Crystal Structure and Spectroscopic Properties of Mercury(1) Halide Complexes. Part II. ${ }^{1}$ The Dimethyl Sulphoxide-Mercury(II) Chloride (2/3) Adduct

By P. Biscarini * and L. Fusina, Istituto di Chimica Fisica e Spettroscopia dell'Università, Viale Risorgimento 4, Bologna, Italy
G. D. Nivellini, Laboratorio di Spettroscopia Molecolare del C.N.R., Via Castagnoli 1, Bologna, Italy
A. Mangia and G. Pelizzi, Istituti di Chimica Generale ed Inorganica e di Strutturistica Chimica dell'Università, Centro di Studio per la Strutturistica Diffrattometrica del C.N.R., Via D'Azeglio 85, Parma, Italy

Abstract

The structure of the title compound was solved from diffractometer data by Patterson and Fourier methods and refined by least-squares techniques to $R 8.5 \%$ for 1986 observed reflections. Crystals are triclinic, space group $P \overline{1}$, with unit-cell dimensions: $a=6.672(7), b=9.286(8), c=8 \cdot 764(8) \AA, \alpha=60 \cdot 0(1), \beta=95 \cdot 5(1), \gamma=$ $90 \cdot 1(2)^{\circ}, Z=1$. In the asymmetric unit there are two crystallographically independent mercury atoms. One of them bonds covalently to two chlorine atoms at $2.306 \AA$, and four other chlorine atoms with long contacts (3.004 and $3.081 \AA$). The co-ordination around the other mercury involves two dimethyl sulphoxide molecules via the oxygen atom at 2.52 and $2.56 \AA$, two close chlorine atoms at 2.309 and $2.320 \AA$, and two chlorine atoms of neighbouring molecules at 3.302 and $3.372 \AA$. The sulphoxide groups are bonded to two mercury atoms so that a bridging centrosymmetric structure is reached. I.r. spectroscopic data are consistent with the presence of two types of nearly linear HgCl_{2} moieties. The large frequency shift between $\nu(\mathrm{S}-\mathrm{O})$ of the free sulphoxide and that of the adducts is ascribed to the bonding of the oxygen atom to two mercury atoms.

Crystal structures of several adducts between mercury(ii) chloride and ligands with donors such as oxygen atoms, showed the possibility of the mercury atom attaining a tetrahedral or a distorted octahedral co-ordination, according to the nature of the ligand. In the structure of $\mathrm{Ph}_{2} \mathrm{SO}, \mathrm{HgCl}_{2}{ }^{1}$ one phenyl ring of the aromatic sulphoxide completes the octahedral co-ordination around the mercury atom. Thus, it appeared of interest to investigate an adduct between mercury(iI) chloride and an aliphatic sulphoxide. The compound $2 \mathrm{Me}_{2} \mathrm{SO}$,$3 \mathrm{HgCl}_{2}$ was chosen since the structure of adducts of mercury(II) chloride with this mole ratio has never been reported previously. In addition this study aims to assess the presence of $\mathrm{O}-\mathrm{Hg}$ bonds as well as the existence in the crystal structure of two types of differently co-ordinated mercury atoms, as suggested by the spectral behaviour of this and analogous adducts of sulphoxides and mercury(II) chloride with mole ratios 2:3. ${ }^{2}$

EXPERIMENTAL

Preparation.-The compound was obtained as previously described ${ }^{2 a}$ and crystallized from absolute ethanol as thick tablets.

Crystal Data.- $2 \mathrm{Me}_{2} \mathrm{SO}, 3 \mathrm{HgCl}_{2}, \quad M=970 \cdot 8$, Triclinic, $a=6.672(7), \quad b=9.286(8), \quad c=8 \cdot 764(8) \AA, \quad \alpha=60 \cdot 0(1)$,
${ }^{1}$ Part I, P. Biscarini, L. Fusina, G. D. Nivellini, A. Mangia, and G. Pelizzi, J.C.S. Dalton, 1973, 159.
$\beta=95.5(1), \gamma=90.1(2)^{\circ}, U=467.5 \AA^{3}, D_{\mathrm{m}}=3.25, Z=$ 1, $\quad D_{\mathrm{o}}=3 \cdot 45, \quad F(000)=426$. Mo- K_{α} radiation, $\lambda=$ $0.7107 \AA ; \mu\left(\mathrm{Mo}-K_{\alpha}\right)=261.3 \mathrm{~cm}^{-1}$. Space group $P \overline{1}$ (from structure determination).

