# Intensity Studies on the Raman-active Fundamentals of Hexahalogenoanions of Second- and Third-row Transition and Non-transition Metals. The Calculation of Parallel and Perpendicular Bond Polarisability Derivatives

### By Yvonne M. Bosworth and Robin J. H. Clark,\* Christopher Ingold Laboratories, University College London, 20 Gordon Street, London WC1H 0AJ

The Raman spectra of solutions (generally aqueous acid) of the ions  $MF_6^{2-}$  (M = Pt or Sn),  $MCl_6^{2-}$  (M = Re, Os, Ir, Pd, Pt, Sn, or Pb),  $MCl_{6}^{3-}$  (M = Rh or Ir),  $MBr_{6}^{2-}$  (M = Os, Ir, Pt, or Sn) and  $Ml_{6}^{2-}$  (M = Pt or Sn) have been recorded, and accurate values for the frequencies of the  $v_1(a_{1g})$ ,  $v_2(e_g)$ , and  $v_5(t_{2g})$  fundamentals are reported, some for the first time. The intensities of these three fundamentals of each ion were measured using the rotating sample technique at four different exciting lines and they are reported by reference to the 935 cm<sup>-1</sup> band of the perchlorate ion as internal standard. The results are discussed in terms of the pre-resonance Raman effect. The intensities of  $v_1(a_{1g})$  fundamentals have been used to determine values for the metal-halogen bond polarisability derivatives  $(\bar{\alpha}_{MX}')$  at zero exciting frequency. These  $\bar{\alpha}_{MX}'$  values, coupled with the relative molar intensities of the  $v_1(a_{1p})$  and  $v_2(e_a)$  fundamentals in each case, lead to values for the parallel and perpendicular MX bond polarisability derivatives. Factors affecting the magnitudes of these quantities are discussed.

IN earlier studies of the intensities of the Raman-active fundamentals of the  $PtX_6^{2-}$  ions (X = Cl or Br) and of the  $PdCl_6^{2-}$  ion, it was found 1, 2a that the relative intensities of the  $v_1(a_{1g})$  and  $v_2(e_g)$  fundamentals (as estimated by eye) were in each case less than one and less than for the  $PtF_6^{2-}$  ion and other  $MX_6^{n-}$  ions then studied. It was suggested that the key difference between these groups of ions was the presence of  $d_{\pi}(M) \longrightarrow d_{\pi}(X)$   $\pi$ -back-bonding in the former group, a possibility which is denied to hexafluoro-complex ions and unlikely for  $SnX_6^{2-}$  ions. However, it seemed improbable to us that such  $\pi$ -bonding from a metal atom in the quadrivalent state could be of any significance. Moreover, by use of modern laser/photon counting techniques, many Raman-active fundamentals have been found <sup>3,4</sup> which display the pre-resonance Raman effect (pre-r.r.e.) by which the Raman intensities of certain fundamentals increase as the exciting frequency  $(v_0)$  is made to approach the first allowed electronic transition  $(v_e)$  of the molecule. The possibility of a selective enhancement to the  $v_1(a_{1g})$  or  $v_2(e_g)$  fundamentals of the PtX<sub>6</sub><sup>2-</sup> ions has been considered previously, but dismissed on the basis of an admittedly very qualitative measurement on the PtCl<sub>6</sub><sup>2-</sup> ion alone.

However, the  $MX_6^{n-}$  (X = Cl, Br, or I) ions of the second- and third-row transition series are all strongly coloured, and the Raman intensities of their fundamentals are likely to depend on the exciting frequency used to obtain the spectrum. Thus we considered it desirable to carry out a systematic study of the intensities of the Raman-active fundamentals of the ions referred to above, as well as other transition metal complex ions, as a function of the exciting frequency, and by use of modern counting techniques. Analogous

476, and unpublished work.

studies of the corresponding non-transition metal ions  $SnF_{6}^{2-}$ ,  $SnCl_{6}^{2-}$ ,  $SnBr_{6}^{2-}$ ,  $SnI_{6}^{2-}$ , and  $PbCl_{6}^{2-}$ , have been carried out for comparative purposes. Particularly advantageous for such studies has been the development of the rotating sample technique, whereby the sample may be rotated at speeds of ca. 1600 r.p.m.<sup>5,6</sup> In this manner, higher frequency exciting lines may be employed without fear of thermal decomposition of the sample.

In the course of the work, some hitherto unknown solution values for certain fundamentals have been established. Where possible, from the intensity measurements on the  $v_1(a_{1q})$  fundamentals, bond polarisability derivatives  $(\bar{\alpha}_{MX}')$  extrapolated to zero exciting frequency have been calculated. These  $\bar{\alpha}_{MX}'$ values have then been coupled with relative intensity measurements on the  $v_1(a_{1q})$  and  $v_2(e_q)$  fundamentals to give parallel and perpendicular bond polarisability derivatives  $(\alpha_{\parallel}' \text{ and } \alpha_{\perp}' \text{ respectively})$ . The interpretation of  $\alpha_{\perp}'/\alpha_{\parallel}'$  and of the nature of the  $\pi$ -bonding in  $MX_6^{2-}$  ions is discussed.

# EXPERIMENTAL

Samples.—The compounds  $Na_2OsCl_{6}, \frac{1}{2}H_2O$ ,  $(NH_4)_2OsBr_{6}$ , Na2IrCl<sub>6</sub>,6H2O, K2IrBr<sub>6</sub>, Na2PdCl<sub>6</sub>, Na2PtCl<sub>6</sub>,6H2O, Na2Pt-Br<sub>6</sub>, 6H<sub>2</sub>O, K<sub>2</sub>PtI<sub>6</sub>, Na<sub>3</sub>RhCl<sub>6</sub>, 12H<sub>2</sub>O, and Na<sub>3</sub>IrCl<sub>6</sub>, 12H<sub>2</sub>O were obtained from Johnson Matthey and Co. Ltd. The compound (NH<sub>4</sub>)<sub>2</sub>ReCl<sub>6</sub> was obtained from ROC/RIC Inc. The compound  $(\mathrm{NH}_4)_2\mathrm{SnF}_6$  was prepared from  $\mathrm{SnI}_4$  and  $NH_4F$ . The compound  $Na_2PtF_6$  was kindly supplied by Mr. K. Turner of Imperial College, London. The  $SnCl_6^{2-}$ and  $\mathrm{SnBr}_{6}^{2-}$  ions were prepared from the corresponding tetrahalides by the method of Woodward and Anderson.<sup>7</sup> Pyridinium hexachloroplumbate(IV) was prepared by the method of Gutbier and Wissmuller,8 while tetraethylammonium hexaiodostannate(IV) was prepared according

<sup>5</sup> W. Kiefer and H. J. Bernstein, Appl. Spectroscopy, 1971, 25, 501. 6

 <sup>6</sup> R. J. H. Clark, Spex Speaker, 1973, 18, 1.
 <sup>7</sup> L. A. Woodward and L. E. Anderson, J. Chem. Soc., 1957, 1284.

<sup>8</sup> K. Gutbier and H. Wissmuller, J. prakt. Chem., 1914, 90, 491.

<sup>&</sup>lt;sup>1</sup> L. A. Woodward and J. A. Creighton, Spectrochim. Acta, 1961, **17**, 594.

 <sup>&</sup>lt;sup>2</sup> (a) L. A. Woodward and M. J. Ware, Spectrochim. Acta, 1963, 19, 775; (b) ibid., 1964, 20, 711.
 <sup>3</sup> R. J. H. Clark and C. J. Willis, Inorg. Chem., 1971, 10, 1118.
 <sup>4</sup> R. J. H. Clark and P. D. Mitchell, J.C.S. Faraday II, 1972,

| Configuration     | State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ref.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $v_1(a_{1g})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $v_2(e_g)$                                            | $v_5(t_{2g})$                                          |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|
| $d^{10}$          | Aqueous soln.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 470                                                   | 241                                                    |
|                   | Cs <sup>‡</sup> Salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 460                                                   | 247                                                    |
|                   | $NH_4^+$ Salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $581 \cdot 9 + 0 \cdot 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $465 \cdot 2 + 0 \cdot 7$                             | 248.6 + 0.1                                            |
|                   | Aqueous soln.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $584 \cdot 8 + 0 \cdot 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       | <u>+</u> -                                             |
| $d^{10}$          | Aqueous soln.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 311 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 229                                                   | 158                                                    |
|                   | Et₄N+ Salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 232                                                   | 159                                                    |
|                   | K <sup>+</sup> Salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 311 + 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $235 \pm 2$                                           | 165 + 2                                                |
|                   | Aqueous soln.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $313 \cdot \overline{1} + 0 \cdot 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $228\cdot\overline{7}+0.5$                            | $156.\overline{7} + 1.0$                               |
| $d^{10}$          | Aqueous soln.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 185 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 138 —                                                 | 96                                                     |
|                   | $Et_{4}N^{+}$ Salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 135                                                   | 101                                                    |
|                   | K+ Salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 190 + 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 144 + 2                                               | 109 + 2                                                |
|                   | Aqueous soln.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $185 \cdot \overline{1} + 0 \cdot 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $138 \cdot \overline{3} + 1 \cdot 0$                  | 93.9 + 1.0                                             |
| $d^{10}$          | $Et_{4}N$ Salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 93 -                                                  | 78                                                     |
|                   | MeCN Soln.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $135 \cdot 6 + 0 \cdot 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $112.8 \pm 0.6$                                       |                                                        |
| $d^{10}$          | Aqueous soln.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 285 + 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 215 + 5                                               | 137 + 5                                                |
|                   | K <sup>‡</sup> Salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 292 + 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 222 + 2                                               | 153 + 2                                                |
|                   | Aqueous soln.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $285 \cdot 2 + 0 \cdot 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                        |
| $t_{2a}^{6}$      | Aqueous soln.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 292                                                   | 164                                                    |
|                   | K <sup>‡</sup> Salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\bar{292}$                                           | 164                                                    |
|                   | Aqueous soln.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $317.0 \pm 0.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $293.4 \pm 0.5$                                       | 154.3 + 0.1                                            |
| t 20 6            | Aqueous soln.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 576                                                   | 210                                                    |
| 29                | Aqueous soln.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $600.0 \pm 0.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $575.6 \pm 1.3$                                       |                                                        |
| t 206             | Aqueous soln.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 320                                                   | 162                                                    |
| 29                | K <sup>+</sup> Salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 320                                                   | 162                                                    |
|                   | Na <sup>+</sup> Salt (hvdrate)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ĩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 343                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 319                                                   | 163                                                    |
|                   | Aqueous soln.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 324                                                   | 161                                                    |
|                   | K <sup>+</sup> Salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 348 + 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $318 \pm 2$                                           | 171 + 2                                                |
|                   | K <sup>+</sup> Salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $320^{-1}$                                            | 171 - 7                                                |
|                   | Aqueous soln.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $342.8 \pm 0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $319.3 \pm 0.7$                                       | $159.8 \pm 1.0$                                        |
| $t_{2a}^{6}$      | Aqueous soln.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 190                                                   | 97                                                     |
| 29                | K <sup>+</sup> Salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $215 \pm 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $191 \pm 2$                                           | 111 + 2                                                |
|                   | K <sup>+</sup> Salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{1}{217}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 195 - 7                                               | 115                                                    |
|                   | Aqueous soln.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $209.6 \pm 0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $192.0 \pm 0.5$                                       | $95.0 \pm 1.0$                                         |
| t 2.6             | Aqueous soln.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $150.3 \pm 0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $131.0 \pm 1.0$                                       | $69.5 \pm 1.6$                                         |
| t 29<br>t 29<br>6 | Aqueous soln.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 298                                                   |                                                        |
| - 29              | Aqueous soln.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $302 \cdot 1 + 0 \cdot 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $280.4 \pm 0.5$                                       |                                                        |
| tog <sup>6</sup>  | Aqueous soln.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       | 175                                                    |
| • 29              | K <sup>+</sup> Salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 303                                                   | 161                                                    |
|                   | Aqueous soin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $314.6 \pm 0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $296.3 \pm 1.0$                                       | 101                                                    |
| $t_{0a}^{5}$      | K <sup>+</sup> Salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 352 352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (295) p                                               | 188                                                    |
| ° 29              | K+ Salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (225) q                                               | 190                                                    |
|                   | Aqueous soin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ſ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $345.7 \pm 0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $293.3 \pm 0.7$                                       | 160 + 1.5                                              |
| t a-5             | K+ Salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 216 216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{255.0}{178}$ $\pm$ 0.1                         | 100 1 10                                               |
| + 29              | Aqueous soln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ő                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 178                                                   |                                                        |
|                   | Aqueous soln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c<br>c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 212<br>209.6 $\pm$ 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $173 \pm 0.5$                                         | $07 \perp 1.9$                                         |
| to-4              | Aqueous soln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $2000 \pm 000$<br>346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (274) q                                               | $\frac{37 \pm 12}{165}$                                |
| 2 2g              | $K^+$ Salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (4/*) -                                               | 177                                                    |
|                   | K+ Solt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (974) q                                               | 165                                                    |
|                   | A gueous solp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 945.9 J 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(273)^{2}$<br>$245.2 \pm 0.5$                        | 160 1 9                                                |
|                   | riqueous som.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0\pm0.0\pm0.1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{240}{169} \pm 0.0$                             | 100 ± 4                                                |
| + 4               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                                        |
| $t_{2g}{}^4$      | K <sup>+</sup> Sait                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 218<br>$210.6 \pm 0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 160.9 1 0.9                                           | 100 + 9                                                |
| $t_{2g}^4$        | K <sup>+</sup> Sait<br>Aqueous soln.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $218 \\ 210.6 \pm 0.5 \\ 246$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{162}{169\cdot 2} \pm 0.8$                      | $\frac{100}{150} \pm 2$                                |
|                   | Configuration<br>$d^{10}$<br>$d^{10}$<br>$d^{10}$<br>$d^{10}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>$t_{2g}^{6}$<br>t | ConngurationState $d^{10}$ Aqueous soln. $Cs^+$ SaltNH_4+ SaltAqueous soln.Aqueous soln. $d^{10}$ Aqueous soln. $d^{10}$ Et_4N+ SaltAqueous soln.MeCN Soln. $d^{10}$ Aqueous soln. $d^{10}$ <td>ConngurationStateRef.<math>d^{10}</math>Aqueous soln.<math>a</math><math>Cs^+</math> Salt<math>b</math><math>NH_4^+</math> Salt<math>c</math><math>Aqueous soln.<math>d</math><math>d^{10}</math>Aqueous soln.<math>d</math><math>d^{10}</math>Aqueous soln.<math>c</math><math>d^{10}</math>Aqueous soln.<math>c</math><math>d^{10}</math>Aqueous soln.<math>c</math><math>d^{10}</math>Aqueous soln.<math>c</math><math>d^{10}</math>Aqueous soln.<math>c</math><math>d^{10}</math>Et_4N+Salt<math>g</math><math>MeCN Soln.</math><math>c</math><math>d^{10}</math>Aqueous soln.<math>c</math><math>d^{10}</math>Aqueous soln.<math>c</math><math>d^{10}</math>Aqueous soln.<math>c</math><math>d^{10}</math>Aqueous soln.<math>c</math><math>d^{10}</math>Aqueous soln.<math>c</math><math>d^{10}</math>Aqueous soln.<math>c</math><math>d^{10}</math>Aqueous soln.<math>c</math><math>d^{10}</math>Aqueous soln.<math>c</math><math>d_{2g}^6</math>Aqueous soln.<t< math=""></t<></math></td> <td><math display="block">\begin{array}{c ccccccccccccccccccccccccccccccccccc</math></td> <td><math display="block">\begin{array}{c c c c c c c c c c c c c c c c c c c </math></td> | ConngurationStateRef. $d^{10}$ Aqueous soln. $a$ $Cs^+$ Salt $b$ $NH_4^+$ Salt $c$ $Aqueous soln.dd^{10}Aqueous soln.dd^{10}Aqueous soln.cd^{10}Aqueous soln.cd^{10}Aqueous soln.cd^{10}Aqueous soln.cd^{10}Aqueous soln.cd^{10}Et_4N+SaltgMeCN Soln.cd^{10}Aqueous soln.cd^{10}Aqueous soln.cd^{10}Aqueous soln.cd^{10}Aqueous soln.cd^{10}Aqueous soln.cd^{10}Aqueous soln.cd^{10}Aqueous soln.cd^{10}Aqueous soln.cd_{2g}^6Aqueous soln.$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

