Structural Studies in Main-group Chemistry. Part VI. ${ }^{1}$ Crystal and Molecular Structure of 2,2'-Bipyridyldichlorodiphenyltin

By Philip G. Harrison,* Trevor J. King, and John A. Richards, Department of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD

Abstract

The crystal structure of the title compound has been determined by single-crystal X-ray diffraction. Crystals are monoclinic, space group $P 2_{1} / n$, with $Z=4$ in each unit cell of dimensions $a=9.5208(24), b=13 \cdot 1583(36)$. $c=16.5437(40) \AA, \beta=93.600(17)^{\circ}$. The structure was solved by the heavy-atom method and refined by fullmatrix least-squares methods to $R 0.049$ for 1896 independent reflections. The tin atoms are octahedrally coordinated by a bidentate $2,2^{\prime}$-bipyridyl residue, two cis-chlorine atoms, and two phenyl groups which are mutually trans. The two tin-carbon bond distances are identical [mean $r(\mathrm{Sn}-\mathrm{C}) 2.152 \AA$], as are the two tin-chlorine bond distances [mean $r(\mathrm{Sn}-\mathrm{Cl}) 2.509 \AA$]. The bipyridyl group is not planar, one $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$ ring being twisted 4.2° with respect to the other, with the two $\mathrm{Sn}-\mathrm{N}$ distances unequal (2.344 and $2.375 \AA$). The bond angles subtended at tin by adjacent ligands all fall in the range $85 \cdot 5-95 \cdot 6^{\circ}$. The two phenyl groups are not exactly trans ($\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ 173.5°), and are not equivalent. The plane of one phenyl group almost exactly bisects the $\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl}$ and $\mathrm{N}-\mathrm{Sn}-\mathrm{N}$ bond angles, whilst the other is rotated 79.5° with respect to the first.

THE stereochemistry adopted by five- and six-coordinate (organo)tin complexes and complex ions has been the subject of much investigation. In the absence of unequivocal structural data for the solid state from X-ray diffraction studies, it has been the usual convention to infer the stereochemistry from the application of spectroscopic techniques such as far i.r., Raman, Sn-119m Mössbauer, n.m.r., and dipolemoment studies. The combinations of far-i.r. and Raman data with activity predicted by group theoretical calculations, and the magnitude of the Mössbauer quadrupole splitting with the rather naïve (but surprisingly effective) point-charge calculation have been employed with apparent success. We have previously ${ }^{2}$ applied the former method to species such as $\mathrm{Me}_{3} \mathrm{SnX} \mathrm{X}_{2}{ }^{-}$ (I), $\mathrm{Me}_{2} \mathrm{SnX}_{3}{ }^{-}$(II), and $\mathrm{Me}_{2} \mathrm{SnX}_{4}{ }^{2-}$ (III; $\mathrm{X}=\mathrm{Cl}$, Br , or I) and found the far-i.r. data to be consistent with the X-ray diffraction determined structures for the two five-co-ordinated species. ${ }^{3,4}$ The stereochemistry of six-co-ordinate diorganotin species is intriguing, and depends on the nature (both steric and electronic) of the groups attached to tin. Here the value of the Mössbauer quadrupole splitting, Δ, can be a guide as to the disposition of the two organic groups about tin. Point-charge calculations show that for the two isomers, cis- and trans-SnX ${ }_{2} \mathrm{Y}_{4}, \Delta_{\text {trans }}$ is $2 \Delta_{\text {cis }}$. By use of this criterion, Fitzsimmons et al. ${ }^{5}$ have postulated the transstructure for the bipyridyl and phenanthroline complexes of the diorganotin dihalides and the complex anions $\mathrm{R}_{2} \mathrm{SnCl}_{4}{ }^{2-}(\mathrm{R}=\mathrm{Me}$ or Ph$)$ and the cis-configuration for diorganotin bis(oxinates). With some electronegative substituents, however, the stereochemistry adopted is dependent on the organic group attached to tin. Thus, whilst the bipyridyl and phenanthroline adducts of dialkyltin di-isothiocyanates and dialkyltin bis(oxinates) and bis(acetylacetonates) exhibit large

[^0]quadrupole splittings (ca. $4 \mathrm{~mm} \mathrm{~s}^{-1}$) and hence appear to possess the trans-configuration, the corresponding diphenyltin derivatives have only small quadrupole splittings (ca. $2 \mathrm{~mm} \mathrm{~s}^{-1}$) characteristic of cis-geometry. Available structural data illustrate that a simple division into cis- and trans-geometries is far from an adequate representation of reality. Both dimethyltin dichloride $\left(\Delta 3.55 \mathrm{~mm} \mathrm{~s}^{-1}\right)^{6}$ and dimethyltin bis(dimethyldithiocarbamate) [$\Delta 3 \cdot 14 \mathrm{~mm} \mathrm{~s}$-1 for $\mathrm{Me}_{2} \mathrm{Sn}-$ $\left.\left(\mathrm{S}_{2} \mathrm{CNEt}_{2}\right)_{2}\right]^{7}$ have structures which in the solid phase are best described as intermediate between tetrahedral and octahedral, the $\mathrm{Me}-\mathrm{Sn}-\mathrm{Me}$ bond angles being only 123.5 (ref. 6) and 136° (ref. 8) respectively.