Cell dimensions were determined from rotation and Weissenberg photographs ($\mathrm{Cu}-K_{\alpha}$ radiation, $\bar{\lambda}=1.5418 \AA$) and refined from θ, ϕ, and χ measurements on an on-line Siemens AED single-crystal diffractometer for 16 reflections in the range $9^{\circ}<0<22^{\circ}$.

Data Collection.-A thick tablet, mean cross-section radius 0.13 mm , was sealed in a thin-walled glass capillary, owing to its instability to air, and mounted with its c axis coincident with the ϕ axis of the instrument. All 2451 independent reflections with $\theta<29^{\circ}$ were recorded; 465 reflections, having $I<2 \sigma(T)$, and three low-angle ($\theta<3.0^{\circ}$) reflections were discarded; Zr -filtered Mo- K_{α} radiation and the $\omega-2 \theta$ scan technique was used. A reference reflection, monitored every twenty reflections, showed a 4-5\% decrease in intensity during data collection. This is consistent with a slight decomposition of the sample rather than with fluctuations in the primary beam. A correction for this slight crystal decay was applied by means a computer program using the intensity of the standard reflection for an internal scaling of the data set. After corrections for Lorentz and polarization effects, the structure amplitudes were put on absolute scale first by Wilson's method and then by com-

[^0]parison with the calculated values. No absorption corrections were made.

Structure Determination and Refinement.-The structure was solved by the heavy-atom technique; a Patterson map was valuable for locating the mercury atoms, arranged in a centrosymmetric array. Hence, the space group PI was assumed with one Hg situated on a centre of symmetry. The co-ordinates of the two independent mercury atoms were used to phase a Fourier synthesis in which all nonhydrogen atoms were recognized, although many extraneous peaks were present, in particular around the heavy atoms. Co-ordinates and thermal parameters were refined in a

Supplementary Publication No. SUP 21018 (12 pp., 1 microfiche).*

The atomic scattering factors employed in the calculations were taken from ref. 3 for Hg^{2+} and from ref. 4 for other atoms. Calculations were performed on a CDC 6600 computer, with programs written by Immirzi. ${ }^{5}$

RESULTS AND DISCUSSION

The crystal structure (Figure 1) is composed of HgCl_{2} molecules and dimeric $\left[\mathrm{Me}_{2} \mathrm{SO}, \mathrm{HgCl}_{2}\right]_{2}$ groups with oxygen bridges. Table 2 lists the most significant

Table 1
Atomic co-ordinates and thermal parameters * $\left(\AA^{2}\right)$, with estimated standard deviations in parentheses

	x / a	y / b	z / c	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
$\mathrm{Hg}(\mathbf{1})$	0	0	0	$1.95(3)$	2.38(3)	3-24(3)	-0.82(2)	$0 \cdot 44(2)$	$-1 \cdot 18(2)$
$\mathrm{Hg}(2)$	$0 \cdot 5291(1)$	-0.0178(1)	$0 \cdot 2840$ (1)	2•17(2)	$2 \cdot 01(2)$	2.94(2)	-0.47(1)	$0 \cdot 40$ (2)	- $1.27(2)$
$\mathrm{Cl}(1)$	$0 \cdot 2374(5)$	$0 \cdot 1990$ (5)	-0.0934(5)	$2 \cdot 3(1)$	2.6(1)	3-4(1)	-1.2(1)	$0 \cdot 9(1)$	$-1.5(1)$
$\mathrm{Cl}(2)$	$0 \cdot 2837$ (6)	-0.2067(4)	$0.3293(5)$	$2 \cdot 7(1)$	$2 \cdot 2(1)$	$3 \cdot 2(1)$	-0.8(1)	$0 \cdot 1(1)$	$-0.8(1)$
$\mathrm{Cl}(3)$	$0 \cdot 7942$ (6)	$0 \cdot 1568(5)$	$0 \cdot 1865$ (5)	3•1(1)	$2 \cdot 5(1)$	3.6(1)	$-1.0(1)$	$1 \cdot 1(1)$	$-1.7(1)$
S	$0 \cdot 2586(6)$	$0 \cdot 3290$ (4)	$0.2537(5)$	$3 \cdot 1$ (1)	$1.9(1)$	$2 \cdot 7(1)$	$0 \cdot 3(1)$	-0.2(1)	-1.2(1)
O	$0.351(2)$	$0 \cdot 153(1)$	$0 \cdot 385$ (1)	$3 \cdot 5(5)$	2.0(4)	2.5(4)	$0 \cdot 3(3)$	$0 \cdot 0(3)$	$-1.3(3)$
C(1)	$0 \cdot 453(3)$	$0.469(2)$	0.228(2)	$4 \cdot 3(7)$	$2 \cdot 2(5)$	$3 \cdot 9(7)$	$-\mathrm{l} \cdot 3(5)$	$1 \cdot 6(6)$	$-1.4(5)$
$\mathrm{C}(2)$	$0 \cdot 099$ (3)	$0 \cdot 377(2)$	$0 \cdot 375$ (3)	4.4(8)	$3 \cdot 6(8)$	$4 \cdot 7(9)$	$0 \cdot 1(7)$	$2 \cdot 0(7)$	$-2 \cdot 7(7)$

