Crystal and Molecular Structure of Tetracarbonyl-(7,7-dimethoxynor-born-2-ene)chromium(0)

By Peter D. Brotherton, Dieter Wege, and Allan H. White,* School of Chemistry, University of Western Australia, Nedlands 6009, Western Australia
Edward N. Maslen, Department of Physics, University of Western Australia, Nedlands 6009, Western Australia

The crystal and molecular structure of the title compound has been determined from diffractometer data (840 reflections) and refined by full-matrix least-squares to $R 0.047$. Crystals are orthorhombic, space group $P 2_{1} 2_{1} 2_{1}, a=$ $14.786(2), b=10 \cdot 137(1), c=9 \cdot 440(1) A, Z=4$.
The chromium atom is octahedrally co-ordinated by the organic ligand which is bidentate through the olefinic bond and one of the methoxy-groups [$\mathrm{Cr}-\mathrm{C} 2 \cdot 248$ and $2 \cdot 300(8), \mathrm{Cr}-\mathrm{O} 2 \cdot 152(5) \mathrm{A}$] and by the four carbonyl groups. Among the latter, an interesting comparison is found between the opposed pair of carbonyl groups with $\mathrm{Cr}-\mathrm{C} 1.915 \pm 0.015$ and $\mathrm{C}-\mathrm{O} 1.125 \pm 0.015 \AA$ and the pair opposite the ligand with $\mathrm{Cr}-\mathrm{C} 1.83 \pm 0.015$ and C-O $1 \cdot 165 \pm 0.015 \AA$.

Recently, the preparation of complexes of the type $\mathrm{LCr}(\mathrm{CO})_{4} \quad(\mathrm{~L}=$ syn-7-alkoxynorborn-2-ene) has been reported, in which the alkoxynorbornene acts as a bidentate ligand; the assignment of structure was based on spectroscopic evidence, particularly ${ }^{1} \mathrm{H}$ n.m.r. ${ }^{1}$ Stable complexes in which oxygen atoms are co-ordinated

(I) showing the atom numbering system used in the analysis
to zerovalent chromium are quite rare ${ }^{2}$ and it was considered to be of interest to establish the structure of one of these novel complexes (I) by single-crystal X-ray diffraction.

EXPERIMENTAL

Preparation of Complex.-A solution of 7,7-dimethoxy-norborn-2-ene (2.0 g) in di-n-butyl ether (50 ml) and cyclo-
${ }^{1}$ D. Wege and S. P. Wilkinson, J.C.S. Chem. Comm., 1972, 1335.
${ }_{2}$ Gmelins, ' Handbuch der Anorganischen Chemic,' Band 3 Chrom-Organische, Verbindungen, Verlag Chemie, Weinheim, 1971.
${ }^{3}$ D. Wege and S. P. Wilkinson, Austral. J. Chem., 1973, 26, 1751.
hexane (20 ml) was heated under reflux (bath temperature 140°) with chromium hexacarbonyl ($4 \cdot 0 \mathrm{~g}$) under nitrogen for 10 h in the apparatus described previously. ${ }^{3}$ Volatile material was removed under nitrogen at $80^{\circ} / 2 \mathrm{mmHg}$ to leave an orange oil which crystallized from pentane to give the complex as orange prisms (0.34 g), m.p. $107-108{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 49 \cdot 4 ; \mathrm{H}, 4 \cdot 5 . \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{CrO}_{6}$ requires $\mathrm{C}, 49 \cdot 1$; H, $\mathbf{4} \cdot \mathbf{4} \%$).

Crystallography.-A single compact polyhedral crystal fragment closely approximating to a sphere 0.25 mm in diameter was chosen. Cell dimensions were obtained by a least-squares fit of the angular parameters of 15 reflections centred in the counter aperture of a Syntex Pī four-circle diffractometer. A unique data set in the range $2 \theta<100^{\circ}$ was collected by use of a $\theta-2 \theta$ scan (840 independent reflections, all of which were used with unit weights in the structure determination and refinement). All data processing and computation was carried out on a CDC 6200 computer at the University of Western Australia, with a local adaption of the ' X-Ray ' 72 ' programme system. ${ }^{4}$

