\mathrm{C}(2 m)$ bonds are staggered with respect to $\mathrm{P}(\mathbf{1})$ and $\mathrm{I}(\mathbf{1})$ but two of them are eclipsed with respect to $\mathrm{C}(3)$ and $\mathrm{C}(2)$, thus the $\mathrm{C}(3)-\mathrm{W}-\mathrm{P}(2)-\mathrm{C}(29)$ and $\mathrm{C}(2)-\mathrm{W}-\mathrm{P}(2)-\mathrm{C}(21)$ dihedral angles are -0.8 and 0.8°, giving remarkably close contacts of $\mathrm{C}(3), \mathrm{O}(3) \cdots \mathrm{C}(29) 3 \cdot 00,2 \cdot 99$, and $\mathrm{C}(2), \mathrm{O}(2) \cdots \mathrm{C}(21)$ $2 \cdot 98,3 \cdot 15 \AA$. All three phenyl rings are planar and their orientations [Table $3(b)$] are approximately

Table 3
(a) Dihedral angles $\left({ }^{\circ}\right)$ for atoms $i-\mathrm{W}-j-k$, where the $i-\mathrm{W}-j$ angle is $<100^{\circ}$

	$m=1$	$m=8$	$m=9$
$\mathrm{C}(1)-\mathrm{W}-\mathrm{P}(1)-\mathrm{C}(1 m)$	$150 \cdot 5$	$29 \cdot 6$	$-87 \cdot 0$
$\mathrm{C}(3)-\mathrm{W}-\mathrm{P}(1)-\mathrm{C}(1 m)$	$-86 \cdot 4$	$152 \cdot 7$	$36 \cdot 1$
$\mathrm{C}(1)-\mathrm{W}-\mathrm{P}(1)-\mathrm{C}(1 m)$	$72 \cdot 2$	$-48 \cdot 7$	$-165 \cdot 3$
$\mathrm{P}(2)-\mathrm{W}-\mathrm{P}(1)-\mathrm{C}(1 m)$	$-12 \cdot 4$	$-133 \cdot 3$	$110 \cdot 1$
$\mathrm{I}(1)-\mathrm{W}-\mathrm{P}(2)-\mathrm{C}(2 m)$	$79 \cdot 8$	$-40 \cdot 2$	$160 \cdot 0$
$\mathrm{P}(1)-\mathrm{W}-\mathrm{P}(2)-\mathrm{C}(2 m)$	$165 \cdot 2$	$45 \cdot 2$	$-74 \cdot 6$
$\mathrm{C}(2)-\mathrm{W}-\mathrm{P}(2)-\mathrm{C}(2 m)$	$0 \cdot 8$	$-119 \cdot 2$	$121 \cdot 0$
$\mathrm{C}(3)-\mathrm{W}-\mathrm{P}(2)-\mathrm{C}(2 m)$	$-121 \cdot 0$	$119 \cdot 0$	$-0 \cdot 8$
$\mathrm{C}(1)-\mathrm{W}-\mathrm{P}(3)-\mathrm{C}(3 m)$	$74 \cdot 8$	$-164 \cdot 0$	$-47 \cdot 6$
$\mathrm{C}(2)-\mathrm{W}-\mathrm{P}(3)-\mathrm{C}(3 m)$	$-179 \cdot 7$	$-58 \cdot 5$	$57 \cdot 9$
$\mathrm{C}(3)-\mathrm{W}-\mathrm{P}(3)-\mathrm{C}(3 m)$	$-52 \cdot 3$	$68 \cdot 9$	$-174 \cdot 7$
(b) Other dihedral angles *			
	$n=1$	$n=2$	$n=3$
$\mathrm{C}(n 2)-\mathrm{C}(n 1)-\mathrm{P}(n)-\mathrm{C}(n 8)$	$-141 \cdot 6$	$41 \cdot 8$	$157 \cdot 8$
$\mathrm{C}(n 2)-\mathrm{C}(n 1)-\mathrm{P}(n)-\mathrm{C}(n 9)$	$-36 \cdot 9$	$147 \cdot 9$	$51 \cdot 9$
$\mathrm{C}(n 2)-\mathrm{C}(n 1)-\mathrm{P}(n)-\mathrm{W}$	$90 \cdot 0$	$-85 \cdot 2$	$-76 \cdot 3$