A problem of equal magnitude is the rationalisation of known stereochemistry. This is exemplified by the two closely related systems $\mathrm{Me}_{2} \mathrm{SnCl}_{2}, \mathrm{~L}_{2}(\mathrm{~L}=$ dimethyl sulphoxide or pyridine N-oxide). Whilst both have a trans-arrangement of methyl groups, the former possesses cis chlorine atoms and sulphoxide groups but the latter has the totally trans-configuration.

In order to gain insight into the factors controlling the structure and bonding involved, we are determining the crystal structures of a series of model compounds. We now report the X-ray crystal structure of the bipyridyl complex of diphenyltin dichloride, $\mathrm{Ph}_{2} \mathrm{SnCl}_{2}{ }^{-}$ $\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)$.

EXPERIMENTAL

Crystals of $\mathrm{Ph}_{2} \mathrm{SnCl}_{2}$ (bipy) suitable for intensity measurements were prepared by addition of a benzene solution of 2,2-bipyridyl to a benzene solution of diphenyltin dichloride, and were recrystallized from hot benzene. A crystal was mounted directly on a fine glass fibre, and was used for both cell data and subsequent intensity measurements.

Crystal Data.- $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{Sn}, \quad M=500 \cdot 00, \quad a=$ $9.5208(24), \quad b=13 \cdot 1583(36), \quad c=16.5437(40) \quad \AA, \quad \beta=$ $93.600(17)^{\circ}, \quad U=2068 \cdot 46 \quad \AA^{3}, \quad Z=4, \quad F(000)=992$.
${ }^{5}$ R. V. Parish and R. H. Platt, Inovg. Chim. Acta, 1970, 4, 65; B. W. Fitzsimmons, N. J. Seeley, and A. W. Smith, J. Chem. Soc. (A), 1969, 143.
σ_{6} A. G. Davies, H. J. Milledge, D. C. Puxley, and P. J. Smith, J. Chem. Soc. (A), 1970, 2862.
${ }_{7}$ B. W. Fitzsimmons, A. A. Owusu, N. J. Seeley, and A. W. Smith, J. Chem. Soc. (A), 1970, 935.
${ }^{8}$ T. Kimura, N. Yasuoka, N. Kasai, and M. Kakudo, Bull. Chem. Soc. Japan, 1972, 45, 1649.

Space group $P 2_{1} / n$ by systematic absences ($h 0 l$ for $h+l=$ $2 n+1$ and $0 k 0$ for $k=2 n+1$).

The space group and initial cell parameters were determined from zero- and first-layer Weissenberg photographs obtained on an equi-inclination Weissenberg camera. The cell parameters were further refined and relative intensities were collected with Mo- K_{α} radiation on a Hilger and Watts single-crystal computer-controlled four-circle diffractometer Y 290 . A crystal of cross-section ca. $0.4 \times 0.5 \mathrm{~mm}$ was used for the collection of intensity data up to $\theta 29 \cdot 4^{\circ}$. Each reflection was counted for 30 s and the associated two background counts for 10 s . The reflections were brought to the same relative intensities by reference re-
to 0.070 and a further four cycles of block-diagonal anisotropic and four cycles of full-matrix anisotropic leastsquares refinement further reduced it to 0.052 . A weighting scheme: $w=1 /\left[1+\left(F_{0}-30\right) / 23 \cdot 3\right]^{2}$, was applied, and subsequently the 245 reflections with $F_{\mathrm{c}}<1 / 4 F_{0}$ were omitted from the least-squares total. The positions of the hydrogen atoms could not satisfactorily be determined from a difference map, and although it was possible to estimate their positions, they were not introduced. Refinement was terminated after a further 6 cycles of full-matrix anisotropic least-squares, when the shifts were <0.35 for the positional parameters and $\mu_{i j}$. The final value of R was 0.049 and $R^{\prime}\left[=\Sigma w \Delta^{2} / \Sigma w F_{0}{ }^{2}\right] 0 \cdot 0068$.