$*$ Anisotropic thermal parameters are expressed in the form: $\exp \left[-\frac{1}{4}\left(B_{11} h^{2} a^{* 2}+B_{22}{ }_{2}^{2} b^{2} b^{* 2}+B_{33^{2}} l^{2} c^{* 2}+2 B_{12} h k c^{*}\right)\right]$. $\left.\left.+2 B_{23} k l b^{*} c^{*}\right)\right]$.

Figure 1 Clinographic projection of the structure with distances in the two mercury co-ordination polyhedra
block-diagonal least-squares procedure minimizing the function $\Sigma w(\Delta F)^{2}$ and their final values are given in Table 1. At the end of the refinement R was 0.085 . At this stage a difference Fourier map was computed, which showed some maxima of $6-7 \mathrm{e}^{-3}$ (on a relatively high background of $1-1.5 \mathrm{e}^{-3}$) in regions near to the heavy atom positions at distances varying from 0.8 to $1.2 \AA$ to the mercury atoms and a number of maxima of $1.0-1.5 \mathrm{e}^{-3}$ in the neighbourhood of the methyl carbon atoms. None of these last could however be unambiguously interpreted as hydrogen atoms. Observed and calculated structure factors are listed in

* See Notice to Authors No. 7 in J.C.S. Dalton, 1973, Index issue.
distances and angles. Two types of Hg atoms, whose geometry differs significantly, are present: $\mathrm{Hg}(\mathrm{l})$, situated on a centre of symmetry, shows a two-co-ordinated linear structure $\left[\mathrm{Hg}(1)-\mathrm{Cl}(\mathrm{l}) 2 \cdot 306 \AA, \mathrm{Cl}-\mathrm{Hg}-\mathrm{Cl} 180^{\circ}\right.$ for symmetry requirements]. Two pairs of chlorine atoms at $3.0 \AA$, belonging to adjacent dimeric groups, complete the co-ordination to oblate octahedral. This kind of coordination with four long and two short contacts, corresponding to covalent bonds, is typical of mercury(II)

[^1]compounds. ${ }^{6} \mathrm{Hg}(2)$ Is in a general position and is covalently co-ordinated by two chlorine atoms $(\mathrm{Hg}-\mathrm{Cl}$ $2 \cdot 309,2 \cdot 320 \AA, \mathrm{Cl}-\mathrm{Hg}-\mathrm{Cl} 166 \cdot 0^{\circ}$) and, more weakly, by two oxygen atoms ($\mathrm{Hg}-\mathrm{O} 2.52$ and $2.56 \AA$) of sulphoxide groups. These ligands are arranged in a highly distorted tetrahedral configuration with angles ranging from $75 \cdot 3$ to $166 \cdot 0^{\circ}$. If two chlorine atoms from two adjacent HgCl_{2} molecules are regarded as being part of the $\mathrm{Hg}(2)$ environment, the configuration may be described as a highly distorted octahedron. The values of these $\mathrm{Hg} \cdots \mathrm{Cl}$ distances ($3 \cdot 302$ and $3 \cdot 372 \AA$) are very close to the sum of the van der Waals radii $(3 \cdot 30 \AA) .{ }^{6}$