TABLE 1

<sup>a</sup> P. A. W. Dean and D. F. Evans, J. Chem. Soc. (A), 1967, 698. <sup>b</sup> W. Klemm, J. Krause, K. Wahl, E. Huss, R. Hoppe, E. Weise, and W. Brandt, Forschungsber. Wirtschafts u. Verkekrsministerium Nordrhein-Westfalen, 1955, 160, 38. <sup>c</sup> This work. <sup>d</sup> L. A. Woodward and L. E. Anderson, J. Chem. Soc. (A), 1957, 1284. <sup>e</sup> R. J. H. Clark, L. Maresca, and R. J. Puddephatt, Inorg. Chem., 1968, 7, 1603. <sup>f</sup> M. Debeau and M. Krauzman, Compt. rend., 1967, 264B, 1724. <sup>e</sup> I. Wharf and D. F. Shriver, Inorg. Chem., 1969, 8, 914. <sup>h</sup> J. A. Creighton and L. A. Woodward, Trans. Faraday Soc., 1962, 58, 1077. <sup>i</sup> L. A. Woodward and J. A. Creighton, Spectrochim. Acta, 1961, 17, 594. <sup>j</sup> P. J. Hendra and P. J. D. Park, Spectrochim. Acta, 1963, 5. <sup>k</sup> L. A. Woodward and M. J. Ware, Spectrochim. Acta, 1963, 19, 775. <sup>i</sup> D. W. James and M. J. Nolan, Inorg. Nuclear Chem. Letters, 1968, 4, 97. <sup>m</sup> D. M. Adams and D. M. Morris, J. Chem. Soc. (A), 1967, 1666. <sup>m</sup> M. Debeau and M. Krauzman, Compt. rend., 1966, 262B, 765. <sup>e</sup> G. L. Bottger and A. E. Salwin, Spectrochim. Acta, 1972, 28A, 925, 1631. <sup>p</sup> Calculated from force constants. <sup>e</sup> Derived from i.r.-active combination bands. <sup>r</sup> L. A. Woodward and M. J. Ware, Spectrochim. Acta, 197, 28A, 925, 1631. <sup>p</sup> Calculated from force constants. <sup>e</sup> Derived from i.r.-active combination bands. <sup>r</sup> L. A. Woodward and M. J. Ware, Spectrochim. Acta, 1964, 20, 711.

to the method of Wharf and Shriver.<sup>9</sup> Its Raman spectrum was observed using dried acetonitrile as solvent with the 377 cm<sup>-1</sup> band being used as internal standard. This band was subsequently calibrated against the  $935 \text{ cm}^{-1}$  band of the perchlorate ion. In all other cases the samples were dissolved in aqueous solutions of the appropriate hydrohalogenic acid and then 60% perchloric acid was added as internal standard. The molarities of the solutions ranged from 0.004 to 0.35M.

The possibility that intermolecular interactions might bring about changes in molar intensities of the Raman bands was eliminated by studying solutions at two different mole ratios for each ion and finding good agreement between the relative molar intensities in each case.

Instrumental Techniques.-The Raman spectra were recorded using a Spex 1401 spectrometer in conjunction with Coherent Radiation Ltd. Ar<sup>+</sup> and Kr<sup>+</sup> lasers. The scattered radiation was collected at  $90^{\circ}$  and focussed by a f/0.95 lens onto the entrance slit of the monochromator after having been passed through a polarisation scrambler. The 0.75 m Czerny-Turner monochromator employed two 1200 lines mm<sup>-1</sup> Bausch and Lomb gratings blazed at 500 nm. The raethod of detection was photon counting in conjunction with an RCA C31034 phototube (linear display). The power available with the four exciting lines 488.0, 514.5, 568.2, and 647.1 nm used to gather the data was 1.6 W, 1.9 W, 100 mW, and 500 mW respectively. The spectra were calibrated by reference to the emission lines of neon.

Peak areas were determined by feeding the signal from the photomultiplier to the chart recorder and simultaneously to a Kent Chromalog Two integrator. In cases where the base line was changing rapidly, it was found to be preferable to use the trace-and-weigh procedure. The two methods were cross-checked against each other with satisfactory internal consistency.

The relative spectral response of the instrument was determined by use of a tungsten strip lamp. The relative spectral radiance of this lamp was determined at a brightness temperature of 2073  $^{\circ}\mathrm{C}$  by comparison with a black body lamp.<sup>10</sup> This comparison was carried out at the National Physical Laboratory, Teddington.

Solutions were held in cylindrical cells (volume ca. 12 ml) which had flat bottoms, and which could be rotated at speeds of ca. 1600 r.p.m.5,6 This procedure eliminated thermal decomposition of the sample at the beam focus. For cases in which  $v_0$  (the exciting frequency) approached  $\nu_{e}$  (the first allowed electronic transition of the  $MX_{e}^{n-}$  ion), the apparent intensity of a fundamental  $(I_2)$  relative to that of a standard  $(I_1)$  can be affected by the path length (d)through which the scattered light travels, viz.

$$\begin{pmatrix} I_2 \\ \overline{I_1} \end{pmatrix}_{\text{true}} = \begin{pmatrix} \overline{I_2} \\ \overline{I_1} \end{pmatrix}_{\text{apparent}} l 0^{cd(\epsilon_2 - \epsilon_1)}$$
(1)

where c is the concentration (mol  $l^{-1}$ ) of the  $MX_6^{n-1}$  ion, and  $\varepsilon_2$  and  $\varepsilon_1$  are the extinction coefficients of the  $MX_6^{n-1}$ solutions at the two scattered frequencies,  $\nu_0-\nu_2$  and  $v_0 - v_1$ , under comparison. Thus in all cases the exciting beam was kept as close as possible to the cell edge in order to minimise self-absorption of the scattered radiation, this being particularly important where  $\epsilon_2-\epsilon_1$  is significant. For the most highly absorbing solutions (e.g. those of the

<sup>9</sup> I. Wharf and D. F. Shriver, *Inorg. Chem.*, 1969, 8, 914. <sup>10</sup> T. J. Quinn and C. R. Barker, *Internat. J. Sci. Metrology*, 1967, **3**, 19.

ions  ${\rm IrCl_6^{2-}},~{\rm IrBr_6^{2-}},~{\rm OsBr_6^{2-}},~{\rm PtI_6^{2-}},~{\rm and}~{\rm SnI_6^{2-}}),~{\rm grazing}$ internal incidence was preferred. Difficulties associated with obtaining zero-path-length conditions are reflected in the higher errors in the relative molar intensities of the above deeply coloured ions.

The electronic spectra of the ions were recorded by use of a Cary 14 spectrometer.

### RESULTS

Fundamental Frequencies.--The frequencies found for the Raman-active fundamentals of the ions studied are listed in Table 1, together with values previously reported. In each case, the band assigned to the  $v_5(t_{2g})$  fundamental is broad and thus its frequency cannot be determined with the same accuracy as that of the  $v_1(a_{1g})$  or  $v_2(e_g)$  fundamentals.

For the  $IrCl_6^{2-}$  and  $OsCl_6^{2-}$  ions, a band attributable to the  $v_2(e_g)$  fundamental has not previously been observed in a Raman spectrum. Values have previously been deduced for the frequency of this fundamental of each ion from the analysis of i.r.-active combination bands, but the values so obtained are not in agreement with our directly located Raman values. Accordingly, we have investigated the i.r. spectra of salts of these ions. In the case of the  $OsCl_6^{2-}$ ion, for neither the potassium nor the caesium salt are there any bands at 478w and 588mw cm<sup>-1</sup> as reported <sup>2b</sup> and assigned to the  $\nu_3+\nu_5$  and  $\nu_2+\nu_3$  combination bands respectively. The assignments for the combination bands actually seen in the i.r. spectrum of this ion are given in Table 2. These assignments allow the deduction of i.r.-

#### TABLE 2

### Frequencies and assignments of i.r.-active bands of the complexes $K_2OsCl_6$ and $Cs_2OsCl_6$ (700–200 cm<sup>-1</sup>)

| -              | 0 |              | 0 ( |                                   |
|----------------|---|--------------|-----|-----------------------------------|
| Assignment     |   | $K_2OsCl_6$  |     | Cs <sub>2</sub> OsCl <sub>6</sub> |
| $v_1 + v_3$    |   | 668vw        |     | 667 vw                            |
| $v_2 + v_3$    |   | 568vvw       |     |                                   |
| $v_2 + v_4$    |   | 417w         |     | 418w                              |
| $v_2 + v_6$    |   | <b>3</b> 96w |     | <b>3</b> 96w                      |
| v <sub>3</sub> |   | 325 vs       |     | 313vs                             |

based values for  $v_2(e_g)$  and  $v_5(t_{2g})$  which are completely consistent with the Raman-based values. A similar situation prevails for the IrCl<sub>6</sub><sup>2-</sup> ion as reinvestigation of the i.r. spectrum of the caesium salt failed to yield any evidence for a band within 40 cm<sup>-1</sup> of that reported to be at 560 cm<sup>-1</sup>, and assigned <sup>11</sup> to  $\nu_2 + \nu_3$ . The deduction <sup>11</sup> of an i.r.-based value of 225 cm<sup>-1</sup> for  $v_2(e_g)$  is thus erroneous, and there is no inconsistency with the Raman results.

The Raman spectrum of the  $PtI_6^{2-}$  ion is reported herein for the first time. The band assigned to  $v_5(t_{2g})$  could not be observed by use of the 488.0 nm exciting line as it was obscured by Rayleigh scattering. In the case of the  $\mathrm{IrBr_6^{2-}}$  and  $\mathrm{OsBr_6^{2-}}$  ions, the  $v_5(t_{2g})$  fundamental is reported for the first time. For  $OsBr_6^{2-}$ ,  $\nu_2(e_g)$  and  $\nu_5(t_{2g})$  were observable only with the 514.5 and 488.0 nm exciting lines.

Intensities of Raman-active Fundamentals.-The intensities  $(I_2)$  of the Raman-active fundamentals of the  $MX_6^{n-1}$ ions relative to that of the  $v_1(a_1)$  fundamental of the pechlorate ion  $(I_1)$  as internal standard are given in Table 3. In each case it was necessary to correct the apparent relative intensities of the bands for the spectral response of the instrument and for the relative molarities of the

<sup>11</sup> P. J. Hendra and P. J. D. Park, Spectrochim. Acta, 1967, 23A, 1635.

sample and the standard; this procedure leads to the  $I_{2M_1}/I_{1M_2}$  values listed in Table 3.