Table 1
Atomic co-ordinates and thermal parameters $\left(\times 10^{3}\right)$, with estimated standard deviations in parentheses

Atom	x / a	y / b	z / c	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\mathrm{C}(1)$	$0 \cdot 1142(8)$	$0 \cdot 2540(7)$	0.0293(4)	$59(5)$	67(5)	37(4)	3(4)	-6(3)	5(4)
$\mathrm{C}(2)$	$0 \cdot 1256(9)$	$0 \cdot 3570$ (8)	$0 \cdot 0089$ (6)	$62(5)$	80(7)	70 (6)	$5(5)$	0(4)	$23(5)$
$\mathrm{C}(3)$	$0 \cdot 1335(10)$	$0 \cdot 3862(9)$	$-0.0718(7)$	$69(6)$	94(7)	83(7)	7(5)	$-7(5)$	$33(6)$
$\mathrm{C}(4)$	$0 \cdot 1304(11)$	$0 \cdot 3087(11)$	-0.1327(7)	82(7)	132(11)	66(6)	$-7(7)$	-16)5)	25(7)
$\mathrm{C}(5)$	$0 \cdot 1187(12)$	$0 \cdot 2093(11)$	-0.1122(6)	$99(7)$	127(10)	50(5)	$-13(8)$	-12(5)	1(7)
$\mathrm{C}(6)$	$0 \cdot 1090(10)$	$0 \cdot 1811(8)$	$-0.0305(5)$	$83(6)$	$99(8)$	$50(5)$	$-11(5)$	$-3(4)$	$-7(5)$
C(7)	$0 \cdot 1222(8)$	$0 \cdot 1714(6)$	$0 \cdot 2808(5)$	50(4)	$55(4)$	$52(4)$	$-3(3)$	$5(3)$	2(4)
$\mathrm{C}(8)$	$0.0014(9)$	$0 \cdot 1798(7)$	$0 \cdot 3264(5)$	$73(6)$	$62(5)$	$58(5)$	$-5(4)$	$20(4)$	1 (4)
$\mathrm{C}(9)$	$0 \cdot 0080(11)$	$0 \cdot 1559(8)$	$0 \cdot 4077(6)$	105(8)	$72(6)$	$60(5)$	$-8(6)$	$6(5)$	$-8(5)$
$\mathrm{C}(10)$	$0 \cdot 1345(11)$	$0.1231(8)$	$0 \cdot 4460$ (6)	93(7)	77(6)	63(6)	$-9(6)$	$9(5)$	4(5)
C(11)	$0 \cdot 2516(10)$	$0 \cdot 1141$ (6)	$0 \cdot 4008(5)$	90(6)	53(5)	$58(5)$	$-3(5)$	$2(4)$	$-1(4)$
C(12)	$0 \cdot 2447(9)$	$0 \cdot 1391(6)$	$0 \cdot 3200(4)$	70 (5)	$52(5)$	47(4)	$-2(4)$	$-1(4)$	$3(4)$
C(13)	$0 \cdot 3652(9)$	$0 \cdot 3702(6)$	$0 \cdot 1919(4)$	71 (5)	$51(4)$	$53(4)$	$-1(4)$	$-3(4)$	4(4)
$\mathrm{C}(14)$	$0 \cdot 4990$ (9)	$0 \cdot 4120$ (7)	$0 \cdot 1939(5)$	61 (5)	69(6)	$58(5)$	-4(4)	$-4(4)$	$3(4)$
$\mathrm{C}(15)$	$0 \cdot 6074(10)$	$0 \cdot 3492(8)$	$0 \cdot 1695$ (5)	70 (6)	75 (6)	68(6)	-16 (5)	$-12(5)$	$23(5)$
C(16)	$0.5802(8)$	$0 \cdot 2507(7)$	$0 \cdot 1464$ (5)	54(5)	$64(5)$	72 (6)	$3(4)$	$5(4)$	$11(4)$
$\mathrm{C}(17)$	$0 \cdot 4431(7)$	0.2133(6)	$0 \cdot 1479(4)$	48(3)	55(4)	34(3)	$9(4)$	1 (3)	4(4)
C(18)	$0 \cdot 4058(8)$	$0 \cdot 1066$ (6)	$0 \cdot 1273$ (4)	59(4)	52(4)	39(4)	4(4)	$3(3)$	6(3)
$\mathrm{C}(19)$	0.5071 (9)	0.0329 (7)	$0 \cdot 1122(5)$	71 (5)	61 (6)	66(5)	$22(4)$	$12(4)$	0 (4)
$\mathrm{C}(20)$	$0 \cdot 4637(10)$	$-0.0637(7)$	$0 \cdot 0956(5)$	87(6)	61 (6)	$71(6)$	14(5)	21 (5)	$3(5)$
$\mathrm{C}(21)$	$0 \cdot 3219(10)$	-0.0897(6)	$0 \cdot 0948(5)$	$93(6)$	56(5)	$56(5)$	9 (4)	12(4)	-5(4)
$\mathrm{C}(22)$	$0 \cdot 2267(10)$	$-0.0150(6)$	$0 \cdot 1128(5)$	87(6)	$52(5)$	$56(5)$	11 (4)	$-2(4)$	1(4)
$\mathrm{N}(1)$	$0 \cdot 3373(6)$	$0.2726(4)$	$0 \cdot 1695(3)$	50(3)	40(4)	45(3)	$-1(3)$	0 (2)	$-3(3)$
N(2)	$0 \cdot 2687(6)$	$0 \cdot 0815(4)$	$0 \cdot 1291$ (4)	62(4)	36(3)	$50(3)$	5(3)	$-1(3)$	-6(3)
$\mathrm{Cl}(1)$	-0.1005(2)	$0.0957(2)$	$0 \cdot 1260(1)$	$52(1)$	$65(1)$	88(1)	-7(1)	-6(1)	-7(1)
$\mathrm{Cl}(2)$	-0.0074(2)	0.3777(2)	$0 \cdot 1891$ (1)	70(1)	57(1)	72(1)	18(1)	6 (1)	$-1(1)$
Sn	$0 \cdot 10536(5)$	$0 \cdot 21238(4)$	$0 \cdot 15459(3)$	49•7(2)	$52 \cdot 0(2)$	$51 \cdot 9(2)$	$2 \cdot 4(3)$	$-2 \cdot 1(1)$	$-0.9(3)$