*The equivalent angles, with $\mathrm{C}(n 6)$ replacing $\mathrm{C}(n 2)$ differ by ca. 180° from these values.
(c) Angles between planes in the anion are: (5)-(6) $62 \cdot 0$, (5)-(7) $84 \cdot 5,(5)-(8) 64 \cdot 1,(6)-(7) 59 \cdot 5,(6)-(8) 82 \cdot 3$, and $(7)-(8)$ $53 \cdot 0^{\circ}$.

Table 4
Intramolecular distances $<3 \cdot 50 \AA$ (excluding those between atoms bonded to the same atom)

$\mathrm{P}(3) \cdots \mathrm{O}(2)$	$3 \cdot 43$	$\mathrm{C}(3) \cdots \mathrm{C}(38)$	$3 \cdot 31$
$\mathrm{P}(3) \cdots \mathrm{O}(3)$	$3 \cdot 31$	$\mathrm{O}(3) \cdots \mathrm{C}(19)$	$3 \cdot 27$
$\mathrm{C}(1) \cdots \mathrm{C}(18)$	$3 \cdot 10$	$\mathrm{O}(3) \cdots \mathrm{C}(29)$	$2 \cdot 99$
$\mathrm{C}(1) \cdots \mathrm{C}(32)$	$3 \cdot 44$	$\mathrm{O}(3) \cdots \mathrm{C}(31)$	$3 \cdot 30$
$\mathrm{C}(1) \cdots \mathrm{C}(39)$	$3 \cdot 14$	$\mathrm{O}(3) \cdots \mathrm{C}(36)$	$3 \cdot 11$
$\mathrm{O}(1) \cdots \mathrm{C}(18)$	$3 \cdot 23$	$\mathrm{C}(51) \cdots \mathrm{C}(82)$	$3 \cdot 01$
$\mathrm{O}(1) \cdots \mathrm{C}(32)$	$3 \cdot 49$	$\mathrm{C}(51) \cdots \mathrm{C}(66)$	$3 \cdot 20$
$\mathrm{O}(1) \cdots \mathrm{C}(39)$	$3 \cdot 41$	$\mathrm{C}(51) \cdots \mathrm{C}(72)$	$3 \cdot 10$
$\mathrm{C}(2) \cdots \mathrm{C}(21)$	$2 \cdot 98$	$\mathrm{C}(81) \cdots \mathrm{C}(52)$	$3 \cdot 25$
$\mathrm{C}(2) \cdots \mathrm{C}(22)$	$3 \cdot 38$	$\mathrm{C}(81) \cdots \mathrm{C}(66)$	$3 \cdot 16$
$\mathrm{C}(2) \cdots \mathrm{C}(26)$	$3 \cdot 49$	$\mathrm{C}(81) \cdots \mathrm{C}(76)$	$3 \cdot 14$
$\mathrm{C}(2) \cdots \mathrm{C}(38)$	$3 \cdot 23$	$\mathrm{C}(61) \cdots \mathrm{C}(56)$	$3 \cdot 10$
$\mathrm{C}(2) \cdots \mathrm{C}(39)$	$3 \cdot 24$	$\mathrm{C}(61) \cdots \mathrm{C}(86)$	$3 \cdot 29$
$\mathrm{O}(2) \cdots \mathrm{C}(21)$	$3 \cdot 15$	$\mathrm{C}(61) \cdots \mathrm{C}(72)$	$3 \cdot 23$
$\mathrm{O}(2) \cdots \mathrm{C}(22)$	$3 \cdot 28$	$\mathrm{C}(71) \cdots \mathrm{C}(52)$	$3 \cdot 11$
$\mathrm{O}(2) \cdots \mathrm{C}(26)$	$3 \cdot 40$	$\mathrm{C}(71) \cdots \mathrm{C}(86)$	$3 \cdot 24$
$\mathrm{O}(2) \cdots \mathrm{C}(38)$	$3 \cdot 50$	$\mathrm{C}(71) \cdots \mathrm{C}(62)$	$3 \cdot 06$
$\mathrm{C}(3) \cdots \mathrm{C}(19)$	$3 \cdot 07$	$\mathrm{C}(52) \cdots \mathrm{C}(82)$	$3 \cdot 23$
$\mathrm{C}(3) \cdots \mathrm{C}(29)$	$3 \cdot 00$	$\mathrm{C}(56) \cdots \mathrm{C}(66)$	$3 \cdot 24$
$\mathrm{C}(3) \cdots \mathrm{C}(31)$	$3 \cdot 10$	$\mathrm{C}(62) \cdots \mathrm{C}(72)$	$3 \cdot 17$
$\mathrm{C}(3) \cdots \mathrm{C}(36)$	$3 \cdot 40$		