It should be noted that these values cannot be compared directly with those obtained in some cases previously, owing to the fact that any previous results were (a) confined only to the relative intensities of the Raman-active fundamentals, (b) obtained with exciting lines of different frequencies, and (c) obtained by use of unpolarised as against

# TABLE 3

# Relative molar intensities $(I_{2}M_{1}/I_{1}M_{2})$ of Raman-active fundamentals of the ions studied and the frequency factors

| Wavelength/   |                |                                                                                  |                | Wavelength/      |                |                                                                                            |               |
|---------------|----------------|----------------------------------------------------------------------------------|----------------|------------------|----------------|--------------------------------------------------------------------------------------------|---------------|
| nm            | $v_i$          | $(I_{2}M_{1}/I_{1}M_{2})^{a}$                                                    | f <sup>b</sup> | nmິ່             | V <sub>i</sub> | $(I_{2}M_{1}/I_{1}M_{2})^{a}$                                                              | ŕ b           |
|               |                | (NH <sub>2</sub> ) <sub>2</sub> SnF <sub>2</sub> <sup>c</sup>                    |                |                  | ·              | No DEE                                                                                     | ,             |
| 645 1         |                | 0.52 0.00                                                                        | 1.045          | 047.1            |                |                                                                                            |               |
| 047.1         | $\nu_1$        | $0.05 \pm 0.00$                                                                  | 1.849          | 047.1            | $\nu_1$        | $1.8 \pm 0.2$                                                                              | 1.784         |
|               | $\nu_2$        | $0.03 \pm 0.01$                                                                  | 2.019          | <b>FPO O</b>     | $\nu_2$        | $0.96 \pm 0.20$                                                                            | 1.884         |
| 569.9         | V 5            | $0.22 \pm 0.04$                                                                  | 0.947          | 008·2            | $\nu_1$        | $1.8 \pm 0.2$                                                                              | 1.764         |
| 508.2         | $\nu_1$        | $0.40 \pm 0.03$                                                                  | 1.824          | E14 E            | $\nu_2$        | $0.95 \pm 0.15$                                                                            | 1.861         |
|               | $\nu_2$        | $0.04 \pm 0.01$                                                                  | 2.479          | 914.9            | $\nu_1$        | $1.6 \pm 0.2$                                                                              | 1.750         |
| 514.5         | $\nu_5$        | $0.21 \pm 0.04$                                                                  | 1 800          | 100.0            | $\nu_2$        | $0.73 \pm 0.28$                                                                            | 1.845         |
| 014.0         | ν <sub>1</sub> | $0.03 \pm 0.04$                                                                  | 9.459          | 400.0            | $\nu_1$        | $1.6 \pm 0.3$                                                                              | 1.743         |
|               | ν <sub>2</sub> | $0.00 \pm 0.01$                                                                  | 6.104          |                  | $\nu_2$        | $0.00 \pm 0.32$                                                                            | 1.838         |
| 488.0         | ¥5             | $0.53 \pm 0.05$                                                                  | 1.809          |                  |                |                                                                                            |               |
| <b>H</b> 00 0 | ν <u>1</u>     | $0.05 \pm 0.01$                                                                  | 9.430          |                  |                | N. D.C.                                                                                    |               |
|               | ×2             | $0.24 \pm 0.04$                                                                  | 6.057          |                  |                | Na <sub>2</sub> PtCl <sub>6</sub>                                                          |               |
|               | ۴5             |                                                                                  | 0.001          | 647.1            |                | 101 + 10                                                                                   | 8 000         |
|               |                | nci-shci4                                                                        |                | 0471             | $\nu_1$        |                                                                                            | 3.896         |
| $647 \cdot 1$ | $\nu_1$        | $6 \cdot 1 \pm 0 \cdot 3$                                                        | 4.459          |                  | $\nu_2$        | $9.8 \pm 0.8$                                                                              | 4.330         |
|               | $\nu_2$        | $0.43 \pm 0.04$                                                                  | 7.251          | 568.9            | $\nu_5$        | $7.2 \pm 1.0$                                                                              | 13.12         |
|               | $\nu_{5}$      | $1.9 \pm 0.2$                                                                    | 13.55          | 008.2            | $\nu_1$        | $11.5 \pm 1.0$                                                                             | 3.818         |
| 568.2         | $\nu_1$        | $6.2 \pm 0.4$                                                                    | 4.366          |                  | $\nu_2$        | $11.0 \pm 0.9$                                                                             | 4.240         |
|               | $\nu_2$        | $\textbf{0.46} \pm \textbf{0.03}$                                                | 7.080          | 514.5            | $\nu_5$        | $3.3 \pm 0.0$                                                                              | 12.18         |
|               | $\nu_5$        | $1.7 \pm 0.1$                                                                    | 13.20          | 0110             | $\nu_1$        | $12.0 \pm 1.2$<br>$11.8 \pm 1.0$                                                           | 3.100         |
| 514.5         | $\nu_1$        | $6.5\pm0.3$                                                                      | 4.304          |                  | $\nu_2$        | $\frac{11.8 \pm 1.0}{7.7 \pm 0.7}$                                                         | 4.190         |
|               | $\nu_2$        | $0.41 \pm 0.04$                                                                  | 6.966          | 488.0            | V5             | $14.2 \pm 0.2$                                                                             | 12.00         |
|               | $\nu_5$        | $1.7 \pm 0.1$                                                                    | 12.96          | ±00.0            | $\nu_1$        | $14.3 \pm 0.2$<br>12.6 + 0.5                                                               | 3.141         |
| 488.0         | $\nu_1$        | $6.7\pm0.6$                                                                      | 4.273          |                  | v 2<br>v       | $12.0 \pm 0.0$<br>5.8 $\pm 0.6$                                                            | 19.45         |
|               | $\nu_2$        | $0.51\pm0.06$                                                                    | 6.911          |                  | V 5            | 58±00                                                                                      | 12.40         |
|               | $\nu_5$        | $1.7 \pm 0.1$                                                                    | 12.85          |                  |                |                                                                                            |               |
|               |                | HBr SnBr                                                                         |                |                  | ]              | Na <sub>2</sub> PtBr <sub>6</sub>                                                          |               |
|               |                |                                                                                  |                |                  |                | • •                                                                                        |               |
| 647.1         | $\nu_1$        | $21\cdot4\pm1\cdot2$                                                             | 10.27          | 647.1            | $\nu_1$        | $25\cdot3\pm3\cdot7$                                                                       | 8.366         |
|               | $\nu_2$        | $3\cdot4\pm0\cdot2$                                                              | 16.92          |                  | $\nu_2$        | $36\cdot 8\pm 3\cdot 2$                                                                    | 9.660         |
| F00 0         | ν <sub>š</sub> | $2.5 \pm 0.1$                                                                    | 33.45          |                  | $\nu_5$        | $14.7 \pm 1.1$                                                                             | $32 \cdot 82$ |
| 568·2         | $\nu_1$        | $24.2 \pm 0.9$                                                                   | 10.01          | 568.2            | $\nu_1$        | $34\cdot2\pm2\cdot7$                                                                       | 8.163         |
|               | $\nu_2$        | $4.4 \pm 0.3$                                                                    | 16.47          |                  | $\nu_2$        | $45\pm3$                                                                                   | 9.421         |
| ~ ~           | $\nu_5$        | $2.4 \pm 0.2$                                                                    | 32.52          |                  | $\nu_5$        | $15.7 \pm 1.6$                                                                             | 31.90         |
| 514.9         | $\nu_1$        | $28.0 \pm 1.2$                                                                   | 9.838          | 514.5            | $\nu_1$        | $31.0 \pm 2.1$                                                                             | 8.028         |
|               | $\nu_2$        | $4.0 \pm 0.4$                                                                    | 10.17          |                  | $\nu_2$        | $45 \pm 2$                                                                                 | 9.262         |
| 400.0         | $\nu_5$        | $2.2 \pm 0.2$                                                                    | 31.90          |                  | $\nu_5$        | $11.7 \pm 1.1$                                                                             | 31.30         |
| 488.0         | $\nu_1$        | $31.7 \pm 1.5$                                                                   | 9.755          | 488.0            | $\nu_1$        | $52\pm5$                                                                                   | 7.963         |
|               | $\nu_2$        | $5.2 \pm 0.3$                                                                    | 10.03          |                  | $\nu_2$        | $64 \pm 4$                                                                                 | 9.185         |
|               | $\nu_{3}$      | $2.1 \pm 0.5$                                                                    | 31.00          |                  | $\nu_5$        | $14\cdot3\pm2\cdot1$                                                                       | 31.00         |
|               |                | (Et <sub>4</sub> N) <sub>2</sub> SnI                                             |                |                  |                |                                                                                            |               |
| 647.1         | ν.             | 21 + 9                                                                           | 17.44          |                  |                | IZ D41                                                                                     |               |
| 568.2         | ν.             | 89 + 27                                                                          | 16.97          |                  |                | $R_2PtI_6$                                                                                 |               |
| 514.5         | ν.             | 233 + 70                                                                         | 16.67          | o ( <del>-</del> |                |                                                                                            |               |
|               | Vo             | $54 \pm 12$                                                                      | 22.94          | 647.1            | $\nu_1$        | $104 \pm 12$                                                                               | 14.60         |
| <b>488.0</b>  | V1             | $2\overline{72} + \overline{110}$                                                | 16.52          |                  | $\nu_2$        | $209 \pm 9$                                                                                | 18.52         |
|               | v.,            | $104 \pm 50$                                                                     | 22.74          | 500.0            | $\nu_5$        | $32\cdot 2 \pm 3\cdot 0$                                                                   | 57.46         |
|               | -              | $(\mathbf{D}_{\mathbf{T}}\mathbf{H})$ $\mathbf{D}\mathbf{b}\mathbf{C}\mathbf{I}$ |                | 568.2            | $\nu_1$        | $232 \pm 36$                                                                               | 14.21         |
|               |                | $(1 y 11)_2 r D O I_6$                                                           |                |                  | $\nu_2$        | $483 \pm 60$                                                                               | 18.02         |
| 647.1         | $\nu_1$        | $7 \cdot 4 \pm 0 \cdot 6$                                                        | 5.139          | 514 F            | $\nu_5$        | $47 \pm 5$                                                                                 | 55.81         |
| 568.2         | $\nu_1$        | $9.0 \pm 1.0$                                                                    | 5.026          | ə14·ə            | $\nu_1$        | $406 \pm 40$                                                                               | 13.96         |
| 514.5         | $\nu_1$        | $11\cdot3\pm1\cdot0$                                                             | 4.952          |                  | $\nu_2$        | $343 \pm 48$                                                                               | 17.70         |
| <b>488.0</b>  | $\nu_1$        | $13.0 \pm 1.0$                                                                   | 4.916          | 400.0            | $\nu_5$        | $30.4 \pm 6.0$                                                                             | 54.73         |
|               |                | Na <sub>2</sub> PdCl <sub>e</sub>                                                |                | 488.0            | $\nu_1$        | $635 \pm 100$                                                                              | 13.84         |
| 647.1         |                | 29.0 1 9.0                                                                       | 4.977          |                  | $\nu_2$        | $381 \pm 120$                                                                              | 17.94         |
| 047.1         | ν <sub>1</sub> | $22.0 \pm 2.0$<br>$21.7 \pm 1.0$                                                 | 4.021          |                  |                |                                                                                            |               |
|               | V2             | $\frac{21.7 \pm 1.0}{10.7 \pm 1.9}$                                              | 14.00          |                  | N              | Ja-RhCl.                                                                                   |               |
| 568.9         | ν <sub>5</sub> | $107 \pm 12$<br>$35.6 \pm 9.9$                                                   | 4.986          |                  | _              | 3 6                                                                                        |               |
| 000 4         | ۳ <u>۱</u>     | $33.0 \pm 3.0$                                                                   | 4.894          | 647.1            | ν-             | $7.1 \pm 0.3$                                                                              | 4.707         |
|               | ×2             | $13.1 \pm 1.8$                                                                   | 13.64          | 0111             | r 1<br>V-      | $3.0 \pm 0.2$                                                                              | 5.286         |
| 514.5         | ν.             | $30.0 \pm 1.8$                                                                   | 4.225          | 568.2            | -2<br>V-       | $6.4 \pm 0.2$                                                                              | 4.606         |
|               | ۲1<br>۲.       | $32.3 \pm 4.2$                                                                   | 4.754          | 000 #            | • 1<br>v       | $3.1 \pm 0.1$                                                                              | 5.170         |
|               | ν2<br>ν-       | $12 \cdot 2 + 1 \cdot 0$                                                         | 13.39          | 514.5            | - 2<br>V-      | $4.7 \pm 0.5$                                                                              | 4.540         |
| <b>488.0</b>  | ν.             | $23.5 \pm 1.2$                                                                   | 4.196          | 0110             | · 1<br>v_      | 1.9 + 0.4                                                                                  | 5.092         |
| 200 0         | v.             | $\overline{31\cdot8} \stackrel{-}{+} \overline{2\cdot0}$                         | 4.719          | <b>488</b> .0    | · 2<br>V 1     | $\mathbf{\hat{9}}\cdot\mathbf{\hat{1}}\overset{+}{+}\mathbf{\hat{0}}\cdot\mathbf{\hat{8}}$ | 4.507         |
|               | ν <sub>5</sub> | $9.4 \pm \overline{1}.2$                                                         | 13.28          |                  | vo             | $4 \cdot 0 + 0 \cdot 2$                                                                    | 5.055         |
|               | •              |                                                                                  |                |                  | 4              |                                                                                            |               |