flections taken for every hundred reflections recorded, the diffractometer being referenced every two hundred reflections recorded. The background counts were low and were included in the usual manner; intensities varied from 1 to 270,000 . Of 3500 intensities, those with a corrected count $I<3 \sigma(I)$ were considered unobserved and were not further used, reducing the total number of reflections to 2380 . These reflections were further reduced to 2141 by eliminating the lower intensity reflections, to enable adequate computer storage for refinement. The intensities were corrected for Lorentz and polarization effects, but not for absorption correction. An approximate absolute scale factor was determined by inspection of the data.

Structure Determination and Refinement.--The positional parameters of the tin atom in the asymmetric unit were obtained from a Patterson synthesis, and were used to phase the initial structure-factor calculation. A Fourier synthesis established the positions of the remaining nonlyydrogen atoms of the asymmetric unit, which complied with the chemically expected model. Four cycles of isotropic block-diagonal refinement reduced R from 0.749

* Sec Notice to Authors No. 7 in J.C.S. Dalton, 1973, Index issuc.

Scattering factors (which were not modified) used in the refinement were those for neutral atoms. ${ }^{9}$

Positional and thermal parameters are listed in Table 1, bond distances and angles in Table 2. Final observed and calculated structure factors are listed in Supplementary Publication No. SUP 21044 (11 pp., 1 microfiche).*

discussion

As can be seen from the Figure, the molecule contains octahedrally co-ordinated tin with trans-phenyl groups, as expected from the magnitude of the quadrupole splitting ($\Delta 3.90 \mathrm{~mm} \mathrm{~s}^{-1}$). ${ }^{5}$ The geometry is not ideally octahedral, the $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ bond angle being only $173 \cdot 5^{\circ}$, and the $\mathrm{C}-\mathrm{Sn}-\mathrm{N}$ and $\mathrm{C}-\mathrm{Sn}-\mathrm{Cl}$ angles all falling in the range $85 \cdot 5-92 \cdot 9^{\circ}$. The two $\mathrm{Sn}-\mathrm{C}$ bond lengths are equal $(2 \cdot 152 \AA)$. Since this is the first $\mathrm{Sn}-\mathrm{C}(\mathrm{Ph})$ bond distance measured for a six-co-ordinate species, no comparative values are available. The present values are in general larger than those obtained previously for four-co-ordinate compounds, and are of the same

9 ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.

Table 2
Intramolecular distances and angles with estimated standard deviations in parentheses
(a) Distances (\AA)