perpendicular to the respective $\mathrm{W}-\mathrm{P}$ bond. Intramolecular distances involving ring atoms, other than $\mathrm{C}(n 1)$, are $>3.38 \AA$.

None of these close contacts can be directly related to the preference for C_{s} rather than $C_{2 v}$ symmetry for (I). There is no evidence that intermolecular forces are

[^4] 488.
responsible and so we conclude that mutual repulsions between the seven atoms bonded to the metal are responsible for the (1:2:2:2) geometry. In $\left[\mathrm{W}(\mathrm{CO})_{4}(\text { diars }) \mathrm{I}\right]^{+12}(\mathrm{II})$, a CTP with iodine in the capping position, and two arsenic atoms and two carbonyl groups in the capped quadrilateral face, the $\mathrm{I}-\mathrm{W}-\mathrm{L}_{\mathrm{q} i}$ angles are $81 \cdot 3(\mathrm{l})$ for $\mathrm{L}_{\mathrm{qf}}=$ As and $79 \cdot 8(7)$ for $\mathrm{L}_{\mathrm{gi}}=\mathrm{C}$, values which compare well with those found in more symmetrical cations. ${ }^{1,3}$ This difference in geometry between (I) and (II) could be due to three factors: the difference in ligand-ligand repulsions; the carbon atoms in (I) being ca. $0 \cdot 2 \AA$ closer to the metal because

Figure 3 The anion
of the smaller radius of phosphorus compared with arsenic; and in the bidentate diars in (II) the methyl groups can be kept well away from the iodine., ${ }^{3,12}$ Whatever the reason both (I) and (II) have similar minimum $\mathrm{I} \cdot \mathrm{C}$ contacts of $3 \cdot 70 \AA$ despite the differences in $\mathrm{I}-\mathrm{W}-\mathrm{L}_{\mathrm{qf}}$ angles.

The W-P(1) bond $[2.576(4) \AA]$ is significantly shorter than $\mathrm{W}-\mathrm{P}(2)[2 \cdot 614(5) \AA]$ and this must reflect the greater steric crowding for $P(2)$. Both are much longer than $\mathrm{W}-\mathrm{P}(3)[2.528(5) \AA]$ because they are both trans to $\mathrm{W}-\mathrm{CO}$ bonds. Similar variations are discussed in ref. 7. The three carbonyl bond lengths in (I) are also different, $\mathrm{W}-\mathrm{C}(1)$ and $\mathrm{W}-\mathrm{C}(2)[1.994(18)$ and $2 \cdot 000(16) \AA]$ being longer than $W-C(3)[1.933(20) \AA]$. A similar difference of ca. $0 \cdot 06 \AA$ is also quoted in refs. 1 and 12. The $\mathrm{W}-\mathrm{I}(1)$ bond length $[2 \cdot 840(1) \AA]$ is equivalent to that found for $\mathrm{Mo}-\mathrm{I}$ in $\left[\mathrm{Mo}(\mathrm{CNR})_{6} \mathrm{I}\right]^{+}$ ($\mathrm{R}=\mathrm{t}$-butyl) which is equal to the sum of atomic radii. ${ }^{1}$