The presence of two types of Hg atoms explains the two strong i.r. bands at 345 and $339 \mathrm{~cm}^{-1}$, attributed to
and $\mathrm{Pl}_{3} \mathrm{AsO}, \mathrm{HgCl}_{2},{ }^{9 c}$ with highly distorted tetrahedral co-ordination around the mercury atom, exhibit $\nu(\mathrm{Cl}-\mathrm{Hg}-$ $\mathrm{Cl})$ in the range $250-310 \mathrm{~cm}^{-1} \cdot 7,11,12$ Nearly linear HgCl_{2} in adducts with ligands co-ordinated through oxygen atoms, e.g. dioxan ${ }^{13}$ or diphenyl sulphoxide, ${ }^{1}$ and the unsubstituted HgCl_{2} molecule in $\mathrm{Et}_{2} \mathrm{~S}, 2 \mathrm{HgCl}_{2},{ }^{9 a}$ exhibit the stretching mode at $348,{ }^{14} 362,{ }^{2 b}$ and $341 \mathrm{~cm}^{-1}$ (ref. 7), respectively.

The oxygen atom is involved in two acceptor-donor bonds to $\mathrm{Hg}(2)$ giving rise to a bridging situation like that found previously in the $2: 1$ adduct between cis-4-pchlorophenylthian 1 -oxide and mercury(II) chloride, ${ }^{15}$ where the bridging $\mathrm{Hg}-\mathrm{O}$ distances are 2.48 and $2 \cdot 97 \AA$, and $\mathrm{Cl}-\mathrm{Hg}-\mathrm{Cl} 164 \cdot 0^{\circ}$. Oxygen bridges are observed

Table 2
Distances (\AA) and angles $\left({ }^{\circ}\right)$, with standard deviations in parentheses

(a) Distances			
$\mathrm{Hg}(1)-\mathrm{Cl}(1)$	$2 \cdot 306(6)$	$\mathrm{Hg}(2)$ - $\mathrm{O}^{\text {II }}$	2.56(1)
$\mathrm{Hg}(1) \cdots \mathrm{Cl}(2)$	3.004(5)	$\mathrm{Hg}(2) \cdots \mathrm{Cl}(1)$	3.302(6)
$\mathrm{Hg}(1) \cdots \mathrm{Cl}\left(3^{\mathrm{I}}\right)$	$3 \cdot 081$ (6)	$\mathrm{Hg}(2) \cdots \mathrm{Cl}\left(\mathbf{1}^{\text {III }}\right)$	$3 \cdot 372(7)$
$\mathrm{Hg}(2)-\mathrm{Cl}(2)$	$2 \cdot 309(6)$	$\mathrm{O}-\mathrm{S}$	1.54(1)
$\mathrm{Hg}(2)-\mathrm{Cl}(3)$	$2 \cdot 320$ (6)	$\mathrm{S}-\mathrm{C}(1)$	1.78(2)