Sn -C(1)	$2 \cdot 151(7)$	$\mathrm{C}(11)-\mathrm{C}(12)$	1-37(1)
$\mathrm{Sn}-\mathrm{C}(7)$	$2 \cdot 153(8)$	$\mathrm{C}(12)-\mathrm{C}(7)$	1-37(1)
$\mathrm{Sn}-\mathrm{N}(1)$	$2 \cdot 344$ (6)	$\mathrm{N}(1)-\mathrm{C}(13)$	$1 \cdot 36(1)$
$\mathrm{Sn}-\mathrm{N}(2)$	$2 \cdot 375$ (6)	$\mathrm{N}(1)-\mathrm{C}(17)$	$1 \cdot 34(1)$
$\mathrm{Sn}-\mathrm{Cl}(1)$	$2 \cdot 511(2)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1 \cdot 39(1)$
$\mathrm{Sn}-\mathrm{Cl}(2)$	$2 \cdot 508(2)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1 \cdot 40$ (1)
C(1)-C(2)	1-40(1)	$\mathrm{C}(15)-\mathrm{C}(16)$	1-37(1)
$\mathrm{C}(2)-\mathrm{C}(3)$	1-40(1)	$\mathrm{C}(16)-\mathrm{C}(17)$	$1 \cdot 40$ (1)
$\mathrm{C}(3)-\mathrm{C}(4)$	$1 \cdot 43$ (2)	$\mathrm{C}(17)-\mathrm{C}(18)$	1-48(1)
$\mathrm{C}(4)-\mathrm{C}(5)$	1-36(2)	$\mathrm{N}(2)-\mathrm{C}(18)$	$1 \cdot 35(1)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1 \cdot 41(1)$	$\mathrm{N}(2)-\mathrm{C}(22)$	$1 \cdot 35(1)$
$\mathrm{C}(6)-\mathrm{C}(1)$	1-38(1)	$\mathrm{C}(18)-\mathrm{C}(19)$	$1 \cdot 40$ (1)
$\mathrm{C}(7)-\mathrm{C}(8)$	1-42(1)	$\mathrm{C}(19)-\mathrm{C}(20)$	1-36(1)
$\mathrm{C}(8)-\mathrm{C}(9)$	$1 \cdot 38(1)$	$\mathrm{C}(20)-\mathrm{C}(21)$	$1 \cdot 39(1)$
$\mathrm{C}(9)-\mathrm{C}(10)$	1.39(1)	$\mathrm{C}(21)-\mathrm{C}(22)$	$1 \cdot 38(1)$
$\mathrm{C}(10)-\mathrm{C}(11)$	1-39(1)		
(b) Angles (${ }^{\circ}$)			
$\mathrm{C}(1)-\mathrm{Sn}-\mathrm{C}(7)$	173.5(3)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	120.9(8)
$\mathrm{C}(1)-\mathrm{Sn}-\mathrm{N}(1)$	85.5(2)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$	121.6(8)
$\mathrm{C}(1)-\mathrm{Sn}-\mathrm{N}(2)$	$87 \cdot 0$ (3)	$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(8)$	117.9(7)
$\mathrm{C}(1)-\mathrm{Sn}-\mathrm{Cl}(1)$	92.9(2)	$\mathrm{Sn}-\mathrm{N}(1)-\mathrm{C}(17)$	119.6(4)
$\mathrm{C}(1)-\mathrm{Sn}-\mathrm{Cl}(2)$	92.4(2)	$\mathrm{Sn}-\mathrm{N}(1)-\mathrm{C}(13)$	121.0(5)
$\mathrm{C}(7)-\mathrm{Sn}-\mathrm{N}(1)$	88.3(2)	$\mathrm{C}(13)-\mathrm{N}(1)-\mathrm{C}(17)$	$119 \cdot 0$ (6)
$\mathrm{C}(7)-\mathrm{Sn}-\mathrm{N}(2)$	88.9 (2)	$\mathrm{N}(1)-\mathrm{C}(13)-\mathrm{C}(14)$	123.1(8)
$\mathrm{C}(7)-\mathrm{Sn}-\mathrm{Cl}(1)$	92.3(2)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	116.9(8)
$\mathrm{C}(7)-\mathrm{Sn}-\mathrm{Cl}(2)$	90.2(2)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$120 \cdot 5(8)$
$\mathrm{N}(1)-\mathrm{Sn}-(\mathrm{N}(2)$	69.0(2)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	119.2(8)
$\mathrm{N}(1)-\mathrm{Sn}-\mathrm{Cl}(1)$	160.9(1)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{N}(1)$	121.2(7)
$\mathrm{N}(1)-\mathrm{Sn}-\mathrm{Cl}(2)$	95.6(1)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	122.7(7)
$\mathrm{N}(2)-\mathrm{Sn}-\mathrm{Cl}(1)$	92.0(1)	$\mathrm{N}(1)-\mathrm{C}(17)-\mathrm{C}(18)$	116.1(6)
$\mathrm{N}(2)-\mathrm{Sn}-\mathrm{Cl}(2)$	164.5(1)	$\mathrm{Sn}-\mathrm{N}(2)-\mathrm{C}(18)$	118.2(5)
$\mathrm{Cl}(1)-\mathrm{Sn}-\mathrm{Cl}(2)$	103.5(1)	$\mathrm{Sn}-\mathrm{N}(2)-\mathrm{C}(22)$	$121.8(5)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	120.4(9)	$\mathrm{N}(2)-\mathrm{C}(22)-\mathrm{C}(21)$	121.4(8)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$118 \cdot 5(10)$	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	118.2(8)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$120 \cdot 6(10)$	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	$120 \cdot 9(9)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$120 \cdot 2(10)$	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	118.6(8)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$120 \cdot 3(10)$	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{N}(2)$	$120.9(7)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	120.0(8)	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	122.6(7)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$120 \cdot 7(8)$	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{N}(2)$	116.4(6)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$120 \cdot 0(9)$	$\mathrm{C}(18)-\mathrm{N}(2)-\mathrm{C}(22)$	120.0(7)
C $(9)-\mathrm{C}(10)-\mathrm{C}(11)$	118.8(9)		

Table 3

(a) Equations of weighted least-squares planes, in the form $P I+Q J+R K=S$, where I, J, K are orthogonal co-ordinates related to the monoclinic co-ordinates by: $I=X+Z \cos \beta$, $J=Y, K=Z \sin \beta$. Deviations * (\AA) of atoms from the planes are given in square brackets