The angles in the capped quadrilateral face of (I) are remarkably symmetric in that while $\mathrm{P}(1)-\mathrm{W}-\mathrm{P}(2)$ is 98.4°, reasonable enough given the bulkiness of the two ligands, the $\mathrm{C}(1)-\mathrm{W}-\mathrm{C}(2)$ angle on the opposite edge of the face is 99.9°. In (II) the same symmetric arrangement in the face is found with $\mathrm{C}-\mathrm{W}-\mathrm{C} 80.8^{\circ}$ opposite to a bidentate diars ligand with $\mathrm{As}^{-} \mathrm{W}-\mathrm{As} 77.8^{\circ}$. In both structures (and in those in refs. 1 and 3) the sniallest bites in the capped quadrilateral face are parallel to the $L_{e} \cdots L_{e}$ edge.
In the cation, the mean $\mathrm{P}-\mathrm{C}$ bond length is $1.82 \AA$. The phenyl ring dimensions are as expected. In the anion the mean $\mathrm{B}-\mathrm{C}$ bond length is $1 \cdot 63 \AA$. The relative orientations of the rings, which are all planar are shown in Figure 3. Angles between pairs of ring planes in this anion ${ }^{13}$ are usually very similar, independent of cation and packing. For the present anion, the mean angle between planes is $67 \cdot 6^{\circ}$ with mean deviations of $10 \cdot 6^{\circ}$.

Table 5
Intermolecular contacts $<3.75 \AA$

$\bigcirc(2) \cdots \mathrm{C}(75)$	3.43	$\mathrm{C}(85) \cdots \mathrm{C}\left(32^{\text {IV }}\right)$	$3 \cdot 61$
$\mathrm{C}(74) \cdots \mathrm{C}(23)$	$3 \cdot 71$	$\mathrm{C}(85) \cdots \mathrm{C}\left(36^{\text {IV }}\right)$	$3 \cdot 69$
$\mathrm{C}(55) \cdots \mathrm{O}(1)^{\prime}$	$3 \cdot 71$	$\mathrm{C}(63) \cdots \mathrm{C}\left(38^{\text {IV }}\right.$)	$3 \cdot 61$
$\mathrm{C}(62) \cdots \mathrm{C}(191)$	$3 \cdot 67$	$\mathrm{C}(64) \cdots \mathrm{C}\left(38^{\text {IV }}\right.$)	$3 \cdot 6 \mathrm{i}$
$\mathrm{C}(63) \cdots \mathrm{C}(19 \mathrm{I})$	$3 \cdot 74$	$\mathrm{C}(84) \cdots \mathrm{C}(39 \mathrm{IV})$	$3 \cdot 63$
$\mathrm{C}(55) \cdots \mathrm{C}(32 \mathrm{I})$	$3 \cdot 69$	$\mathrm{C}(85) \cdots \mathrm{C}\left(39^{\text {IV }}\right)$	$3 \cdot 63$
$\mathrm{C}(54) \cdots \mathrm{C}\left(33^{\mathrm{I}}\right)$	$3 \cdot 71$	$\mathrm{C}(76) \cdots \mathrm{C}\left(14^{\mathrm{v}}\right)$	$3 \cdot 64$
$\mathrm{C}(55) \cdots \mathrm{C}\left(33^{\mathrm{I}}\right)$	$3 \cdot 58$	$\mathrm{C}(53) \cdots \mathrm{C}\left(22^{\mathrm{v}}\right)$	$3 \cdot 74$
$\mathrm{C}(73) \cdots \mathrm{C}\left(34{ }^{\text {I }}\right.$)	$3 \cdot 61$	$\mathrm{C}(52) \cdots \mathrm{C}\left(28^{\mathrm{v}}\right)$	$3 \cdot 58$
$\mathrm{C}(82) \cdots \mathrm{O}\left(3^{\text {II }}\right)$	$3 \cdot 43$	$\mathrm{C}(75) \cdots \mathrm{C}\left(28^{\mathrm{V}}\right)$	$3 \cdot 55$
$\mathrm{C}(53) \cdots \mathrm{C}\left(36{ }^{\text {II }}\right)$	$3 \cdot 58$	$\mathrm{C}(76) \cdots \mathrm{C}\left(28^{\mathrm{v}}\right)$	$3 \cdot 60$
$\mathrm{C}(54) \cdots \mathrm{C}\left(38{ }^{\text {II }}\right)$	$3 \cdot 37$	$\mathrm{C}(25) \cdots \mathrm{O}\left(1^{\text {VI }}\right)$	$3 \cdot 63$
C(55) \cdots C(381I)	$3 \cdot 68$		
$\mathrm{C}(63) \cdots \mathrm{O}\left(\mathrm{I}^{\text {III }}\right)$	$3 \cdot 71$		
$\mathrm{C}(65) \cdots \mathrm{O}\left(2^{\mathbf{I V}}\right)$	$3 \cdot 49$		
$\mathrm{C}(85) \cdots \mathrm{C}(31 \mathrm{~V})$	3.48		