$\mathrm{Hg}(2)-\mathrm{O}$	2.52(1)	$\mathrm{S}-\mathrm{C}(2)$	$1 \cdot 78(2)$
(b) Angles			
$\mathrm{Cl}(1)-\mathrm{Hg}(1) \cdots \mathrm{Cl}(2)$	87-9(1)	$\mathrm{O}-\mathrm{Hg}(2)-\mathrm{OII}$	75.3(4)
$\mathrm{Cl}(1)-\mathrm{Hg}(1) \cdot \cdots \mathrm{Cl}\left(3^{1}\right)$	92.1(1)	$0-\mathrm{Hg}(2) \cdots \mathrm{Cl}(1)$	85.6(3)
$\mathrm{Cl}(2) \cdots \mathrm{Hg}(1) \cdots \mathrm{Cl}\left(3^{\mathrm{I}}\right)$	90-4(1)	$\mathrm{O}-\mathrm{Hg}(2) \cdots \mathrm{Cl}(1 \mathrm{III})$	$172 \cdot 1(3)$
$\mathrm{Cl}(2)-\mathrm{Hg}(2)-\mathrm{Cl}(3)$	$166 \cdot 0(2)$	$\mathrm{O}^{\mathrm{II}-\mathrm{Hg}(2) \cdots \mathrm{Cl}(1)}$	159.1(3)
$\mathrm{Cl}(2)-\mathrm{Hg}(2)-\mathrm{O}$	$97 \cdot 6$ (3)	$\mathrm{O}^{\mathrm{II}-\mathrm{Hg}(2) \cdots \mathrm{Cl}\left(1^{\mathrm{III}}\right)}$	$111 \cdot 6(3)$
$\mathrm{Cl}(2)-\mathrm{Hg}(2)-\mathrm{O}^{\text {II }}$	$93 \cdot 1(3)$	$\mathrm{Cl}(1) \cdot \cdots \mathrm{Hg}(2) \cdot \cdots \mathrm{Cl}\left(1{ }^{\text {III }}\right)$	$88 \cdot 1$ (1)
$\mathrm{Cl}(2)-\mathrm{Hg}(2) \cdots \mathrm{Cl}(1)$	81.0(1)	$\mathrm{Hg}(2)-\mathrm{O}-\mathrm{S}$	$121 \cdot 9(6)$
$\mathrm{Cl}(2)-\mathrm{Hg}(2) \cdots \mathrm{Cl}(1 \mathrm{III})$	$86 \cdot 0(1)$	$\mathrm{Hg}\left(2{ }^{\text {II }}\right)-\mathrm{O}-\mathrm{S}$	$130 \cdot 2(7)$
$\mathrm{Cl}(3)-\mathrm{Hg}(2)-\mathrm{O}$	94.8(3)	$\mathrm{Hg}(2)-\mathrm{O}-\mathrm{Hg}\left(2^{\text {II }}\right)$	104•7(4)
$\mathrm{Cl}(3)-\mathrm{Hg}(2)-\mathrm{OII}^{\text {II }}$	$96 \cdot 2(3)$	$\mathrm{O}-\mathrm{S}-\mathrm{C}(1)$	106.5 (8)
$\mathrm{Cl}(3)-\mathrm{Hg}(2) \cdots \mathrm{Cl}(1)$	93.7(1)	$\mathrm{O}-\mathrm{S}-\mathrm{C}(2)$	$105 \cdot 5(9)$
$\mathrm{Cl}(3)-\mathrm{Hg}(2) \cdots \mathrm{Cl}\left(1{ }^{\text {IIII }}\right)$	$80 \cdot 9(1)$	$\mathrm{C}(1)-\mathrm{S}-\mathrm{C}(2)$	99.9(10)