Crystal Data.- $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{CrO}_{6}, M=318 \cdot 3$. Orthorhombic, $a=14.786(2), b=10 \cdot 137(1), c=9 \cdot 440(1) \AA, U=1414 \cdot 8(3)$ $\AA^{3}, D_{\mathrm{m}}=1.51, Z=4, D_{\mathrm{c}}=1.49 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=656$. Space group $P 2_{1} 2_{1} 2_{1}\left(D_{2}^{4}\right.$, No. 19). ${ }^{5} \mathrm{Cu}-K_{\alpha}$ Radiation, Ni filtered, $\lambda=1.5418 \AA,{ }^{6} \mu\left(\mathrm{Cu}-K_{\alpha}\right)=144 \mathrm{~cm}^{-1}$. Scattering factors for the neutral atoms were taken from ref. 7, those for chromium being corrected for the effects of anomalous dispersion $\left(\Delta f^{\prime}, \Delta f^{\prime \prime}\right) .^{8}$ Data were corrected for absorption (spherical approximation) but not extinction.

Solution of the structure was by conventional heavy-atom methods, the final stages of refinement being carried out by full-matrix least-squares; anisotropic thermal parameters for non-hydrogen atoms were refined according to the form: $\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} z^{2} b^{* 2}+U_{33} l^{2} c^{* 2}+2 U_{12} h k a^{*} b^{*}+\right.\right.$ $\left.\left.2 U_{13} h l a^{*} c^{*}+2 U_{23} k l b^{*} c^{*}\right)\right]$. Hydrogen atoms were located geometrically and their positional parameters refined, the isotropic thermal parameter U being constrained to $0 \cdot 10 \AA^{2}$. In the final least-squares cycle, no non-hydrogen parameter

[^0]Table 1
Atomic fractional cell (a decimal point precedes x, y, and z) and anisotropic thermal parameters ($10^{3} U_{i j} \AA^{2}$), with estimated standard deviations in parentheses, for non-hydrogen atoms

Atom	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{33}
Cr	13147(9)	8126(1)	6132(1)	45(1)	44(1)	56(1)	1(1)	0 (1)	$-3(1)$
$\mathrm{C}(1)$	0022(7)	8263(8)	6230(9)	58(7)	48(5)	$74(6)$	5(4)	0 (5)	$-7(6)$
$\mathrm{O}(1)$	-0729(5)	8375(8)	6329(8)	$51(5)$	99(5)	99(5)	17(4)	4(4)	$-9(5)$
C(2)	1366(6)	8420(9)	803(1)	49(5)	77(6)	70(6)	58(5)	$-13(5)$	$-10(5)$
$\mathrm{O}(2)$	1400(6)	8636(9)	9240(7)	86(5)	134(7)	64(4)	11 (5)	$2(4)$	-19(4)
C(3)	1299(7)	991 (1)	584(1)	$72(6)$	63(7)	82(6)	$2(5)$	4(6)	$-2(5)$
$\bigcirc(3)$	1285(7)	1063(7) *	569(1)	131(7)	44(5)	162(8)	-6(4)	$-27(6)$	$3(5)$
$\mathrm{C}(4)$	2603(8)	8239(9)	6246(9)	$65(7)$	$63(5)$	58(5)	-4(5)	8(5)	$-1(7)$
$\mathrm{O}(4)$	3351 (5)	8347(9)	6439(9)	44(4)	120(6)	125(6)	$-16(4)$	$-6(4)$	$-9(6)$
C(5)	1955(8)	813(1)	299(1)	101(8)	52(5)	71 (6)	-7(6)	14(6)	22(5)
$\mathrm{O}(5)$	1297(4)	7523(5)	3946(6)	59(3)	37(3)	50 (3)	1(3)	4(4)	9(2)
C(6)	0581(9)	585(1)	163(1)	88(7)	93(8)	68(6)	$-4(7)$	$-31(6)$	$-10(6)$
$\mathrm{O}(6)$	1362(4)	5658(5)	2496(6)	$68(3)$	57(3)	55(3)	9(3)	-3(3)	-8(3)
$\mathrm{C}(7)$	1309(6)	6082(7)	3877(8)	57(5)	38(4)	$51(5)$	12(4)	$-6(6)$	3(4)
C(8)	0537(5)	5557(8)	4772 (9)	41(4)	46(5)	70(5)	0 (4)	7(4)	-1(4)
C(9)	2056(5)	5506(8)	4796(8)	$39(4)$	45(5)	49(4)	3(4)	6(4)	2(4)
$\mathrm{C}(10)$	1798(6)	4041(8)	477(1)	63 (5)	45(5)	$84(6)$	3(4)	4(5)	$-11(5)$
C(11)	0741 (6)	4077(9)	473(1)	62(5)	46(5)	91(7)	$-7(4)$	$2(5)$	$2(5)$
C(12)	0851 (6)	6016(8)	622(1)	$62(6)$	45(5)	59(5)	$-2(4)$	-5(5)	$-2(5)$
C(13)	$1781(5)$	5963(7)	6230(9)	47(5)	38(4)	65(5)	12(4)	$-5(4)$	10(5)