Roman numeral superscripts refer to atoms in the following equivalent positions, relative to the reference molecule (Table 1) at x, y, z :

$$
\begin{array}{ll}
\text { I } 1+x, 1+y, 1+z & \text { IV } 1+x, y, z \\
\text { II } 1+x, 1+y, z & \text { VI } x, 1+y, z \\
\text { III } 1+x, y, 1+z & \text { VI } x, y, 1+z
\end{array}
$$

values which fit in well with both calculated and observed values. ${ }^{13}$

Intermolecular contacts are shown in Table 5 and the large number $<3.75 \AA$ suggests that the molecules are packing particularly effectively in space group $P 1$.

We thank A. W. Johans for his assistance with the crystallographic investigations.
[4/029 Reccived, 7th January, 1974]

[^5]
[^0]: ${ }^{3}$ M. G. B. Drew and J. D. Wilkins, J.C.S. Dalton, 1973, 2664.
 ${ }^{4}$ R. B. VanDreele, J. J. Stezowski, and R. C. Fay, J. Amer. Chem. Soc., 1971, 93, 2887.

[^1]: * For details, see notice to authors No. 7 in J.C.S. Dalton, 1973, Index issue.
 \dagger The symbols in parentheses following the description of each site represent a ligand occupying such a site.
 ${ }^{5}$ M. G. B. Drew, J. D. Wilkins, and A. P. Wolters, J.C.S. Chem. Comm., 1972, 1278.

[^2]: ${ }^{6}$ M. G. B. Drew, J.C.S. Dalton, 1972, 626.
 ${ }^{7}$ M. G. B. Drew, J.C.S. Dalton, 1972, 1329.
 ${ }^{8}$ J. R. Moss and B. L. Shaw, J. Chem. Soc. (A), 1970, 595.

 - 'X.Ray '67,' system of programs, J. M. Stewart, University of Maryland Technical Report TR 67 58, 1967, revised July 1970.
 ${ }^{10}$ ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1965.

[^3]: * Just as the present C_{s} structure is derived from the CTP by moving two adjacent $\mathrm{L}_{\text {qi }}$ (phosphorus) atoms from the capping atom, so a C_{2} geometry is derived from the CTP by moving mutually trans- $\mathrm{L}_{\mathrm{q} t}$ atoms away from the capping atom.
 \dagger This is only true because the $\mathrm{PMe}_{2} \mathrm{Ph}$ ligands are unidentate. When a bidentate ligand occupies adjacent sites, such repulsions are more easily minimised. An example would be diars [o phenylenebis(dimethylarsine)] in refs. 3 and 13.

[^4]: ${ }^{11}$ H. B. Thompson and L. S. Bartell, Inorg. Chem., 1968, 7,

[^5]: 12 M. G. B. Drew and J. D. Wilkins, J. Organometallic Chem., 1974, 69, 271.
 ${ }^{13}$ M. DiVaira and A. B. Orlandini, J.C.S. Dalton, 1972, 1704.