| Wavelength/   |                       |                                         |        | Wavelength/   |                |                                                   |                |
|---------------|-----------------------|-----------------------------------------|--------|---------------|----------------|---------------------------------------------------|----------------|
| nm            | $\nu_{i}$             | $(I_2 M_1 / I_1 M_2)^{a}$               | f b    | nm            | $\nu_i$        | $(I_{2}M_{1}/I_{1}M_{2})^{a}$                     | f∙             |
|               |                       | Na <sub>3</sub> IrCl <sub>6</sub>       | 5      |               | •              | Na <sub>2</sub> OsCl <sub>6</sub>                 | ,              |
| 647.1         | $\nu_1$               | $2 \cdot 1 + 0 \cdot 3$                 | 4.427  | 647.1         | $\nu_1$        | 3.9 + 0.3                                         | 3.854          |
|               | $\nu_2$               | $1 \cdot 1 \stackrel{-}{\pm} 0 \cdot 1$ | 4.855  |               | $\nu_2$        | $0.58 \pm 0.14$                                   | 6.512          |
| 568.2         | $v_1^-$               | $2.0 \pm 0.2$                           | 4.334  |               | $\nu_5$        | $3 \cdot 1 \pm 0 \cdot 2$                         | 13.12          |
|               | $\nu_2$               | $0.85 \pm 0.1$                          | 4.750  | 568.2         | νı             | $3.7 \pm 0.3$                                     | 3.777          |
| 514.5         | $\nu_1$               | $2{\cdot}1\pm0{\cdot}3$                 | 4.273  |               | $\nu_2$        | $0.55\pm0.15$                                     | 6.361          |
|               | $\nu_2$               | $1.3 \pm 0.1$                           | 4.681  |               | $\nu_5$        | $2 \cdot 9 \pm 0 \cdot 3$                         | 12.78          |
| 488.0         | $\nu_1$               | $2{\cdot}1\pm 0{\cdot}2$                | 4.243  | 514.5         | $\nu_1$        | $5\cdot1\pm0\cdot4$                               | 3.726          |
|               | $\nu_2$               | $1.4 \pm 0.2$                           | 4.647  |               | $\nu_2$        | $1.4 \pm 0.2$                                     | 6.261          |
|               |                       |                                         |        |               | $\nu_5$        | $4.7 \pm 0.2$                                     | 12.55          |
|               |                       | Na <sub>2</sub> IrCl <sub>6</sub>       |        | <b>488</b> ·0 | $\nu_1$        | $6 \cdot 4 \pm 0 \cdot 5$                         | 3.701          |
| 647.1         | ν.                    | $9 \cdot 1 \rightarrow 1 \cdot 2$       | 3.861  |               | $\nu_2$        | $2 \cdot 6 \pm 0 \cdot 5$                         | 6.213          |
| 568.2         | · 1<br>v.             | $10.7 \pm 1.8$                          | 3.784  |               | $\nu_5$        | $4\cdot 3 \pm 0\cdot 3$                           | 12.45          |
| 514.5         | ν <sub>1</sub>        | $96 \pm 9$                              | 3.733  |               |                |                                                   |                |
|               | V.                    | $28.1 \pm 3.6$                          | 4.803  |               | 1)             | NH <sub>4</sub> ) <sub>2</sub> OsBr <sub>6</sub>  |                |
|               | $\nu_{\rm f}$         | 52 - 9                                  | 12.55  | $647 \cdot 1$ | ν.             | $11.3 \pm 1.0$                                    | 8.301          |
| <b>488</b> ·0 | י<br>עו               | 122 - 12                                | 3.708  | 568.2         | · 1<br>//      | $10.3 \pm 1.7$                                    | 8.099          |
|               | $\nu_{2}$             | 58 + 6                                  | 4.768  | 514.5         | ν,             | 36 + 2                                            | 7.967          |
|               | ν5                    | 116 + 6                                 | 12.45  |               | - 1<br>Va      | $20.8 \pm 3.6$                                    | 11.45          |
|               | 5                     |                                         |        |               | $v_{z}$        | 51 + 6                                            | 28.54          |
|               |                       | KalrBre                                 |        | <b>488</b> .0 | $\nu_1$        | $104 \pm 7$                                       | 7.902          |
| 647.1         |                       | 106 ( 19                                | 0.966  |               | $\nu_{2}$      | 14.5 + 3.0                                        | 11.35          |
| 01/1          | $\nu_1$               | $100 \pm 12$<br>70 ± 10                 | 31.90  |               | ν.             | $56 \div 6$                                       | 28.27          |
|               | V2                    | $70 \pm 10$<br>51 ± 11                  | 21.60  |               | 3              |                                                   |                |
| 568.9         | V 5                   | $31 \pm 11$<br>$302 \pm 16$             | 9.162  |               | (1             | NH4),ReCle                                        |                |
| 000 2         | <i>v</i> <sub>1</sub> | $502 \pm 10$<br>71 ± 6                  | 11.00  | 647.1         |                | 9.9   0.9                                         | 9.941          |
|               | V2                    | $71 \pm 0$<br>191 + 15                  | 20.79  | 047.1         | $\nu_1$        | $2.2 \pm 0.3$                                     | 19.60          |
| 514.5         | P 5                   | $\frac{121 \pm 10}{8.1 + 0.4}$          | 8.004  | 569.9         | ν <sub>5</sub> | $4.1 \pm 0.6$                                     | 10.09          |
| 0110          | ν <sub>1</sub>        | $\frac{8.1 \pm 0.4}{27 \pm 2}$          | 10.004 | 508.2         | $\nu_1$        | $\frac{2.5 \pm 0.5}{4.1 + 1.0}$                   | 0.404<br>19.94 |
|               | V 2                   | $54 \pm 4$                              | 20.14  | 514.5         | V 5            | $\frac{4.1}{2.7} \pm 0.4$                         | 2.714          |
| 488.0         | ¥5                    | $56 \pm 9$                              | 7.963  | 014.0         | ν <sub>1</sub> | $\frac{2.7 \pm 0.4}{4.1 \pm 1.9}$                 | 12.10          |
| 100 0         | ۳ <u>۱</u>            | $30 \pm 3$<br>$84 \pm 8$                | 10.81  | 488.0         | V 5            | $\frac{4}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}$ | 2,690          |
|               | ×2                    | $31 \pm 2$                              | 90.86  | 400.0         | ۳ <u>1</u>     | $\frac{2.9 \pm 0.2}{4.9 \pm 1.0}$                 | 19.00          |
|               | ۳5                    | 91 ± 4                                  | 20.00  |               | V5             | Æ.7 III 1.0                                       | 12.99          |

### TABLE 3(Continued)

<sup>a</sup> Corrected for spectral response; subscript 2 refers to the hexahalogenide, whereas 1 refers to perchlorate.  $bf = \left(\frac{v_0 - v_2}{v_0 - v_1}\right)^{-1} \left(\frac{v_1}{v_2}\right) \left[\frac{1 - \exp\left(-\frac{hcv_1}{kT}\right)}{1 - \exp\left(-\frac{hcv_2}{kT}\right)}\right]$ . <sup>c</sup> Intensity values for the  $v_2(c_g)$  and  $v_5(t_{2g})$  fundamentals are obtained from measurements on the solid.

polarised exciting lines. Thus even after allowing for points (a) and (b), any previous Raman intensities of nontotally symmetric fundamentals of  $MX_6^{n-}$  ions should be multiplied by the factor 7/13 to allow for the different anisotropic contributions to the Raman scattering implicit in the different situations described under point (c).

The frequency-corrected relative molar intensities (relative scattering activities) of the various bands at four exciting frequencies are listed in Table 4.

Bond Polarisability Derivatives.—The intensities of the  $v_1(a_{1g})$  fundamentals of the hexahalogenide ions were used to calculate the appropriate mean molecular polarisability derivatives  $(\bar{\alpha}')$  via the relationships <sup>3</sup>

$$\frac{I_{2M_1}}{I_{1M_2}} = f\left(\frac{\bar{\alpha}_2'}{\bar{\alpha}_1'}\right)^2 \left(\frac{1+\rho_2}{1+\rho_1}\right) \left(\frac{3-4\rho_1}{3-4\rho_2}\right)$$
(2)

where M is the molar concentration,  $\rho$  is the depolarisation ratio, and the subscript 2 refers to the hexahalogenide and 1 to perchlorate. The frequency factor f is defined as:

$$f = \left(\frac{\mathbf{v}_0 - \mathbf{v}_2}{\mathbf{v}_0 - \mathbf{v}_1}\right)^4 \left(\frac{\mathbf{v}_1}{\mathbf{v}_2}\right) \left[\frac{1 - \exp\left(-hc\mathbf{v}_1/kT\right)}{1 - \exp\left(-hc\mathbf{v}_2/kT\right)}\right]$$
(3)

where  $v_0$  is the exciting frequency,  $v_2$  is the Raman shift of the  $a_{1g}$  fundamental of the hexahalogenide ion, and  $v_1$  is the

<sup>12</sup> G. W. Chantry and R. A. Plane, *J. Chem. Phys.*, 1960, **32**, **3**19.

Raman shift of the  $a_1$  fundamental of the perchlorate ion (in cm<sup>-1</sup>).

The corresponding bond polarisability derivatives  $\bar{\alpha}_{MX}'$  are then determined *via* the relationship

$$\left(\frac{\tilde{a}_{2}'}{\tilde{a}_{1}'}\right) = \left(\frac{6\mu_{2}}{4\mu_{1}}\right)^{\frac{1}{2}} \frac{\tilde{a}_{MX}'}{\tilde{a}_{CIO}'} \tag{4}$$

where  $\mu$  is the reciprocal of the mass of the X atom. As  $\rho_1 = \rho_2 = 0$  for totally symmetric modes of cubic molecules and by taking the reference value  ${}^{12}\bar{\alpha}_{ClO}'$  to be 1.73 Å<sup>2</sup>, the last equation reduces to

$$\bar{\mathbf{x}}_{\mathrm{MX}}' = 1.73 \left[ \frac{1}{f} \left( \frac{I_2 M_1}{I_1 M_2} \right) \left( \frac{4\mu_1}{6\mu_2} \right) \right]^{\frac{1}{2}}$$
(5)

In order to obtain  $\bar{\alpha}_{MX}'$  values in the absence of resonance enhancement, it is necessary to plot the  $\bar{\alpha}_{MX}'$  values at each exciting frequency ( $\nu_0$ ) against a frequency function which describes the deviation from  $\nu_0^4$  dependence of intensity under pre-resonance conditions. The simplest frequencycorrection function is that of Shorygin,<sup>13</sup> viz.

$$I_{\Lambda} \propto \frac{(\nu_{\rm e}^2 + \nu_{\rm 0}^2)^2}{(\nu_{\rm e}^2 - \nu_{\rm 0}^2)^4} \tag{6}$$

<sup>13</sup> J. Behringer, in 'Raman Spectroscopy,' ed. H. A. Szymanski, Plenum, New York, 1967, p. 168. Dividing numerator and denominator by  $v_e^8$  and taking the square root of the function (since  $\bar{\alpha}_{MX}'$  is a function of  $I^{\frac{1}{2}}$ ), we plot  $\bar{\alpha}_{MX}'$  versus the function

$$A = \frac{1 + (v_0/v_e)^2}{[1 - (v_0/v_e)^2]^2}$$
(7)

where, as before,  $\nu_e$  is the frequency of the first allowed electronic transition of the molecule. (The  $1/\nu_e^2$  term

When the frequency of the incident light is well removed from the region of electronic absorption, it was shown by Placzek <sup>14</sup> that the intensity of molecular Raman scattering arises from the dependence of the ground state polarisability on nuclear vibrations. The socalled polarisability theory of Placzek has led to the bond polarisability theory commonly used to analyse vibrational Raman spectra in terms of ground-state

| Table | 4 |  |  |
|-------|---|--|--|
|       |   |  |  |

Molar intensities of Raman-active fundamentals of  $MX_6^{n^-}$  ions relative to that of the 935 cm<sup>-1</sup> band of the perchlorate ion, corrected for frequency factors <sup>a</sup>

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | Exciting wavelength/nm                  |                                        |                                          |                                          |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------|----------------------------------------|------------------------------------------|------------------------------------------|--|--|
| Anion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fundamental    | 647.1                                   | 568.2                                  | 514.5                                    | 488.0                                    |  |  |
| SnF.2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ν,             | $0.28 \pm 0.03$                         | 0.25 + 0.02                            | $0.29 \pm 0.02$                          | $0.29 \pm 0.03$                          |  |  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V2             | $0.020 \pm 0.004$                       | 0.018 + 0.003                          | $0.024 \pm 0.004$                        | 0.022 + 0.004                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $v_5$          | $0.035 \pm 0.006$                       | $0.035 \pm 0.006$                      | $0.04 \pm 0.01$                          | $0.04 \pm 0.01$                          |  |  |
| SnCl <sub>6</sub> <sup>2-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | vi             | $1.37 \pm 0.07$                         | $1.43 \pm 0.09$                        | $1\cdot 52 \ \overline{\pm} \ 0\cdot 07$ | $1.57 \pm 0.14$                          |  |  |
| v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ν2             | $0.06 \pm 0.006$                        | $0.06 \pm 0.005$                       | $0.06 \pm 0.006$                         | $0.07 \pm 0.01$                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | v <sub>5</sub> | $0.14 \pm 0.01$                         | $0.13 \pm 0.01$                        | $0.13 \pm 0.01$                          | $0.13 \pm 0.01$                          |  |  |
| SnBr <sub>6</sub> <sup>2-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V <sub>1</sub> | $2 \cdot 1 \pm 0 \cdot 1$               | $2{\cdot}4\pm0{\cdot}1$                | $2 \cdot 9 \pm 0 \cdot 1$                | $3\cdot 2 \pm 0\cdot 1$                  |  |  |
| , in the second s | v.2            | $0.20 \pm 0.01$                         | $0.27\pm0.02$                          | $0.28\pm0.02$                            | $0.32 \pm 0.02$                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | va             | $0.07 \pm 0.003$                        | $0.07\pm0.005$                         | $0.07\pm0.005$                           | $0.07 \pm 0.01$                          |  |  |
| $SnI_6^{2-b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | vı             | $1.2 \pm 0.5$                           | $5\cdot2\pm1\cdot6$                    | $14 \pm 4$                               | $17 \pm 7$                               |  |  |
| , i i i i i i i i i i i i i i i i i i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V2             |                                         |                                        | $2\cdot 3 \pm 0\cdot 5$                  | $4{\cdot}6 \pm 2{\cdot}2$                |  |  |
| PbCl <sub>6</sub> <sup>2-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | v_1            | $1.44 \pm 0.11$                         | $1.79 \pm 0.20$                        | $2\cdot 29 \pm 0\cdot 20$                | $2.65 \pm 0.20$                          |  |  |
| PdCl <sub>6</sub> <sup>2-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\tilde{v_1}$  | $5.0 \pm 0.5$                           | $8{\cdot}4\pm0{\cdot}5$                | $7 \cdot 1 \pm 0 \cdot 4$                | $5\cdot 6 \pm 0\cdot 3$                  |  |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V2             | $4{\cdot}4 \pm 0{\cdot}2$               | $6.9 \pm 0.6$                          | $6.8 \pm 0.9$                            | $6.7 \pm 0.4$                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ν <sub>5</sub> | $0.76 \pm 0.08$                         | $0.96\pm0.13$                          | $0.91\pm0.07$                            | $0.71\pm0.08$                            |  |  |
| PtF62-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ¥1             | $1.03\pm0.03$                           | $1.03 \pm 0.13$                        | $0.93\pm0.12$                            | $0.93\pm0.18$                            |  |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ν.,            | $0.51\pm0.08$                           | $0.51\pm0.08$                          | $0.40\pm0.15$                            | $0.36\pm0.17$                            |  |  |
| PtCl <sub>6</sub> <sup>2-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _<br>ب         | $2.6 \pm 0.3$                           | $3.0 \pm 0.3$                          | $3\cdot3\pm0\cdot3$                      | $3.8 \pm 0.1$                            |  |  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V2             | $2\cdot 3 \pm 0\cdot 2$                 | $2.6 \pm 0.2$                          | $2.8 \pm 0.3$                            | $3.0 \pm 0.1$                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | v <sub>5</sub> | $0.55 \pm 0.08$                         | $0.65\pm0.04$                          | $0.61\pm0.05$                            | $0.47\pm0.05$                            |  |  |
| PtBr <sub>6</sub> <sup>2-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VI             | $3.0 \pm 0.4$                           | $4\cdot 2 \pm 0\cdot 3$                | $3\cdot9\pm0\cdot3$                      | $6.5 \pm 0.7$                            |  |  |
| v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | v.,            | 3.8 + 0.3                               | 4.8 + 0.3                              | 4.8 + 0.2                                | $7 \cdot 0 + 0 \cdot 5$                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Vs             | 0.46 + 0.02                             | $0.49 \pm 0.05$                        | $0.37 \pm 0.03$                          | $0.46 \pm 0.07$                          |  |  |
| PtI <sub>6</sub> <sup>2-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | νı             | $7 \cdot 1 \stackrel{-}{\pm} 0 \cdot 8$ | $16\cdot 3 \stackrel{-}{\pm} 2\cdot 5$ | $29\cdot 1 \stackrel{-}{\pm} 3\cdot 0$   | $46 \pm 7$                               |  |  |
| Ū.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | v,             | $11\cdot3 \pm 0\cdot5$                  | $26 \cdot 8 \pm 3 \cdot 0$             | $19\cdot4\pm2\cdot5$                     | $21{\cdot}7 \stackrel{-}{\pm} 6{\cdot}5$ |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | va             | $0.56 \pm 0.05$                         | $0.84 \pm 0.08$                        | $0.56 \pm 0.11$                          |                                          |  |  |
| RhCl <sub>6</sub> 3-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ¥1             | 1.5 + 0.1                               | $1 \cdot 4 \pm 0 \cdot 1$              | $1 \cdot 0 \pm 0 \cdot 1$                | $2{\cdot}0\pm 0{\cdot}2$                 |  |  |
| ° ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | v,             | 0.56 + 0.03                             | $0.61 \pm 0.05$                        | $0.37 \pm 0.08$                          | $0.78\pm0.05$                            |  |  |
| IrCl <sub>6</sub> <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | v,             | $0.48 \pm 0.06$                         | $0.47 \pm 0.04$                        | $0.50 \pm 0.07$                          | $0.50 \pm 0.05$                          |  |  |
| Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | v.,            | $0.23 \pm 0.01$                         | $0.18 \pm 0.03$                        | $0.29 \pm 0.02$                          | $0.30 \pm 0.04$                          |  |  |
| IrCl <sub>6</sub> <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | v,             | $2 \cdot 4 \pm 0 \cdot 3$               | $2.8 \pm 0.4$                          | $25\cdot8\pm2\cdot4$                     | $33\pm3$                                 |  |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | v <sub>2</sub> |                                         |                                        | $5.9 \pm 0.8$                            | $12{\cdot}1\pm1{\cdot}3$                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V <sub>5</sub> |                                         |                                        | $4 \cdot 1 \pm 0 \cdot 7$                | $9\cdot3\pm0\cdot5$                      |  |  |
| IrBr <sub>6</sub> 2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V,             | $12.7 \pm 1.5$                          | $37 \pm 2.0$                           | $1.00 \pm 0.06$                          | $7{\cdot}0 \stackrel{-}{\pm} 1{\cdot}1$  |  |  |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | v2             | $6.2\pm0.9$                             | $6{\cdot}4\pm0{\cdot}5$                | $2{\cdot}48\pm0{\cdot}20$                | $7.8\pm0.7$                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | v <sub>5</sub> | $1.62\pm0.35$                           | $3.9 \pm 0.5$                          | $1.79 \pm 0.12$                          | $1.02 \pm 0.08$                          |  |  |
| OsCl <sub>6</sub> <sup>2-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VI             | $1.01 \pm 0.07$                         | $0.97 \pm 0.08$                        | $1.37 \pm 0.10$                          | $1.74 \pm 0.13$                          |  |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | v,             | $0.089 \pm 0.020$                       | $0.085 \pm 0.020$                      | $0.22 \pm 0.03$                          | $0.42 \pm 0.08$                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | va             | 0.24 + 0.02                             | $0.23 \pm 0.02$                        | $0.37 \pm 0.02$                          | $0.35 \pm 0.02$                          |  |  |
| OsBr <sub>6</sub> <sup>2-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ້              | 1.36 + 0.12                             | $1.27 \pm 0.21$                        | $\textbf{4.55} \pm \textbf{0.25}$        | $13 \cdot 2 \pm 0 \cdot 9$               |  |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | v2             |                                         |                                        | $1.82\pm0.30$                            | $1{\cdot}27 \pm 0{\cdot}26$              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | v <sub>5</sub> |                                         |                                        | $1.80 \pm 0.20$                          | $1.97 \pm 0.20$                          |  |  |
| ReCl <sub>6</sub> <sup>2-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | v <sub>1</sub> | $0.56\pm0.08$                           | $0.61\pm0.13$                          | $0.73 \pm 0.11$                          | $0.79\pm0.05$                            |  |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | v <sub>5</sub> | $0.30 \pm 0.06$                         | $0.30\pm0.08$                          | $0.31 \pm 0.09$                          | $0.33 \pm 0.07$                          |  |  |