Plane (1): $\mathrm{C}(13), \mathrm{C}(17), \mathrm{N}(1)$
$\begin{array}{llll}0.10739 & -0.29324 & 0.94999 & 1.93321\end{array}$
$[\mathrm{C}(16)-0.0281, \mathrm{C}(14) 0.0073, \mathrm{C}(15)-0.0200, \mathrm{Sn}-0.2374]$ Plane (2) : C(18), C(22), $N(2)$
$0.07893-0.22871 \quad 0.97029 \quad 2.01403$
$[\mathrm{C}(19) 0.0563, \mathrm{C}(20) 0.0501, \mathrm{C}(21) 0.0088, \mathrm{Sn}-0 \cdot 1100]$
Plane (3): $\mathrm{Cl}(1), \mathrm{Cl}(2), \mathrm{Sn}$

$$
\begin{array}{llll}
-0.02463 & -0.26534 & 0.096384 & 1.69793
\end{array}
$$

$[\mathrm{N}(1)-0.0265, \mathrm{~N}(2) 0.0120]$
Plane (4): $\mathrm{C}(1)-(6)$

$$
\begin{array}{llll}
0.99209 & -0.07474 & 0.1085 & 0.84061,
\end{array}
$$

$[\mathrm{C}(1) 0.0068, \mathrm{C}(2) 0, \mathrm{C}(3)-0.0050, \mathrm{C}(4) 0.0034, \mathrm{C}(5) 0.0032$, C(6) 0.0084 , Sn 0.0438]
Plane (5): C(7)-(12)
$\begin{array}{llll}0.23144 & 0.94599 & 0.22704 & 3.38875\end{array}$
$[\mathrm{C}(7) 0, \mathrm{C}(8)-0.0027, \mathrm{C}(9) 0.0004, \mathrm{C}(10) 0.0047, \mathrm{C}(11)$ $-0.0075, \mathrm{C}(12) 0.0052$, Sn 0.0293$]$
(b) Angles $\left({ }^{\circ}\right)$ between planes
(1)—(2) 4•2, (1)-(3) 7.77, (1)—(4) 77.04, (1)—(5) 87.89, (2) -(3) $6 \cdot 31$, (2)-(4) 78.86, (2)-(5) $88 \cdot 73$, (3)-(4) $84 \cdot 69$, (3)-(5) $87 \cdot 83$, (4)-(5) $79 \cdot 53$

* According to V. Schomaker, J. Waser, R. E. Marsh, and G. Bergman, Acta Cryst., 1959, 12, 600.

Table 4
Comparison of bond distances (\AA) in $\mathrm{Ph}_{2} \mathrm{SnCl}_{2}$ (bipy) with those in related compounds
(a) $\mathrm{Sn}-\mathrm{C}(\mathrm{Ph})$ bonds