Roman numerals as superscripts refer to the following equivalent positions relative to the reference molecule at x, y, z :

$$
\text { I } x-1, y, z \quad \text { II } 1-x, \bar{y}, 1-z \quad \text { III } 1-x, \bar{y}, \bar{z}
$$

antisymmetric stretching $\nu(\mathrm{Cl}-\mathrm{Hg}-\mathrm{Cl})$ vibrations. ${ }^{2 b}$ These frequencies are only slightly lower than $v(\mathrm{Cl}-\mathrm{Hg}-\mathrm{Cl})$ of the free mercury(II) chloride ($\left.378-372 \mathrm{~cm}^{-1}\right)^{7}$ and of $\mathrm{Ph}_{2} \mathrm{SO}, \mathrm{HgCl}_{2}\left(362 \mathrm{~cm}^{-1}\right),{ }^{2 b}$ and are consistent with both the nearly linear structure of the HgCl_{2} groups and the mercury-chlorine distances: $2 \cdot 26$ in $\mathrm{HgCl}_{2},{ }^{6} 2 \cdot 29$ in $\mathrm{Ph}_{2} \mathrm{SO}, \mathrm{HgCl}_{2},{ }^{1}$ and $2 \cdot 30-2 \cdot 32 \AA$ in $2 \mathrm{Me}_{2} \mathrm{SO}, 3 \mathrm{HgCl}_{2}$. The vibrations involving $\mathrm{Hg}-\mathrm{Cl}$ bonds in mercury(II) chloride adducts seem to depend both on the mercurychlorine distances, and on the distortion induced by the ligand on the linear HgCl_{2} molecule. Their frequencies can be taken as an indication of the ligand-mercury interaction. The change from the linear co-ordination of HgCl_{2} to the trigonal HgCl_{3}^{-}or the tetrahedral $\mathrm{HgCl}_{4}{ }^{2-}$, lowers the stretching vibration $v(\mathrm{Hg}-\mathrm{Cl})$ from 376 to 287 or $276 \mathrm{~cm}^{-1}$ respectively. ${ }^{8}$ Adducts between HgCl_{2} and ligands with donors such as sulphur or oxygen atoms, $\mathrm{Et}_{2} \mathrm{~S}, 2 \mathrm{HgCl}_{2},{ }^{9 a} \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~S}, \mathrm{HgCl}_{2},{ }^{9 b} \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~S}_{3}, \mathrm{HgCl}_{2},{ }^{10}$
${ }^{\circ}$ D. Grdenic, Quart. Rev., 1965, 19, 303.
${ }^{7}$ P. Biscarini and G. D.' Nivellini, J. Chem. Soc. (A), 1969, 2206.
${ }^{8}$ G. J. Janz and D. W. James, J. Chem. Phys., 1963, 38, 905.
${ }^{9}$ C. I. Bränden, Avkiv Kemi, 1964, 22, (a) p. 83; (b) p. 495; (c) p. 485.
${ }_{10}$ W. R. Costello, A. T. McPhail, and G. A. Sim, J. Chem. Soc. (A) $, 1966,1190$.
also in the $1: 1$ tetrahedral adduct between triphenylarsine oxide and mercury(II) chloride, where the $\mathrm{Hg}-\mathrm{O}$ distance is $2 \cdot 47 \AA$ and the departure from linearity in the $\mathrm{Cl}-\mathrm{Hg}-\mathrm{Cl}$ angle is larger $\left(147^{\circ}\right) .{ }^{9 c}$
The oxygen of a sulphoxide group connects two adjacent $\mathrm{Hg}(2)$ atoms, related by a centre of symmetry. As can be seen from the data of Table 3 , which lists the bond distances of free and complexed dimethyl sulphoxides, co-ordination to metals via oxygen does not seem to influence appreciably the ligand dimensions. For comparison the S-O bond length in $\mathrm{Me}_{2} \mathrm{SO}, 1.531 \AA$, has been used. This value was obtained at a temperature close to that used in the present work.
As expected, the configuration of the sulphoxide group is pyramidal. The distance from sulphur to the $\mathrm{O}, \mathrm{C}(1), \mathrm{C}(2)$ plane is $0.70 \AA$. The whole structure of the adduct is built up of layers of chlorine octahedra held

[^2]together by bridging dimethyl sulphoxide molecules (Figure 2).

Table 3
S-O and S-C distances (\AA) in dimethyl sulphoxide groups in various compounds

Complex	$\mathrm{S}-\mathrm{O}$	S-C
$\mathrm{Me}_{2} \mathrm{SO}\left(5^{\circ} \mathrm{C}\right){ }^{\text {a }}$	1.531	$1.775,1.821$
$\mathrm{Me}_{2} \mathrm{SO}\left(-60^{\circ} \mathrm{C}\right)^{6}$	1.471	1.801 (mean)
$\left[\mathrm{Ir}\left(\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{O}\right) \mathrm{Cl}_{2}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{2}\right]^{c}$	1.44, 1.46*	$1.80,1.80,1.82,1.85$
$\mathrm{PdCl}_{2}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{2}{ }^{\text {d }}$	1.47*	1.79 (mean)
$\left[\left(\mathrm{Me}_{2} \mathrm{SO}\right)\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Ru}^{\mathrm{H}}\right]\left(\mathrm{PF}_{6}\right)_{2}{ }^{6}$	1.527 *	1.834, 1.846
$\mathrm{FeCl}_{3}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{2}{ }^{\text {f }}$	$1.541 \dagger$	$1.795,1.804$
$\mathrm{CuCl}_{2}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{2}{ }^{\text {g }}$	$1.531 \dagger$	$1.765,1.771$
	$1.51,1.61 \dagger$	$1.75,1.85,1.78,1.84$
$\mathrm{La}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{Me}_{2} \mathrm{SO}\right)_{4}{ }^{i}$	$1.48,1.53 \dagger$	$1.75,1.82,1.77,1.80$
$2 \mathrm{Me}_{2} \mathrm{SO}, 3 \mathrm{HgCl}_{2}{ }^{\text {j }}$	$1.54 \dagger$	$1.78,1.78$