<sup>a</sup> The error limits refer to the scatter between the ten different measurements of each datum (five of which were carried out at one concentration of the anion, and five at a different one). Standard deviations on the data are considerably smaller than the quoted error limits. <sup>b</sup> Very approximate data, owing to partial solvolysis of the ion in the only suitable solvent, namely acetonitrile, and to the fact that the intensity measurements necessarily involved an intermediate standard, *viz.* the 377 cm<sup>-1</sup> band of acetonitrile.

which would appear in A is ignored as it is independent of  $v_{0}$ .) Extrapolation of such a plot to the value A = 1 (*i.e.*  $v_{0} = 0$ ) gives the  $\bar{\alpha}_{MX}'$  value corrected for resonance enhancement.

### DISCUSSION

A. General Introduction, Discussion of Intensity Changes, and the Rigorous Resonance Raman Effect.— properties of molecules. No reference to virtual states is necessary, and thus the role of excited electronic states in contributing to the polarisability is not clear. Recently, interest has developed in the resonance

<sup>14</sup> G. Placzek, 'Handbuch der Radiologie,' ed. E. Marx, Akademische Verlagsgesellschaft, Leipzig, 1934, vol. VI, Part 2, p. 205. Raman effect (r.r.e.) in which the incident frequency is made to approach that of a virtual transition and thus the role of low-lying electronic (virtual) states is much more important. Since Placzek's theory requires that the exciting frequency is far removed from the first

that the fundamentals  $\nu_1(a_{1g})$  and  $\nu_2(e_g)$  show the greatest pre-r.r.e., and that the extent of the enhancement increases with decrease in  $\nu_e - \nu_0$ . Thus for the PtX<sub>6</sub><sup>2-</sup> ions, the  $(1/f)(I_2M_1/I_1M_2)$  values for  $v_1$  change by the factors ca. 0, 1.5, 2.2, and 6.5 from 647.1 to 488.0 nm

| TABLE | <b>5</b> |
|-------|----------|
|-------|----------|

The energies of the lowest-lying charge transfer absorption bands for the hexahalogenide anions studied (aqueous soln) aWavenumber/cm<sup>-1</sup>

| Anion                            | Colour     | Ref. | ν <sub>e</sub>      | ν <sub>s</sub>         |  |  |
|----------------------------------|------------|------|---------------------|------------------------|--|--|
| $SnF_6^{2-}$                     | Colourless | b    | > 50,000            |                        |  |  |
| SnCl <sub>6</sub> <sup>2-</sup>  | Colourless | С    | 44,900 (ca. 10,000) |                        |  |  |
| $SnBr_6^{2-d}$                   | Colourless | е    | 31,900 (ca. 9000)   | 34,900 (ca. 10,400)    |  |  |
| $SnI_6^{2-d}$                    | Maroon     | b    | 27,650              | 34,350                 |  |  |
| PbČl <sub>6</sub> 2~             | Yellow     | f    | 32,600 (9700)       | 48,100 (ca. $24,000$ ) |  |  |
| PdCl <sup>°2</sup>               | Deep red   | c    | 29,400 (14,000)     | 41,700 (55,000)        |  |  |
| $PtF_{e}^{2-}$                   | Yellow     | b    | > 50,000            |                        |  |  |
| PtCl <sub>6</sub> <sup>2-</sup>  | Orange     | g    | 38,200 (24,800)     | 49,800 (51,900)        |  |  |
| PtBr <sub>6</sub> <sup>2-</sup>  | Red        | č    | 31,800 (18,000)     | <b>44,200</b> (70,000) |  |  |
| PtI <sub>6</sub> <sup>2-</sup>   | Deep red   | С    | 20,250 (12,800)     | 29,150 (17,000)        |  |  |
| RhCl <sub>6</sub> 3~             | Red        | С    | 39,200 (29,000)     |                        |  |  |
| IrCl <sub>6</sub> <sup>3-</sup>  | Yellow     | С    | 48,500 (28,000)     |                        |  |  |
| IrCl <sub>6</sub> <sup>2-</sup>  | Brown      | С    | 20,450 (3280)       | 23,050 (2560)          |  |  |
| IrBr <sub>6</sub> <sup>2</sup>   | Purple     | с    | 17,150 (3220)       | 18,350 (1780)          |  |  |
| OsCl <sub>6</sub> <sup>2</sup>   | Red        | С    | 27,000 (7300)       | 30,000 (7900)          |  |  |
| OsBr <sub>6</sub> <sup>2-</sup>  | Deep red   | С    | 20,450 (5600)       | 22,600 (7500)          |  |  |
| ReCl <sub>6</sub> <sup>2</sup> - | Green      | c, h | 35,600 (12,500)     | 48,000                 |  |  |

<sup>a</sup> Values in parentheses indicate molar extinction coefficients where available. <sup>b</sup> This work; in cases where the value of v<sub>n</sub> is unknown, it is taken to be 50,000 cm<sup>-1</sup> in the calculations of intensity functions. <sup>c</sup> C. K. Jørgensen, *Mol. Phys.*, 1959, **2**, 309. <sup>d</sup> Measurements taken in acctonitrile solution. <sup>e</sup> R. A. Walton, R. W. Matthews, and C. K. Jørgensen, *Inorg. Chim. Acta*, 1967, **1**, 355. <sup>J</sup> H. G. Heal and J. May, J. Amer. Chem. Soc., 1958, 80, 2374. <sup>J</sup> C. K. Jørgensen and J. S. Brinen, Mol. Phys., 1962, 5, 535. <sup>h</sup> J. C. Eisenstein, J. Chem. Phys., 1961, 34, 1628.

allowed electronic transition of the molecule, the r.r.e. requires special theoretical treatment. As developed by Albrecht,<sup>15,16</sup> this approach takes as its starting point the Kramers-Heisenberg dispersion equation and van Vleck's expansion of this equation. Albrecht has derived a relationship between the Raman intensities of the ground state vibrations and the vibronic intensities of allowed transitions of a molecule. He found that it is the 'forbidden' character (*i.e.* vibrationally induced character) of allowed transitions which is responsible for Raman intensities. In particular, the normal mode most responsible for the 'forbidden' intensity in the lowest electronic transition of the molecule should show the greatest enhancement of its intensity as the exciting frequency approaches that of the lowest electronic transition. In molecules of  $O_h$  symmetry, all three Raman-active fundamentals could (by symmetry arguments) <sup>17</sup> be responsible for the mixing of the two lowest allowed electronic states and thus show resonance enhancement of their intensities as  $v_0$  approaches  $v_e$ . The intensity changes with change of  $v_0$  for the  $v_1(a_{1g})$ ,  $v_2(e_g)$ , and  $v_5(t_{2g})$  fundamentals of the ions studied are given in Table 4, while the frequencies and extinction coefficients of the first two allowed electronic transitions of each ion are given in Table 5. (As many of the electronic spectra are very complicated the decision as to which are the first two allowed transitions is not necessarily unambiguous.)

In general, it is apparent from the data in Table 4

excitation as X changes from F to Cl to Br to I. The effect in the case of the  $PtI_6^{2-}$  ion is illustrated in Figure 1. The relationship between the frequencies of



Wavenumber/cm<sup>-1</sup>

FIGURE 1 Raman spectra of the PtI<sub>6</sub><sup>2-</sup> ion at the four exciting wavelengths 647.1, 568.2, 514.5, and 488.0 nm, showing the pronounced pre-r.r.e. on the  $v_1(a_{1g})$  fundamental of this ion

<sup>&</sup>lt;sup>15</sup> A. C. Albrecht, J. Chem. Phys., 1960, 33, 156.

<sup>&</sup>lt;sup>16</sup> A. C. Albrecht, J. Chem. Phys., 1961, 34, 1476.

<sup>&</sup>lt;sup>17</sup> The symmetry species to which the electronic states e and sbelong is  $T_{1u}$  for molecules and ions of the symmetry point group  $O_{h}$ . (E.g. ions with the electronic configuration  $t_{2g}^{0}$ ,  $t_{2g}^{3}$ ,  $t_{2g}^{e}$ , or  $t_{2g}^{6}e_{g}^{4}.)$ 

the exciting lines and the electronic spectra of those complex ions which possess very detailed spectra in the visible region, viz.  $IrCl_6^{2-}$ ,  $IrBr_6^{2-}$ ,  $OsBr_6^{2-}$ , and  $PtI_6^{2-}$ , are shown in Figure 2. For the  $d^6$  and  $d^{10}$  ions (with the exception of the two iodides) there is no systematic variation in the ratio of the scattering activities of the

 $\varepsilon$  3280) resonance seems probable with 488.0 nm excitation. Similarly for the  $OsBr_6^{2-}$  ion ( $\nu_e = 20.450$ ,  $\epsilon$  5600), the  $IrBr_{6}^{2-}$  ion (v\_e = 17 150,  $\epsilon$  3220) and the  $PtI_6^{2-}$  ion (v<sub>e</sub> = 20 250 cm<sup>-1</sup>,  $\epsilon$  12 800) resonance seems likely with 488.0 nm, 568.2 nm, and either 514.5 or 488.0 nm excitation respectively.



FIGURE 2 Electronic spectra of the  $IrCl_{s}^{2-}$ ,  $IrBr_{s}^{2-}$ ,  $OsBr_{s}^{2-}$ , and  $PtI_{s}^{2-}$  ions showing the positions of the Raman exciting lines relative to the absorption bands of each complex ion

 $v_1(a_{1g})$  and  $v_2(e_g)$  fundamentals on change of  $v_0$  from 647.1 to 488.0, but for the ions of the  $t_{2g}^4$  and  $t_{2g}^5$  configurations ( $OsCl_6^{2-}$ ,  $OsBr_6^{2-}$ ,  $IrCl_6^{2-}$ , and  $IrBr_6^{2-}$ ), the  $v_2(e_g)$  fundamental shows selective enhancement. Thus although the ratios of the  $(1/f)(I_2M_1/I_1M_2)$  values for the  $\nu_1(a_{1g})$  and  $\nu_2(e_g)$  fundamentals of the  $\mathrm{IrCl}_6^{2-}$  and  $\mathrm{IrCl}_6^{3-}$ ions are comparable using 488.0 nm excitation, that of the  $IrCl_6^{2-}$  ion is immeasurably bigger than that of the  $IrCl_6^{3-}$  ion using 647.1 nm excitation.