Compound	Geometry \dagger	Distance
$\mathrm{Ph}_{2} \mathrm{SnCl}_{2}$ (bipy) *	Oct	2.152(8)
$\mathrm{Ph}_{4} \mathrm{Sn}^{\text {a,g,b, }}$	Tet	$2 \cdot 14$
$\mathrm{Ph}_{3} \mathrm{SnCl}{ }^{e}$	Tet	2.122(22)
$\mathrm{Ph}_{2} \mathrm{SnCl}_{2}{ }^{\text {d }} \ddagger$	Tet	(i) $2 \cdot 105(5), 2 \cdot 119(5)$ (ii) $2 \cdot 112(6), 2 \cdot 118(5)$
$\begin{gathered} \mathrm{PhMe}_{2} \mathrm{Sn}-\mathrm{CPh}: \mathrm{CPh} \cdot- \\ \mathrm{PhC}: \mathrm{PhC}-\mathrm{X} \end{gathered}$	Tet	(i) $\mathrm{X}=\mathrm{Cl}, 2 \cdot 116(9)$ (ii) $\mathrm{X}=\mathrm{Br}, 2 \cdot 141(13)$
$\mathrm{Ph}_{2} \mathrm{ISn}\left[\mathrm{CH}_{2}\right]_{4} \mathrm{SnIPh}_{2}{ }^{f}$	Tet	$2 \cdot 14(2), 2 \cdot 16(2)$
$\mathrm{Ph}_{2} \mathrm{Sn} \cdot\left[\mathrm{O} \cdot \mathrm{CMe} \cdot \mathrm{O}_{2} \cdot \mathrm{SnPh}_{2}{ }^{\text {g }}\right.$	Trig bipy	$2 \cdot 15(2)$
$\mathrm{Ph}_{3} \mathrm{Sn}(\mathrm{ONPh} \cdot \mathrm{CO} \cdot \mathrm{Ph})^{\boldsymbol{k}}$	Trig bipy	$\begin{aligned} & \text { Ax } 2 \cdot 18 \\ & \text { Eq } 2 \cdot 13,2 \cdot 14 \end{aligned}$
(b) $\mathrm{Sn}-\mathrm{Cl}$ bonds		
$\mathrm{Ph}_{2} \mathrm{SnCl}_{2}$ (bipy) *	Oct	2.508(2)
		$2 \cdot 511(2)$
$\mathrm{Ph}_{3} \mathrm{SnCl}{ }^{\text {c }}$	Tet	$2 \cdot 318(15)$
$\mathrm{Ph}_{2} \mathrm{SnCl}_{2}{ }^{\text {d }}+$	Tet	(i) $2 \cdot 336(2), 2 \cdot 353(2)$ (ii) $2 \cdot 336(2), 2 \cdot 357(2)$
$\mathrm{Me}_{3} \mathrm{SnCl}(\mathrm{py}){ }^{\boldsymbol{i}}$	Trig bipy	2.42(4)
$\mathrm{Me}_{3} \mathrm{SnCl}\left(\mathrm{Ph}_{3} \mathrm{PCH} \cdot \mathrm{CO} \cdot \mathrm{Me}\right)^{j}$	Trig bipy	2.565
$\mathrm{Me}_{2} \mathrm{SnCl}_{2}{ }^{k}$	Tet§	$2 \cdot 41$ (4) bridged, 3.54(5)
$\mathrm{Me}_{2} \mathrm{SnCl}_{2}(\mathrm{DMSO})_{2}{ }^{\boldsymbol{l}}$	Oct	$2 \cdot 48(1)$
		$2 \cdot 53(1)$
$\mathrm{Me}_{2} \mathrm{SnCl}_{2}(\mathrm{py}-\mathrm{O})_{2}{ }^{m}$	Oct	$2.584(10)$
(c) $\mathrm{Sn}-\mathrm{N}$ bonds		
$\mathrm{Ph}_{2} \mathrm{SnCl}_{2}$ (bipy) *	Oct	$2 \cdot 344(6)$
		2.375(6)
$\mathrm{Sn}\left(\mathrm{NMe}_{2}\right)_{4}{ }^{n}$	Tet	$2 \cdot 045$
$\left(\mathrm{Me}_{3} \mathrm{Sn}\right)_{2} \mathrm{~N}_{2} \mathrm{C}{ }^{\circ}$	Trig bipy	$2 \cdot 47$
$\mathrm{Me}_{3} \mathrm{SnN}(\mathrm{CN})_{2}{ }^{p}$	Trig bipy	$2 \cdot 336(9)$
$\mathrm{SnCl}_{4}(\mathrm{MeCN})_{2}{ }^{\text {q }}$	Oct	$2 \cdot 33(2)$
$\mathrm{Me}_{2} \mathrm{Sn}$ (oxin) ${ }_{2}{ }^{\text {r }}$	Dist oct	2.31(1)
		2.38(1)
$\left[\mathrm{Me}_{2} \mathrm{SnCl}(\text { ter })\right]^{+}$*	Dist oct	$2 \cdot 29(3), 2 \cdot 33(4)$
		2.41(3)
$\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{NCS})_{2}(\text { ter })^{\text {t }}$	Pent bipy	(i) $\mathrm{Sn}-\mathrm{NCS}: 2 \cdot 283(4)$
		(ii) Sn-ter $2.479(3)$,
$\mathrm{Cl}_{2} \mathrm{Sn}^{\mathrm{IV}}$ (phth) ${ }^{\text {u }}$	Oct	$2 \cdot 050(3)$

${ }^{a}$ N. A. Akhmed and G. G. Aleksandrov, J. Strukt. Chem., 1970, 11, $824 .{ }^{b}$ P. C. Chieh and J. Trotter, J. Chem. Soc. (A), 1970, 911. ${ }^{c}$ N. G. Bokii, G. N. Zakharova, and Yu. T. Struchkov, J. Strukt. Chem., 1970, 11, 828. a P. T. Greene and R. F. Bryan, J. Chem. Soc. (A), 1971, 2549. ${ }^{\circ}$ F. B. Boer, F. P. Van Remoortere, P. P. North, and G. N. Reeke, Inorg. Chem., 1971, 10, 529. f V. Cody and E. Corey, J. Organometallic Chem., 1969, 19, 359, ${ }^{g}$ G. Bandoli, D. A. Clemente, and C. Panattoni, Chem. Comm., 1971, 311. ${ }^{h}$ P. G. Harrison and T. J. King, J.C.S. Chem. Comm., 1972, 815. i R. Hulme, J. Chem. Soc., 1963, 1524. ${ }^{j}$ J. Buckle, P. G. Harrison, T. J. King, and J. A. Richards, J.C.S. Chem. Comm. 1972, 1104. k A. G. Davies, H. J. Milledge, D. C. Puxley and P. J. Smith, J. Chem. Soc. (A), 1970, 2862. ${ }^{\boldsymbol{l}}$ N. W. Isaacs and C. H. L. Kennard, J. Chem. Soc. (A), 1970, 1257. ${ }^{m}$ E. A. Blom, B. R. Penfold, and W. I. Robinson J. Chem. Soc. (A), 1969, 913. ${ }^{n}$ L. V. Vilkov, N. A. Tarosenko, and A. K. Prokof'ev, J. Strukt. Chem., 1970, 11, $114 .{ }^{\circ}$ R. A. Forder and G. M. Sheldrick, J. Chem. Soc. (A), 1971, 1107. p Y. M. Chow, Inorg. Chem., 1971, 10, 1938. q M. Webster and H. E. Blayden, J. Chem. Soc. (A), 1969, 2443. ${ }^{r}$ E. O. Schlemper, Inorg. Chem., 1967, 6, 2012. ${ }^{8}$ F. W. B. Einstein and B. R. Penfold, Chem. Comm., 1966, 780. i D. V. Naik and W. R. Scheidt, Inorg. Chem., 1973, 12, 272. u D. Rogers and R. S. Osborn, Chem. Comm., 1971, 840.