* Co-ordinated through sulphur. † Co-ordinated through oxygen.
${ }^{a}$ R. Thomas, C. Brink Shoemaker, and K. Eriks, Acta Cryst., 1966, 21, 12. ${ }^{b}$ M. A. Viswamitara and K. K. Kannan, Nature, 1966, 209, 1016. © M. McPartlin and R. Mason, J. Chem. Soc (A), 1970, 2206. a M. J. Bennett, F. A. Cotton, and D. L. Weaver, Natuve, 1966, 212, 286. © F. C. March and G. Ferguson, Canad. J. Chem., 1971, 49, 3590. f M. J. Bennett, F. A. Cotton, and D. L. Weaver, Acta Cryst., 1967, 23, 580. ${ }^{\circ}$ R. D. Willitt and K. Chang, Inovg. Chim. Acta, 1970, 4, 447. ${ }^{h}$ N. W. Isaacs and C. H. L. Kennard, J. Chem. Soc. (A), 1970, 1257. i K. Krishna Bhandary and H. Manohar, Acta Cryst., 1973, B29, 1093. ${ }^{j}$ Present work.

It is of interest to compare the structures of $2 \mathrm{Me}_{2} \mathrm{SO}$,$3 \mathrm{HgCl}_{2}$ and $\mathrm{Ph}_{2} \mathrm{SO}, \mathrm{HgCl}_{2}$, especially to discuss their spectral behaviour. The oxygen atom of the diphenyl sulphoxide is bonded to only one mercury atom ($\mathrm{Hg}-\mathrm{O}$ $2.58 \AA$) and weak bridging bonds to chlorine are also present. ${ }^{1}$ The structural differences between the two adducts do not seem to affect $v(\mathrm{Hg}-\mathrm{O})$ since $2 \mathrm{Me}_{2} \mathrm{SO},-$ $3 \mathrm{HgCl}_{2}$ shows only one intense i.r. band at $403 \mathrm{~cm}^{-1}$,
which occurs at a frequency slightly higher than that observed for the diphenyl sulphoxide adduct $\left(398 \mathrm{~cm}^{-1}\right) .^{2 b}$ However, the $v(\mathrm{~S}-\mathrm{O})$ stretching mode seems to be more sensitive to these differences. For the $\mathrm{Me}_{2} \mathrm{SO}$ adduct it is shifted to lower frequencies ($c a .60 \mathrm{~cm}^{-1}$) relative to that for the free sulphoxide, while the analogous shift

Figure 2 Diagrammatic view of co-ordination octahedra. Chlorine atoms at the vertices of the octahedra are not shown; $\mathrm{Hg}(1)$ is shown hatched, $\mathrm{Hg}(2)$ is partially black
for the diphenyl sulphoxide compound is only $30 \mathrm{~cm}^{-1} .^{2 a}$ These shifts cannot be rationalized on the basis of a lengthening of the $\mathrm{S}-\mathrm{O}$ bond in adducts of methyl and phenyl sulphoxide, thus being 0.01 and $0.04 \AA$ respectively.
We thank Professors M. Nardelli and C. Zauli for helpful advice and discussion of the manuscript.
[3/2532 Received, 12th December, 1973]

[^0]: ${ }^{2}$ P. Biscarini, L. Fusina, and G. D. Nivellini, (a) J. Chem. Soc. (A), 1971, 1128; (b) J.C.S. Dalton, 1972, 1003.

[^1]: ${ }^{3}$ D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.
 ${ }_{5}^{4}$ D. T. Cromer and J. B. Mann, Acta Cryst., 1968, A24, 321.
 ${ }^{5}$ A. Immirzi, Ricerca Sci., 1967, 37, 743.

[^2]: 11 J. A. W. Dalziel, M. J. Hitch, and S. D. Ross, Spectrochim. Acta, 1969, 25A, 1055.
 ${ }^{12}$ 'G. B. Deacon and J. H. S. Green, Spectrochim. Acta, 1969, 25A, 355 .
 ${ }^{13}$ O. Hassel and J. Hvoslef, Acta Chern. Scand., 1954, 8, 1953.
 14 Y. Mikawa, R. J. Jakobsen, and J. W. Brasch, J. Chem. Phys., 1966, 45, 4528.
 ${ }^{15}$ K. S. McEwen, G. A. Sim, and C. R. Johnson, Chem. Comm., 1967, 885.