Rigorous resonance Raman spectra may be observed in those cases in which the exciting frequency lies within the electronic band. The effect is characterised by a pronounced increase in the intensity of overtones of the totally symmetric fundamental.<sup>18,19</sup> The observation of resonance Raman spectra thus seemed likely in the cases of those ions for which available exciting frequencies coincided or nearly coincided with the frequency of an allowed electronic transition in the ion. Hence (Table 5) for the  $IrCl_6^{2-}$  ion ( $v_e = 20450$  cm<sup>-1</sup>,

Careful study of the above ions under the stated conditions has led, as expected, to the observation of overtones with all the ions mentioned but in no case was the progression observed to exceed  $3\nu_1$  (Table 6).

TABLE 6

Overtones of the  $v_1(a_{1g})$  fundamental observed for complex ions under r.r.e. conditions (cm<sup>-1</sup>)

| Ion                             | יע                          | 2v1                         | 3ν <sub>1</sub> | $\lambda_0/nm$ |
|---------------------------------|-----------------------------|-----------------------------|-----------------|----------------|
| IrCl <sub>6</sub> <sup>2-</sup> | $345 \cdot 7 \pm 0 \cdot 5$ | $690{\cdot}9 \pm 1{\cdot}3$ |                 | <b>488</b> ·0  |
| OsBr <sub>6</sub> <sup>2-</sup> | $210.6 \pm 0.5$             | $421\cdot2\pm1\cdot0$       |                 | 457.9          |
| IrBr <sub>6</sub> 2~            | $209{\cdot}6 \pm 0{\cdot}5$ | $420.5 \pm 1.0$             | $630\pm2$       | 568.2          |
| T)+T 9                          | 1509 1 0 5                  | 900 9 1 1.0                 |                 | ∫514.5 and     |
| ru <sub>6</sub> "               | $100.2 \pm 0.9$             | $255.7 \pm 1.0$             |                 | 1488.0         |

In the light of earlier observations of progressions in the  $v_1(a_1)$  fundamental of titanium <sup>20</sup> and tin tetraiodides <sup>21</sup> under resonance conditions to  $13v_1$  and  $11v_1$  respectively, these results were disappointing. The  $v_1(a_{1q})$  fundamental vibration was harmonic within experimental error in each case.

20 R. J. H. Clark and P. D. Mitchell, J. Amer. Chem. Soc.,

1973, **95**, 8300. <sup>21</sup> R. J. H. Clark and P. D. Mitchell, *J.C.S. Chem. Comm.*, 1973, 762.

<sup>&</sup>lt;sup>18</sup> W. Holzer, W. F. Murphy, and H. J. Bernstein, J. Chem.

Phys., 1970, **52**, 399. <sup>19</sup> L. A. Nafie, P. Stein, and W. L. Peticolas, Chem. Phys. Letters, 1971, **12**, 131.

In the case of the  $PtI_6^{2-}$  ion, the first overtone of  $v_2(e_g)$  is apparent in the Raman spectrum when the latter is obtained using 568.2, 514.5, or 488.0 nm excitation. It occurs at  $261.9 \pm 0.5$  cm<sup>-1</sup> (cf.  $v_2 = 131.0 \pm 0.9$  cm<sup>-1</sup>).

B. Choice of Pre-resonance Raman Effect Functions.— It was stated earlier that in order to derive a value for the bond-polarisability derivative in the absence of resonance enhancement it is necessary to plot the  $\bar{\alpha}_{MX}'$ values obtained for each exciting frequency against an appropriate frequency function and to extrapolate to zero exciting frequency. The simplest frequency function, due to Shorygin, is given above (equation 7). Albrecht has derived a different expression for the dependence of the intensity of Raman bands on  $v_0$  and  $v_{e_0}$  an expression which emphasises the importance of



FIGURE 3 Plot of the value of the Shorygin  $(I_A)$  and Albrecht  $(I_B)$  frequency functions  $[I(v_1) \text{ calc}]$  divided at each exciting frequency  $(v_0)$  by the value of  $(1/f)(I_2M_1/I_1M_2)$  for the  $v_1(a_{1P})$  fundamental of Na<sub>2</sub>PtCl<sub>6</sub>  $[I(v_1) \text{ expt}]$  against  $v_0$  ( $\bigcirc$ ,  $\bigcirc$  respectively)

vibronic coupling of the two lowest-lying dipole-allowed electronic states  $\nu_e$  and  $\nu_s.$  The frequency correction expression is  $^{15,16}$ 

$$I_{\rm B} \propto \frac{(\nu_{\rm e}\nu_{\rm s} + \nu_0^2)^2}{(\nu_{\rm e}^2 - \nu_0^2)^2(\nu_{\rm s}^2 - \nu_0^2)^2} \tag{8}$$

A further expression, due to Peticolas *et al.*,<sup>22</sup> simplifies in the case of an  $O_h$  molecule to give:

$$I_{\rm C} \propto \left[ \frac{1}{(\nu_{\rm e} - \nu_{\rm 0})(\nu_{\rm s} - \nu_{\rm 0})} + \frac{1}{(\nu_{\rm e} + \nu_{\rm 0})(\nu_{\rm s} + \nu_{\rm 0})} \right]^2 \quad (9)$$

which is identical to that of Albrecht.

In order to test which expression best describes the observed intensity enhancement of the  $v_1(a_{1g})$  mode for each ion with changing exciting frequency, the ratio of the calculated to the experimental intensity has been plotted *versus*  $v_0$  for each of the four exciting lines. The results are shown in Figure 3 for the PtCl<sub>6</sub><sup>2-</sup> ion. It is

<sup>22</sup> W. L. Peticolas, L. Nafie, P. Stein, and B. Fanconi, J. Chem. Phys., 1970, **52**, 1576.

seen that the plot is more nearly 'horizontal' in the case of Albrecht's function than of Shorygin's function. This result was found to apply to all the hexahalogenide ions studied and therefore Albrecht's function has been preferred to Shorygin's to determine bond polarisability derivatives at zero exciting frequency. This conclusion is in agreement with that of Innes *et al.*<sup>23</sup> on pyrazine, and it demonstrates the importance of two, rather than one, electronic states in determining Raman intensities.

C. Discussion of  $\bar{\alpha}_{MX}'$  Values, and Derivation of  $\gamma_n'$ Values.—The resulting values of  $\bar{\alpha}_{MX}'$  at  $v_0 = 0$  for each ion are listed in Table 7. In the case of the  $d^{10}$  ions  $\mathrm{SnF_6^{2-}, SnCl_6^{2-}, SnBr_6^{2-}, PbCl_6^{2-}, the d^3}$  ion  $\mathrm{ReCl_6^{2-}}$ ,

## TABLE 7

Comparison of  $\bar{\alpha}_{MX}'$  values obtained by extrapolation of Albrecht's and Shorygin's plots to zero exciting frequency

|                                  | ā <sub>MX</sub> ′<br>(Shorygin) | ā <sub>MX</sub> '<br>(Albrecht) |                     | Умх <sup>в</sup> |
|----------------------------------|---------------------------------|---------------------------------|---------------------|------------------|
| Anion                            | /Ų                              | /A2                             | Points <sup>a</sup> | $/ Å^3$          |
| SnF <sub>6</sub> <sup>2−</sup>   | 0.81                            | 0.81                            | 4                   | 0.6 °            |
| SnCl <sup>2-</sup>               | $2 \cdot 3$                     | $2 \cdot 3$                     | 4                   | 2.0              |
| 5nBr <sub>6</sub> 2-             | 3.9                             | $3 \cdot 9$                     | 4                   | $2 \cdot 4$      |
| $\operatorname{SnI}_6^{2-d}$     | ca. 5                           | ca. 5                           |                     |                  |
| PbCl <sub>6</sub> 2-             | $2 \cdot 0$                     | $1.8^{-1}$                      | 4                   |                  |
| PdCl <sup>2</sup>                | $2 \cdot 2$                     | $1.9_{5}$                       | 2                   | 4.4              |
| PtF <sub>6</sub> <sup>2</sup> -  | 1.5                             | $1.5^{\circ}$                   | 4                   |                  |
| PtCl <sub>6</sub> <sup>2</sup> - | $2 \cdot 8$                     | $2 \cdot 7$                     | 4                   | $3 \cdot 8$      |
| PtBr <sub>6</sub> 2-             | 4.0                             | $3.6^{2}$                       | 4                   | 5.5              |
| PtI <sub>6</sub> 2-              | 8.4                             | 6.6                             | 2                   | 8.3              |
| RhCl <sub>6</sub> 3-             | $2 \cdot 0_{5}$                 | $2 \cdot 0$                     | 4                   |                  |
| rCl <sub>6</sub> <sup>3-</sup>   | 1.4                             | 1.4                             | 4                   |                  |
| rCl <sub>6</sub> <sup>2</sup>    | 3.1                             | $3.0_{5}$                       | <b>2</b>            |                  |
| DsCl <sub>6</sub> ²−             | 1.7                             | $1.7^{-1}$                      | 4                   | 2.5              |
| ∂sBr <sub>6</sub> ²−             | $3 \cdot 6$                     | $3 \cdot 6$                     | <b>2</b>            |                  |
| ReCl <sub>6</sub> <sup>2-</sup>  | $1.3_{3}$                       | $1.3^{2}$                       | 4                   | $2 \cdot 8$      |
|                                  | -                               |                                 |                     |                  |

<sup>a</sup> Number of points used in extrapolation; two points refer to 647·1 and 568·2 nm data only, three points to 647·1, 568·2, and 514·5 nm data and four points to the use of all four exciting lines. <sup>b</sup> The  $r_{MX}$  values were taken to be 2·00, 2·43, and 2·64 Å for the  $SnF_6^{2-}$ ,  $SnCl_6^{2-}$ , and  $SnBr_6^{2-}$  ions respectively, and 2·35, 2·49, and 2·68 Å for the other chlorides, bromides, and iodides respectively (except for  $r_{PdCl} = 2·32$  Å). <sup>e</sup> Value based on solid state intensity measurements. <sup>d</sup> Very approximate, see footnote to Table 4.

the  $d^4$  ion  $\operatorname{OsCl}_6^{2-}$  and the  $d^6$  ions  $\operatorname{IrCl}_6^{3-}$ ,  $\operatorname{PtF}_6^{2-}$ , and  $\operatorname{PtCl}_6^{2-}$ , plots of  $\bar{a}_{\mathrm{MX}}'$  versus the Albrecht function give straight lines which allow easy extrapolation of  $\bar{a}_{\mathrm{MX}}'$  to  $\nu_0 = 0$  (see Figures 4 and 5). Thus  $\bar{a}_{\mathrm{MX}}'$  values corrected for the pre-r.r.e. can readily be obtained. The pre-resonance behaviour of the  $\nu_1(a_{1g})$  fundamentals and of the derived  $\bar{a}_{\mathrm{MX}}'$  values for these ions thus closely parallel that reported <sup>3</sup> for the  $\nu_1(a_1)$  fundamentals and the  $\bar{a}_{\mathrm{MX}}'$  values respectively of tetrahedral molecules  $\operatorname{MX}_4$ .

The pre-r.r.e. behaviour of  $\bar{\alpha}_{MX}$ ' is similar for several of the other  $d^6$  ions studied, viz.  $PtBr_6^{2-}$ ,  $PdCl_6^{2-}$ , and  $RhCl_6^{3-}$ , except that deviations from the straight line plot are evident in each case with 488.0 nm excitation. It seems possible that these deviations are brought about

<sup>23</sup> A. H. Kalantar, E. S. Franzosa, and K. K. Innes, Chem. Phys. Letters, 1972, 17, 335.

by the influence of low-lying, intense ligand field bands which may be stealing intensity from allowed transitions.

For the  $t_{2g}^4$  and  $t_{2g}^5$  ions  $\mathrm{IrCl_6^{2-}}$ ,  $\mathrm{IrBr_6^{2-}}$ , and  $\mathrm{OsBr_6^{2-}}$ as well as for  $\mathrm{PtI_6^{2-}}$  the Albrecht plots were not satisfactory. These ions have very complicated electronic spectra with many low-lying charge-transfer bands and many relatively intense ligand field bands throughout the visible region (Figure 2). No satisfactory method for extrapolating  $\bar{\alpha}_{\mathrm{MX}}$  values to zero exciting frequency could be found in these cases, and the values could only



FIGURE 4 Plot of  $\bar{\alpha}_{PbCl}'$  against the Shorygin function  $A = [1 + (v_0/v_e)^2]/[1 - (v_0/v_e)^2]^2$  and the Albrecht function  $B = [(v_s/v_e) + (v_0/v_e)^2]/[1 - (v_0/v_e)^2](v_s/v_e)^2 - (v_0/v_e)^2]$  at four different exciting wavelengths (647-1, 568-2, 514-5, and 488-0 nm, reading from left to right on the plot) ( $\bigcirc$ ,  $\bigcirc$  respectively). Values for  $v_e$  and  $v_s$  are taken from Table 5

 $\mathcal{V}_{e} = 35\ 600$   $\mathcal{V}_{s} = 48\ 000\ cm^{-1}$  $A(\mathcal{V}_{0} = 0) = 1.000\ B(\mathcal{V}_{0} = 0) = 0.742$ 



FIGURE 5 Plot of  $\bar{\alpha}_{ReCl}$  of the  $\operatorname{ReCl}_6^{2-}$  ion against the Shorygin (A) and Albrecht (B) frequency functions at 647-1, 568-2, 514-5, and 488-0 nm. The  $\nu_e$  and  $\nu_s$  values are taken from Table 5

be estimated (albeit very crudely) from the  $647 \cdot 1$  and  $568 \cdot 2$  nm values.

The results shown in Table 7 allow the following conclusions to be drawn: (a) bond polarisability derivatives increase in the order  $\bar{\alpha}_{MF}' < \bar{\alpha}_{MCl}' < \bar{\alpha}_{MBr}' < \bar{\alpha}_{MI}'$ , in agreement with all previous results of this sort. This result is considered to arise on account of the increased polarisability of the heavier halogen atoms and of the increase in the degree of covalent character of the MX bond in the order MF < MCl <

<sup>24</sup> T. V. Long and R. A. Plane, J. Chem. Phys., 1965, 43, 457.
 <sup>25</sup> M. Kubo and D. Nakamura, Adv. Inorg. Chem. Radiochem., 1966, 8, 257.