* This work. \dagger Oct $=$ octahedral, Tet $=$ tetrahedral, Trig bipy $=$ trigonal bipyramid, Dist $=$ distorted, Pent bipy $=$ pentagonal bipyramid; oxin $=8$-hydroxyquinolato, ter $=$ terpyridyl, phth $=$ phthalocyaninato. \ddagger The asymmetric unit of $\mathrm{Ph}_{2} \mathrm{SnCl}_{2}$ contains two crystallographically different molecules. § Distorted towards octahedral.
magnitude as for the two five-co-ordinate derivatives. $\mathrm{Ph}_{4} \mathrm{Sn}_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{2}$ (ref. 10) and $\mathrm{Ph}_{3} \mathrm{SnONPh} \cdot \mathrm{CO} \cdot \mathrm{Ph} .{ }^{11}$

The bipyridyl residue, the tin atom, and the two chlorine atoms are essentially coplanar (Table 3),

Structure of the molecule, showing the atom numbering used in the analysis
although the two rings of the bipyridyl are mutually twisted ca. $4 \cdot 2^{\circ}$. Mutual repulsion of the two chlorine atoms opens the $\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl}$ bond angle to 103.5°, whilst $\mathrm{N}-\mathrm{Sn}-\mathrm{N}$ is only $69 \cdot 0^{\circ}$.

The $\mathrm{Sn}-\mathrm{Cl}$ distances are also equal $(2.509 \AA)$ and are substantially bigger than those in tetrahedral diphenyltin dichloride $(2 \cdot 34$ and $2 \cdot 36 \AA)$, but within the range of values determined for other six-co-ordinate diorganotin dichloride complexes (Table 4). The $\mathrm{Sn}-\mathrm{N}$ distances ($2 \cdot 344$ and $2.375 \AA$) are also of a similar magnitude to those for other octahedral complexes, although the distance in octahedral dichloro(phthalocyaninato)tin(Iv) is only $2.05 \AA$.

Unlike dimethyltin(IV) derivatives, where an increase in co-ordination number from four to six is accompanied by an increase in $\mathrm{Sn}-\mathrm{Cl}$ bond distances but a decrease in the $\mathrm{Sn}-\mathrm{C}$ bond distance as tin 5 s electron density is preferentially concentrated in bonds to carbon, both $\mathrm{Sn}-\mathrm{Cl}$ and $\mathrm{Sn}-\mathrm{C}$ bond distances are increased in the complex formation between $\mathrm{Ph}_{2} \mathrm{SnCl}_{2}$ and bipyridyl. Presumably this difference is due to the increased electronegativity of the phenyl relative to the methyl group.

An unusual feature of the structure is the disposition of the two phenyl groups, which are not equivalent. The plane of one almost exactly bisects the $\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl}$ and $\mathrm{N}-\mathrm{Sn}-\mathrm{N}$ bond angles, whilst the plane of the other makes an angle of $79 \cdot 5^{\circ}$ with the first.

We thank the S.R.C. for the award of an INSTANT studentship (to J. A. R.).
[4/254 Received, 8th February, 1974]
10 G. Bandoli, D. A. Clements, and C. Panatroni, Chem. Comm., 1971, 311.
${ }_{11}$ P. G. Harrison and T. J. King, J.C.S. Chem. Comm., 1972, 815.

[^0]: ${ }^{1}$ Part IV, P. G. Harrison, Inorg. Chem., 1973, 12, 1545; Part V, G. Davidson, P. G. Harrison, and E. M. Riley, Spectrochim. Acta, 1973, 29A, 1265.
 ${ }_{2}$ J. Buckle, M. K. Das, and P. G. Harrison, Inorg. Chim. Acta, 1972, 6, 17.
 ${ }^{3}$ P. J. Vergammi, H. Vahrenkamp, and L. F. Dahl, J. Amer. Chem. Soc., 1971, 93, 6327.
 ${ }_{4}$ F. W. B. Einstein and B. R. Penfold, J. Chem. Soc. (A), 1968, 3019.