shift was $>0 \cdot 2 \sigma$ and a difference Fourier showed no significant features; R was 0.047 and $R^{\prime} 0.070\left\{R^{\prime}=\left[\Sigma\left(\left|F_{\mathrm{o}}\right|-\right.\right.\right.$ $\left.\left.\left.\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma\left|F_{0}\right|^{2}\right]^{\frac{1}{2}}\right\}$, for the preferred hand, values for the

Table 2
Interatomic distances (\AA) and angles (${ }^{\circ}$), with leastsquares estimated standard deviations in parentheses
(a) The Cr environment

$\mathrm{Cr}-\mathrm{C}(1)$	1.92(1)	$\mathrm{Cr}-\mathrm{C}(12)$	2.248(8)
$\mathrm{Cr}-\mathrm{C}(2)$	1-82(1)	$\mathrm{Cr}-\mathrm{C}(13)$	$2 \cdot 300$ (8)
$\mathrm{Cr}-\mathrm{C}(3)$	1.84(1)		
$\mathrm{Cr}-\mathrm{C}(4)$	1.91(1)	$\mathrm{Cr}-\mathrm{O}(5)$	2-152(5)
$\mathrm{C}(1)-\mathrm{Cr}-\mathrm{C}(2)$	$89 \cdot 0$ (4)	$\mathrm{C}(3)-\mathrm{Cr}-\mathrm{C}(4)$	87.8(4)
$\mathrm{C}(1)-\mathrm{Cr}-\mathrm{C}(3)$	85.6(4)	$\mathrm{C}(3)-\mathrm{Cr}-\mathrm{O}(5)$	97•7(3)
$\mathrm{C}(1)-\mathrm{Cr}-\mathrm{C}(4)$	170.3(4)	$\mathrm{C}(3)-\mathrm{Cr}-\mathrm{C}(12)$	160.4(4)
$\mathrm{C}(1)-\mathrm{Cr}-\mathrm{O}(5)$	$93 \cdot 1$ (3)	$\mathrm{C}(3)-\mathrm{Cr}-\mathrm{C}(13)$	162.2(4)
$\mathrm{C}(1)-\mathrm{Cr}-\mathrm{C}(12)$	76.3(3)	$\mathrm{C}(4)-\mathrm{Cr}-\mathrm{O}(5)$	94.8(3)
$\mathrm{C}(1)-\mathrm{Cr}-\mathrm{C}(13)$	$111.5(3)$	$\mathrm{C}(4)-\mathrm{Cr}-\mathrm{C}(12)$	111.1(4)
$\mathrm{C}(2)-\mathrm{Cr}-\mathrm{C}(3)$	89-2(4)	$\mathrm{C}(4)-\mathrm{Cr}-\mathrm{C}(13)$	$75 \cdot 9(3)$
$\mathrm{C}(2)-\mathrm{Cr}-\mathrm{C}(4)$	83.9(4)	$\mathrm{O}(5)-\mathrm{Cr}-\mathrm{C}(12)$	76.2(3)
$\mathrm{C}(2)-\mathrm{Cr}-\mathrm{O}(5)$	172.8(3)	$\mathrm{O}(5)-\mathrm{Cr}-\mathrm{C}(13)$	76.8(3)
$\mathrm{C}(2)-\mathrm{Cr}-\mathrm{C}(12)$	97.6(4)	$\mathrm{C}(12)-\mathrm{Cr}-\mathrm{C}(13)$	35-2(3)
$\mathrm{C}(2)-\mathrm{Cr}-\mathrm{C}(13)$	96.0(4)		
(b) Carbonyl groups			
$\mathrm{C}(1)-\mathrm{O}(1)$	1-12(1)	$\mathrm{Cr}-\mathrm{C}(1)-\mathrm{O}(1)$	177.4(8)
$\mathrm{C}(2)-\mathrm{O}(2)$	1-16(1)	$\mathrm{Cr}-\mathrm{C}(2)-\mathrm{O}(2)$	178.6(9)
$\mathrm{C}(3)-\mathrm{O}(3)$	1.17(1)	$\mathrm{Cr}-\mathrm{C}(3)-\mathrm{O}(3)$	177.6(9)
$\mathrm{C}(4)-\mathrm{O}(4)$	1•13(1)	$\mathrm{Cr}-\mathrm{C}(4)-\mathrm{O}(4)$	173.5(8)
(c) The ligand			
$\mathrm{C}(12)-\mathrm{C}(13)$	1-38(1)		
$\mathrm{C}(13)-\mathrm{C}(9)$	1.49 (1)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(9)$	106.3(8)
$\mathrm{C}(9)-\mathrm{C}(10)$	$1 \cdot 53(1)$	$\mathrm{C}(13)-\mathrm{C}(9)-\mathrm{C}(10)$	$104 \cdot 3(7)$
$\mathrm{C}(10)-\mathrm{C}(11)$	1.56(1)	$\mathrm{C}(13)-\mathrm{C}(9)-\mathrm{C}(7)$	101.6(6)
$\mathrm{C}(11)-\mathrm{C}(8)$	$1.53(1)$	$\mathrm{C}(7)-\mathrm{C}(9)-\mathrm{C}(10)$	$100 \cdot 5(6)$
$\mathrm{C}(8)-\mathrm{C}(12)$	1.52(1)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	103•1(7)
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.52(1)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(8)$	102.6(7)
$\mathrm{C}(7)-\mathrm{C}(9)$	1.52(1)	$\mathrm{C}(11)-\mathrm{C}(8)-\mathrm{C}(7)$	100.4(7)
$\mathrm{C}(7)-\mathrm{O}(5)$	1.46(1)	$\mathrm{C}(11)-\mathrm{C}(8)-\mathrm{C}(12)$	105.3(7)
$\mathrm{C}(7)-\mathrm{O}(6)$	$1 \cdot 38(1)$	$\mathrm{C}(12)-\mathrm{C}(8)-\mathrm{C}(7)$	99.5 (6)
$\mathrm{O}(5)-\mathrm{C}(5)$	1.46(1)	$\mathrm{C}(8)-\mathrm{C}(12)-\mathrm{C}(13)$	107.4(8)
$\mathrm{O}(6)-\mathrm{C}(6)$	1-43(1)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(9)$	95.4(6)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{O}(5)$	108.5(6)	$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{O}(5)$	111.5(6)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{O}(6)$	$117.5(7)$	$\mathrm{C}(9)-\mathrm{C}(7)-\mathrm{O}(6)$	112.3(6)
$\mathrm{C}(7)-\mathrm{O}(5)-\mathrm{C}(5)$	112.7(6)	$\mathrm{C}(7)-\mathrm{O}(6)-\mathrm{C}(6)$	$116 \cdot 8(7)$
$\mathrm{Cr}-\mathrm{O}(5)-\mathrm{C}(7)$	109.0(4)	$\mathrm{Cr}-\mathrm{O}(5)-\mathrm{C}(5)$	117.6(5)
$\mathrm{C}(4) \cdots \mathrm{C}(13)$	2.61(1)	$\mathrm{C}(1) \cdots \mathrm{C}(12)$	2-59(1)