<sup>26</sup> F. A. Cotton and C. B. Harris, Inorg. Chem., 1967, 6, 376.

MBr < MI; this behaviour is in line with the delta function description of the  $\bar{\alpha}_{MX}'$  values.<sup>24</sup> Independent evidence that the degree of covalent character of MX bonds increases in this order is provided by the n.q.r. results listed in Table 8, in which it is also evident that the degree of covalent character of SnX bonds is less

TABLE 8 Comparison of the degree of covalent character of MX bonds (n.q.r. results) and  $\bar{\alpha}_{MX}$  values (Å<sup>2</sup>)

|                                  | · •          | ,        | 111.12 | · · · |                 |
|----------------------------------|--------------|----------|--------|-------|-----------------|
|                                  |              | N.q.r. d | ata ª  |       | $\alpha_{MX}'$  |
| Compound                         | Config.      | π        | σ      | Ref.  | work)           |
| K <sub>2</sub> SnCl <sub>6</sub> | $d^{10}$     | 0        | 0.34   | b     | 2.3             |
| K <sub>2</sub> SnBr <sub>6</sub> | $d^{10}$     | 0        | 0.40   | с     | 3.9             |
| $Rb_2SnI_6$                      | $d^{10}$     | 0        | 0.45   | ba    | ca. 5           |
| $(NH_4)_2PbCl_6$                 | $d^{10}$     | 0        | 0.37   | b     | $1.8_{5}$       |
| K <sub>2</sub> PdCl <sub>6</sub> | $t_{2g}^{6}$ | 0        | 0.57   | d     | $1.9_{5}$       |
| K <sub>2</sub> PtCl <sub>6</sub> | $t_{2g}^{6}$ | 0        | 0.56   | е     | $2\cdot 7$      |
| K <sub>2</sub> IrCl <sub>6</sub> | $t_{2g}^{5}$ | 0.054    | 0.48   | f     | $3.0_{5}$       |
| K <sub>2</sub> OsCl <sub>6</sub> | $t_{2g}^4$   | 0.108    | 0.43   | f     | 1.7             |
| $K_2 ReCl_6$                     | $t_{2g}^{3}$ | 0.16     | 0.39   | g     | $1 \cdot 3_{5}$ |
| K <sub>2</sub> PtBr <sub>6</sub> | $t_{2g}^{6}$ | 0        | 0.62   | ē     | $3.6_{5}$       |
| K <sub>2</sub> ReBr <sub>6</sub> | $t_{2q}^{3}$ | 0.16     | 0.45   | g     | •               |
| K <sub>2</sub> PtI <sub>6</sub>  | $t_{2g}^{6}$ | 0        | 0.70   | ē     | 6.6             |
| $K_2 ReI_6$                      | $t_{2g}^{3}$ | 0.16     | 0.52   | g     |                 |

<sup>a</sup> The  $\sigma$ -values (degrees of  $\sigma$ -bond covalent character) are obtained from the nuclear quadrupole coupling constant of the halogen atom on the assumption of the stated amount ( $\pi$ ) of  $\pi$ -bond covalent character; the latter are based on the e.s.r. measurements on the IrCl<sub>0</sub><sup>2-</sup> ion. <sup>b</sup> D. Nakamura, Bull. Chem. Soc. Japan, 1963, **36**, 1662. <sup>c</sup> D. Nakamura, K. Ito, and M. Kubo, Inorg. Chem., 1962, **1**, 592. <sup>d</sup> K. Ito, D. Nakamura, Y. Kurita, K. Ito, and M. Kubo, J. Amer. Chem. Soc., 1961, **83**, 4526. <sup>e</sup> D. Nakamura, Y. Kurita, K. Ito, and M. Kubo, J. Amer. Chem. Soc., 1960, **82**, 5783. <sup>f</sup> K. Ito, D. Nakamura, K. Ito, and M. Kubo, Inorg. Chem., 1963, **2**, 690. <sup>g</sup> R. Ikeda, D. Nakamura, and M. Kubo, J. Phys. Chem., 1965, **69**, 2101.

than that for PtX bonds, in line with the same behaviour of  $\bar{\alpha}_{MX}'$  values. The reason for this difference is believed to be associated with the use of outer rather than inner *d*-orbitals in the hybridisation scheme.

(b) Bond polarisability derivatives increase with  $t_{2g}$  orbital occupancy (with the apparent exception of the  $t_{2g}^5$  configuration) along a series of complex ions in which the metal atom belongs to the same row of the transition series, *viz.* ( $\bar{\alpha}_{MCl}$ ' values in parentheses)

$$\begin{array}{l} {\rm Re^{1V},} \ t_{2g}{}^3, \ (1{\cdot}3_5) < {\rm Os^{1V},} \ t_{2g}{}^4, \ (1{\cdot}7) < \\ {\rm Ir^{1V},} \ t_{2g}{}^5, \ (3{\cdot}0_5) \sim {\rm Pt^{1V},} \ t_{2g}{}^6, \ (2{\cdot}7) \ {\rm \AA^2} \end{array}$$

This result implies an increase in the degree of  $\sigma$ -bond covalent character along the series from rhenium(IV) to platinum(IV) (the  $\pi$ -bond order decreases along this series, see later discussion). This conclusion is in agreement with both the results of n.q.r. measurements (coupled with e.s.r. measurements on the  $\mathrm{IrCl_6^{2-}}$  ion),<sup>25</sup> and with molecular orbital calculations <sup>26</sup> on these ions.

(c) Bond polarisability derivatives increase with increase in the oxidation state of the metal atom, viz.:

$$\bar{\alpha}_{
m Ir}^{
m III}_{
m Cl}$$
, 1·4 Å<sup>2</sup>  $< \bar{\alpha}_{
m Ir}^{
m IV}_{
m Cl}$ , 3·0 Å<sup>2</sup>

This result suggests that the degree of covalent character of MX bonds increases with increase in the oxidation state of the metal atom, a conclusion already discussed on the basis of changes in MX stretching frequencies <sup>27</sup> and on the basis of the observed reductions in the interelectronic repulsion Racah parameter B on increase in the oxidation states of the metal atoms.28,29

The scattering activities of the  $\nu_2(e_g)$  fundamental of the  $MX_6^{n-}$  ions are determined by the quantities

$$\bar{\alpha}_{2}' = 0, \, \gamma_{2}' = (3/m_{\rm X})^{\frac{1}{2}} \gamma_{\rm MX}'$$
 (10)

where  $\gamma_{MX}' = \alpha_{\parallel}' - \alpha_{\perp}'$ , the difference between the parallel and perpendicular MX bond polarisability derivatives; these last two quantities are evaluated and discussed in the next section.

The scattering activities of the  $v_5(t_{2g})$  fundamentals of the ions are determined by the quantities

$$\bar{\alpha}_5' = 0, \, \gamma_5' = (2/r_{\rm MX})(3/m_{\rm X})^{\frac{1}{2}}\gamma_{\rm MX}$$
 (11)

where  $r_{MX}$  is the MX bond length (in Å), and  $\gamma$  is the MX bond anisotropy  $(\alpha_{\parallel} - \alpha_{\perp})$  (in Å<sup>3</sup>). The scattering

In this equation,  $I(v_1)$  and  $I(v_2)$  are the intensities of the  $v_1(a_{1q})$  and  $v_2(e_q)$  fundamentals respectively, f is the frequency factor defined previously [equation (3)], and the numerical factor 5/7 on the right hand side of the equation differs from that given originally (5/13),<sup>1,2a</sup> because the present analysis is based on polarised incident light whereas the previous one was based on unpolarised incident light.

The MX bond polarisability derivatives at zero exciting frequency (Table 7) are related to  $\alpha_{\perp}'$  and  $\alpha_{\parallel}'$ as follows:

$$\bar{\alpha}_{\mathrm{MX}}' = \frac{1}{3} (\alpha_{\parallel}' + 2\alpha_{\perp}') \tag{13}$$

Consequently equations (12) and (13) provide two relationships, on the basis of which values for both  $\alpha_{\parallel}$ and  $\alpha_{\perp}'$  for an MX bond of any MX<sub>6</sub> species may be deduced. Two solutions to  $\alpha_{\perp}'/\alpha_{||}'$  are obtained from equation (12) (Table 9) and these are shown graphically

## TABLE 9

Perpendicular  $(\alpha_{\perp})$  and parallel  $(\alpha_{\parallel})$  components of the bond-polarisability derivative for some octahedral anions, based on  $\bar{\alpha}_{MX}$  ( $\nu_0 = 0$ ) a values and the relative intensities of the  $\nu_1(a_{1g})$  and  $\nu_2(e_g)$  bands on 647.1 nm excitation

| Anion                           | $\operatorname{A}^{a_{MX}'}_{A^2}$ | $f(\mathbf{v}_2)/f(\mathbf{v}_1) \times I(\mathbf{v}_1)/I(\mathbf{v}_2)$ | $\alpha_{\perp}'/\alpha_{ii}'$ | $\alpha_{\perp}'/Å^2$ | $\alpha_{\rm d}'/{\rm \AA}^2$ | $\alpha_{\perp}'/\alpha_{\parallel}'$ | $\alpha_{\perp}'/Å^2$ | $\alpha_{\parallel}'/{\rm \AA^2}$ |
|---------------------------------|------------------------------------|--------------------------------------------------------------------------|--------------------------------|-----------------------|-------------------------------|---------------------------------------|-----------------------|-----------------------------------|
| $SnF_{6}^{2-}$                  | 0.81                               | > 50                                                                     | ca. 1.00 b                     | ca. 0.81              | ca. 0.81                      | ca. 1.0                               | ca. 0.81              | ca. 0.81                          |
| SnCl <sub>6</sub> <sup>2-</sup> | $2 \cdot 3$                        | 23.2                                                                     | 0.61 °                         | 1.9                   | $3 \cdot 1$                   | 1.8                                   | 2.7                   | 1.5                               |
| SnBr <sub>6</sub> <sup>2-</sup> | 3.9                                | 10.4                                                                     | 0.48                           | $2.8_{5}$             | $5 \cdot 9$                   | $2 \cdot 6_{5}$                       | 4.9                   | 1.8                               |
| PbCl <sub>6</sub> <sup>2-</sup> | $1 \cdot 8_{5}$                    |                                                                          | ca. 1.00 b                     | ca 1.85               | $ca. 1.8_5$                   | ca. 1.0                               | $ca. 1.8_5$           | $-1.8_{5}$                        |
| PdCl <sub>6</sub> <sup>2-</sup> | $1.9_{5}$                          | 1.14                                                                     | 0.08                           | 0·41                  | 5·0 <sup>°</sup>              | -3.1                                  | 3·5 <sup>°</sup>      | $-1 \cdot l_{5}$                  |
| PtF62-                          | $1.5^{\circ}$                      | 2.02                                                                     | 0.19 d                         | 0.62                  | $3.3_{5}$                     | -8.4                                  | $2 \cdot 4$           | 0.29                              |
| PtCl <sub>6</sub> <sup>2</sup>  | 2.7                                | 1.12                                                                     | 0.08 e                         | 0.56                  | 6.9                           | $-3 \cdot 1$                          | 4.8                   | -1.6                              |
| PtBr <sub>6</sub> <sup>2-</sup> | $3.6_{5}$                          | 0.80                                                                     | 0.02                           | 0.19                  | 10.6                          | -2.5                                  | $7 \cdot 1$           | -3.3                              |
| PtI <sub>6</sub> 2-             | 6·6                                | 0.63                                                                     | -0.02                          | -0.43                 | 20.7                          | -1.8                                  | 13.6                  | -7.5                              |
| RhČl <sub>6</sub> 3–            | $2 \cdot 0$                        | 2.70                                                                     | 0.24                           | 0.98                  | $4 \cdot 1$                   | -51.6                                 | 3.0                   | -0.06                             |
| IrCl <sub>6</sub> <sup>3-</sup> | $1 \cdot 4$                        | $2 \cdot 12$                                                             | 0.19                           | 0.58                  | 3.0                           | -9.7                                  | $2 \cdot 2$           | -0.22                             |
| IrCl <sup>°2–</sup>             | $3.0^{2}$                          |                                                                          | ca. 1.0 b                      | ca. 3.0               | ca. 3.0                       | ca. 1.0                               | ca. 3·0               | ca. 3·0                           |
| OsCl <sub>6</sub> <sup>2</sup>  | $1\cdot7$                          | 11.3                                                                     | 0.50                           | 1.3                   | $2 \cdot 5_{5}$               | $2 \cdot 5$                           | $2 \cdot 1$           | 0.85                              |
| OsBr <sub>6</sub> <sup>2-</sup> | $3 \cdot 6$                        |                                                                          | ca. 1.0 b                      | ca. 3·6               | ca. 3.6                       | ca. 1.0                               | ca. 3.6               | ca. 3.6                           |
| $\operatorname{ReCl}_{6}^{2-}$  | $1.3_{5}$                          |                                                                          | ca. $1 \cdot 0^{b}$            | ca. $1.3_5$           | $ca. 1.3_5$                   | ca. 1.0                               | ca. $1.3_5$           | ca. 1·3 <sub>5</sub>              |

<sup>a</sup> Extrapolated to  $v_0 = 0$  by way of Albrecht's function (Table 7). <sup>b</sup>  $I(v_0)$  was too weak to be measured using 647.1 nm excitation. <sup>c</sup> The value 0.55 was obtained in ref. 1. <sup>d</sup> The value 0.39 obtained in ref. 2 is evidently incorrect. <sup>e</sup> The value 0.12 was obtained in ref. 1.

activities of the  $v_5(t_{2q})$  fundamentals are always low (in most cases the lowest of the three Raman-active fundamentals). The values calculated for  $\gamma_{MX}$  in each case are based on the 647.1 nm results and are included in Table 7; they evidently range from 0.6 to 8.3 Å<sup>3</sup>, and increase in the order  $\gamma_{MCl} < \gamma_{MBr} < \gamma_{MI}$ .

Derivation and Discussion of  $\alpha_{\parallel}'$  and  $\alpha_{\perp}'$ —From the relative scattering activities of the  $v_1(\overline{a_{1g}})$  and  $v_2(e_g)$ fundamentals of  $MX_6$  species, it is possible to deduce values for the ratio of the perpendicular  $(\alpha_{\perp}')$  and parallel  $(\alpha_{\parallel})$  components of the MX bond polarisability derivatives. The relationship,<sup>1,2a</sup> which is based on the Wolkenstein assumptions,<sup>30,31</sup> is as follows:

$$\frac{I(\mathbf{v}_1)}{I(\mathbf{v}_2)} = \frac{f(\mathbf{v}_1)}{f(\mathbf{v}_2)} \cdot \left[\frac{5(1+2\alpha_{\perp}'/\alpha_{\parallel}')^2}{7(1-\alpha_{\perp}'/\alpha_{\parallel}')^2}\right]$$
(12)

<sup>27</sup> R. J. H. Clark, Spectrochim. Acta, 1965, 21, 955.
<sup>28</sup> T. M. Dunn, J. Chem. Soc., 1959, 623.
<sup>29</sup> C. K. Jørgensen, 'Absorption Spectra and Chemical Bonding in Complexes,' Pergamon, Oxford, 1962, p. 134.

in Figure 6 for the  $PtCl_6^{2-}$  ion, for which  $f(v_1)/f(v_2) =$ 0.899. (The latter lies between 0.592 and 0.947 for the ions studied.) One root for  $\alpha_{\perp}'/\alpha_{\parallel}'$ , the one which we have accepted, lies between -0.5 and +2.86 for  $I(v_1)/I(v_2)$  ranging from 0 to  $\infty$ ; this root increases monotonically with increase in  $I(v_1)/I(v_2)$  and it corresponds to the root previously accepted in the belief 1,2,32 that  $\alpha_{\perp}'/\alpha_{\parallel}'$  should lie between 0 and +1. It is now apparent that the choice of this root can be substantiated as follows. The alternative root corresponds to the two branches for which  $\alpha_{\perp}'/\alpha_{\parallel}'$  lies between  $-\infty$  and -0.5 and +2.86 and  $+\infty$ . The transition from the value  $-\infty$  to  $+\infty$  for  $\alpha_{\perp}'/\alpha_{\parallel}'$  occurs either side of the  $I(\nu_1)/I(\nu_2)$ 

30 M. Eliashevich and M. Wolkenstein, J. Phys. U.S.S.R.,

1945, 9, 101, 326. <sup>31</sup> G. W. Chantry, in 'The Raman Effect,' ed. A. Anderson, Dekker, New York, 1971, p. 49. <sup>32</sup> G. W. Chantry and R. A. Plane, J. Chem. Phys., 1960, **33**,

634

ratio of 2.86, a situation which, although being mathematically feasible, is physically unacceptable. Accordingly the first solution is the only one which is considered further. The relative scattering activities obtained with 647.1 nm excitation were used in each case, as the results were then least likely to be affected by a selective prer.r.e. on either of the two bands (cf. section A).

Although the  $f(v_2)/f(v_1): I(v_1)/I(v_2)$  ratio does depend on the exciting wavelength for some ions (e.g. the  $t_{2g}$ and  $t_{2g}^{5}$  ions), this is not the case for the  $PtCl_{6}^{2-}$  ion (in agreement with the qualitative result of Woodward and Creighton) <sup>1</sup> or for the  $PdCl_6^{2-}$  ion ( $\lambda_0 \ge 514.5$  nm), the  $\mathrm{PtBr}_{6}^{\,2-}$  ion, or for many other ions. Thus the small value for this ratio (0.6-2.7) for all  $t_{2q}^6$  ions cannot be ascribed to a selective pre-r.r.e. on the  $v_2(e_q)$  fundamental, and an alternative explanation of this result must be sought in terms of the  $\alpha_{ll}$  and  $\alpha_{l}$  values. Note



FIGURE 6 Plot of  $\alpha_{\perp}'/\alpha_{\parallel}'$  versus  $f(v_2)/f(v_1) \times I(v_1)/I(v_2)$  showing the two possible roots for the  $PtCl_6^{2-}$  ion

that the variation of  $f(v_2)/f(v_1) : I(v_1)/I(v_2)$  ratios for the  $\mathrm{OsCl}_6{}^{2-}$  and  $\mathrm{OsBr}_6{}^{2-}$  ions with  $\nu_0$  is directly contrary to the report by Bottger and Damsgard,<sup>33</sup> who used solid materials and who may have made no corrections for spectrometer response.

The results indicate that  $\alpha_{\parallel}'$  varies in the following manner:

(a)  $\mathrm{MF_6^{2-}} < \mathrm{MCl_6^{2-}} < \mathrm{MBr_6^{2-}} < \mathrm{MI_6^{2-}}$  viz. for the platinum(IV) series, the values of  $\alpha_{\parallel}$  are 3.3, 6.9, 10.6, and ca. 20 Å<sup>2</sup> respectively. The increase along this series parallels that expected on the basis of the deltafunction potential model<sup>24</sup> (see earlier discussion of  $\bar{\alpha}_{MX}$  values), while the fact that the platinum(IV) series has considerably higher values for  $\alpha_{i}$  than the tin(IV)

<sup>33</sup> G. L. Bottger and C. V. Damsgard, Spectrochim. Acta, 1972, 28A, 1631.

series is consistent with the higher degree of covalent character of the PtX than the SnX bonds (Table 8).

(b)  $\alpha_{ij}$  increases with increase in  $t_{2g}$  orbital occupancy viz.

$$\begin{array}{l} {\rm Re^{IV}},\, t_{2g}{}^3,\, 1{\cdot}35 < {\rm Os^{IV}},\, t_{2g}{}^4,\, 2{\cdot}5_5 < {\rm Ir^{IV}},\, t_{2g}{}^5,\, 3{\cdot}0 < \\ {\rm Pt^{IV}},\, t_{2g}{}^6,\, 6{\cdot}9 \,\, {\rm \mathring{A}}^2. \end{array}$$

This result suggests that the change in the parallel component of the polarisability of the MX bond on stretching the bond increases with increase in the degree of  $\sigma$ -bond covalent character of the MX bond and/or with decrease in  $\pi$ -bond order  $[p_{\pi}(X) \longrightarrow d_{\pi}(M)$  type].<sup>25</sup> The molecular orbital calculations of Cotton and Harris<sup>26</sup> suggest that the former is the dominant factor.

(c)  $\alpha_{\parallel}'$  values for the SnX bonds of the SnX<sub>6</sub><sup>2-</sup> ions are about half of those for the tin tetrahalogenides (which range from 7.1 to 15.0 Å<sup>2</sup>).<sup>34</sup> This result also strongly suggests that  $\alpha_{\parallel}'$  is directly related to the degree of covalent character of the MX bond, because there can be little doubt that the SnX bond of  $SnX_4$  is much more covalent than that of the corresponding  $SnX_6^{2-}$  ion.

The  $\alpha_{\perp}'$  values are in all cases small and much less sensitive to change of halogen atom, being  $0.3 \pm 0.7$  for all the  $t_{2q}^{6}$  ions but  $2\cdot 2 \pm 1\cdot 4$  for all the remaining ions. Their interpretation in terms of bonding patterns in the complex ions seems obscure. In this context it is worth noting that the  $\alpha_{\perp}'$  values for the SnX bonds of the SnCl<sub>6</sub><sup>2-</sup> and SnBr<sub>6</sub><sup>2-</sup> ions (Table 9) are similar to those of the tetrahalogenides  $SnCl_4$ ,  $SnBr_4$ , and  $SnI_4$  (2.0, 3.0, and 3.0 Å<sup>2</sup> respectively).<sup>34</sup>

It has previously been argued  $^{1,2a}$  that the ratio  $\alpha_{\perp}'/\alpha_{\parallel}'$  for the  $\mathrm{PtF}_{6}^{2-}$  ion is greater than that for the  $PtCl_6^{2-}$  ion on account of significant  $d_{\pi}(M) \longrightarrow d_{\pi}(X)$  $\pi$ -bonding in the case of X = Cl but not in the case of X = F. However, it is difficult to believe that this kind of  $\pi$ -back bonding could be of any significance for any metal complex in which the metal atom is in an oxidation state as high as four. Indeed, in the interpretation of the n.q.r. results on these ions 25,35 (Table 8), and in molecular orbital calculations,<sup>26</sup> this possibility has been discounted, and the important  $\pi$ -bonding in  $MX_6^{2-}$  ions is considered to be in the reverse direction *i.e.*  $p_{\pi}(X) \longrightarrow$  $d_{\pi}(M)$ . On this basis, the amount of  $\pi$ -bonding in  $MX_6^{2-}$  ions increases progressively from zero for  $t_{2g}^6$  ions in the order  $t_{2g}^6 < t_{2g}^5 < t_{2g}^4 < t_{2g}^3$ , *i.e.* it increases progressively with increase in the valence shell *d*-electron deficiency. Our results (Table 9) indicate that the ratio  $\alpha_{\perp}'/\alpha_{\parallel}'$  also increases (with the exception of  $t_{2q}$ case) with increase in the number of holes in the  $t_{2q}$ sub-shell, *i.e.* with increase in  $\pi$ -bond order of the MX bonds. Such a conclusion would be the opposite to that drawn by Woodward and Ware<sup>2a</sup> from studies of these ions, but would be in agreement with that of Chantry and Plane on other systems.<sup>32</sup> However, we believe that this apparent relationship between  $\alpha_{\perp}'/\alpha_{\parallel}$ 

<sup>&</sup>lt;sup>34</sup> R. J. H. Clark and P. D. Mitchell J. Mol. Spectroscopy, in the press. <sup>35</sup> E. A. C. Lucken, 'Nuclear Quadrupole Coupling Constants,'

Academic Press, London, 1969.

and  $\pi$ -bond order is without foundation for  $MX_6^{2-}$  ions, and that the principal factor controlling the value of  $\alpha_{\parallel}'/\alpha_{\parallel}'$  is the degree of  $\sigma$ -bond covalent character (cf. earlier discussion of  $\alpha_{||}$ ).

Two other series of complex ions have very large  $f(v_2)/f(v_1) : I(v_1)/I(v_2)$  values and thus large  $\alpha_{\perp}'/\alpha_{\parallel}'$  values (0.5-1.0). The first of these is a series of  $d^0$  complexes,  $MX_{6}^{2-}$  (M = Ti, Zr, or Hf; X = Cl or Br),  $MX_{6}^{--}$ (M = Nb or Ta; X = Cl or Br) and  $WCl_6$ , for which the  $v_2(e_q)$  fundamental is frequently unobservably weak.<sup>36,37</sup> For  $d^0$  species,  $p_{\pi}(X) \longrightarrow d_{\pi}(M)$  would be at a maximum, and this expectation receives support from both <sup>19</sup>F n.m.r. data <sup>38</sup> and from molecular orbital calculations.<sup>39</sup> The second series of ions displaying the same behaviour is the  $d^{10}$  species  $SnX_6^{2-}$  and  $PbCl_6^{2-}$ ; for this series, however,  $\pi$ -bonding of the sort  $p_{\pi}(X) \longrightarrow 5d_{\pi}(M)$  is very unlikely on account of poor energy match of the relevant orbitals. Hence, as these two series of ions have very different  $\pi$ -bonding capabilities, but display the same intensity patterns, it seems improbable that  $\pi$ -bonding effects are responsible for these patterns.

Examination of the results in Table 9 indicates that the larger value for  $\alpha_{\perp}'/\alpha_{\parallel}'$  for the tin than for the platinum series is brought about partly because of larger values for  $\alpha_{\perp}'$  (for which we have offered no explanation) and partly because of smaller values for  $\alpha_{ij}$  (which is clearly to be associated with a smaller degree of  $\sigma$ -bond covalent character in SnX than in PtX bonds, cf. Table 8). We have been unable to establish whether the second-order Jahn-Teller effect plays any significant role in determining the small  $f(v_1/f(v_2) : I(v_1)/I(v_2)$  ratios

<sup>36</sup> R. J. H. Clark, L. Maresca, and R. J. Puddephatt, *Inorg. Chem.*, 1968, 7, 1603.
 <sup>37</sup> W. van Bronswyk, R. J. H. Clark, and L. Maresca, *Inorg.*

Chem., 1969, 8, 1395, and unpublished work.

for  $t_{2g}^{6}$  ions, a possibility which has been suggested by Stufkens <sup>40</sup> both for these ions as well as for the  $MX_6^{2-}$ ions (M = Se or Te; X = Cl or Br) which likewise display small  $f(v_1)/f(v_2): I(v_1)/I(v_2)$  values. The suggestion <sup>41</sup> that for  $t_{2g}^{-6}$  ions only non-totally symmetric fundamentals should display the pre-r.r.e. is not borne out by the facts.

It is also worth pointing out that the ratio  $\alpha_{\perp}'/\alpha_{\parallel}'$ changes systematically in the order  $MF_6^{2-} > MCl_6^{2-} >$  $MBr_6^{2-} > MI_6^{2-}$ . Thus (a) the platinum series is not unique in this respect and (b) the change in  $\alpha_{\perp}'/\alpha_{\parallel}'$  from  $MF_6^{2-}$  to  $MCl_6^{2-}$  is continued for the remaining hexa-halogeno-ions. This suggests that the observed trend on changing the halogen atom may simply be related to the electronegativity difference between M and X, and not to any fundamental difference between MF and MCl bonds, as suggested previously.<sup>2a</sup> However,  $\alpha_{\perp}'/\alpha_{\parallel}'$  is clearly a complicated function, the trends in which are necessarily difficult to interpret. We consider it preferable in all cases to obtain and to concentrate discussion (as we have done earlier in this paper, and elsewhere for tetrahedral molecules 34) on the separate quantities  $\alpha_{ii}$  and  $\alpha_{ii}$  themselves.

We thank Drs J. A. Creighton and M. J. Ware for useful discussions on the derivation of equation (12). One of us (Y. M. B.) thanks the S.R.C. for financial support.

### [3/2579 Received, 21st December, 1973]

<sup>38</sup> D. S. Dyer and R. O. Ragsdale, *Inorg. Chem.*, 1967, **6**, 8. <sup>39</sup> H. D. Bedon, S. M. Horner, and S. Y. Tyree, *Inorg. Chem.*, 1964, **3**, 647; R. J. H. Clark, unpublished work.

<sup>40</sup> D. J. Stufkens, *Rec. Trav. chim.*, 1970, 89, 1185.
<sup>41</sup> R. E. Hester, quoting A. C. Albrecht and K. A. Taylor, in Raman Spectroscopy, ed. H. A. Szymanski, Plenum, New York, 1967, p. 131.