alternative parity being 0.067 and 0.092 . Positional and thermal parameters are listed in Table 1 and bond distances and angles in Table 2, for non-hydrogen atoms.
Structure-factor tables and hydrogen-atom parameters are given in Supplementary Publication No. SUP 21047 (11 pp., 1 microfiche).*

DISCUSSION

The chromium atom is pseudo-octahedrally coordinated by the four carbonyl groups and the methoxy and olefinic groups of the ligand (Figure). With the exception of the terminal methyl substituents of the ligand, the molecule has an approximate point-symmetry of m, the mirror plane passing through the metal atom, the methoxy-oxygen and carbonyls (2) and (3) (Table 3).

Table 3

Equation of least-squares plane, with atomic deviations (\AA). Orthogonal co-ordinates (\AA) are derived for the fractional cell co-ordinates by the transformation: $X=a x, Y=b y, Z=c z$
Plane: $\mathrm{Cr}, \mathrm{O}(2), \mathrm{O}(3), \mathrm{O}(6), \mathrm{C}(2), \mathrm{C}(3), \mathrm{C}(7)$
Equation: $0.999 X+0.027 Y-0.026 Z=2.055(\sigma 0.33 \AA)$ Deviations: $\mathrm{Cr}-0.03, \mathrm{C}(2) 0.00, \mathrm{C}(3) 0.00, \mathrm{C}(7)-0.05, \mathrm{O}(2)$ $0.03, \mathrm{O}(3) 0.01, \mathrm{O}(6) 0.05, \mathrm{O}(5)-0.03, \mathrm{C}(5) 0.98, \mathrm{C}(12)$ $-0.78, \mathrm{C}(13) 0.59, \mathrm{C}(10) 0.60, \mathrm{C}(11)-0.96, \mathrm{C}(8)-1 \cdot 22$, $\mathrm{C}(9) 1.02$

With respect to this plane, the carbonyl groups fall into two classes: two are mutually trans and normal to the plane $[\mathrm{C}(1), \mathrm{O}(1) ; \mathrm{C}(4), \mathrm{O}(4)]$, while the other two in the plane are mutually cis $[\mathrm{C}(2), \mathrm{O}(2) ; \mathrm{C}(3), \mathrm{O}(3)]$. Significant differences are found in the bonding of these two sets of carbonyl groups, probably too large to be accounted for by thermal motion for which no correction has been applied. In the cis-pair, the chromiumcarbonyl distances are short $[1.83(1) \AA]$ with correspondingly long carbon-oxygen bonds $[1 \cdot 165(15) \AA]$, whereas

* For details, see Notice to Authors, No. 7, in J.C.S. Dalton, 1973, Index issue.
in the trans-pair the chromium-carbonyl distances are long $[1.91(1) \AA]$ with short carbon-oxygen distances $[1 \cdot 125(15) \AA]$. These differences can be rationalised in terms of metal-ligand π back-bonding from the filled metal $t_{2 g}^{6}$ orbital set (O_{h} description) to the empty ligand π^{*} orbitals. In the case of the opposed or trans-carbonyl pair, (1) and (4), the available
found to be $1.86(2) \AA$, while the adjacent pair are both $1 \cdot 83(1) \AA$. Although the authors did not consider the differences significant, their refinement was carried out by full-matrix methods and the difference parallels that found in (I). In (I) the olefinic carbon-chromium distances $[2 \cdot 248(8)$ and $2 \cdot 300(8) \AA]$ are somewhat shorter than in (II) $[2 \cdot 33(1)$ and $2 \cdot 34(1) \AA]$. The asymmetry of

electrons must be equally shared between both acceptor groups. With the cis-pair, however, it appears in each case that the π-acceptor properties of the opposing methoxy or olefinic ligand groups must be very small, these being primarily σ-donors, so that the distribution of the metal π-donation within each of these opposing pairs is asymmetric in favour of the two carbonyl groups. Their metal-carbon distances are therefore shorter than those of the opposed carbonyl pair, and the carbon-oxygen distances correspondingly longer. Although a large number of structure determinations have been carried out on chromium-carbonyl derivatives, ${ }^{2}$ there are no similarly symmetrical structures of comparable accuracy. The closest approximation, perhaps, is the structure of (II), tetracarbonyl-(hexamethylbicyclo[2.2.0]hexa-2,5-diene) chromium(0), ${ }^{9}$ which is analogous to the present complex but having the methoxy-group replaced by an olefinic bond. In (II), the opposed chromium-carbonyl distances were
${ }^{9}$ G. Huttner and O. S. Mills, J. Organometallic Chem., 1971, 29, 275.
the methoxy-groups is the probable reason for this slight deviation of the molecule from exact m symmetry.

In the organic ligand are found the usual reductions in angles from tetrahedral or trigonal values owing to

(II)
ring strain; in particular, the angles $\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(8)$ and $\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(9)$ are reduced from 120 to $107 \pm 1^{\circ}$. Although refinement of the hydrogen atoms is not highly accurate, the values for $\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$ and $\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$ are correspondingly large $[129(6)$ and $\left.134(7)^{\circ}\right]$. The olefinic $\mathrm{C}(12)-\mathrm{C}(13)$ distance $[1 \cdot 38(1) \AA]$ is not significantly different from that in (II) $[1 \cdot 36(1) \AA]$.
[3/2378 Received, 20th, November 1973]

[^0]: $4 X$-Ray program system, version of June 1972. Technical Report TR-192 of the Computer Science Centre, University of Maryland, U.S.A.
 ${ }_{5}$ 'International Tables for X-Ray Crystallography,' vol. 1, Kynoch Press, Birmingham, 2nd edn., 1965, p. 105.
 ${ }^{6}$ Ref. 5, vol. III, p. 59.
 ${ }^{7}$ Ref. 6, pp. 202 ff.
 ${ }^{8}$ Ref. 6, pp. 215.

