Pyramidal Five-co-ordination with Flattened Tetrahedral Basal Bonds. Crystal and Molecular Structures of Dibromotris-(5-ethyl-5H-dibenzo-phosphole)palladium(iI)-Chlorobenzene, Dibromotris-(5-ethyl-5H-di-benzophosphole)platinum(11)-Bromobenzene, and Dibromotris-(5-methyl-5H-dibenzophosphole)platinum(1)-Bromobenzene

By Kui M. Chui and H. Marcus Powell," Chemical Crystallography Laboratory, South Parks Road, Oxford OX1 30S

Abstract

In the molecules of the title compounds one bromine atom is at the apex of a distorted tetragonal pyramid which has the five-co-ordinate metal atom in the centre of the base. The other bromine atom and the three phosphorus atoms lie in basal positions. The angle between apical and basal bonds is greater than 90° for the bromine atom (mean 100°) and for the phosphorus atom trans to it (mean 108°). The similar angles for the other two phosphorus atoms are less than 90° (both mean 86°). The basal bonds are directed to the corners of a flattened and distorted tetrahedron.

The apical bond is always longer by at least $0.4 \AA$ than the metal-bromine basal bond. Differences in apical bond length between the closely related Pd and Pt compounds (1) and (2) with identical ligands, and between the two platinum compounds (2) and (3) which differ only in alkyl substituent (Me or Et) are discussed. The former is a chemical effect, the latter may, in part, arise from intermolecular effects. The bond from M to the phosphorus atom trans to the basal bromine is $\mathrm{ca} .0 .06 \AA$ shorter than the other M-P bonds. The plane of one phosphole ligand $\mathrm{L}(\mathrm{I})$ is steeply inclined to those of the others $\mathrm{L}(\mathrm{II}), \mathrm{L}(\mathrm{III})$. An interaction is found between $\mathrm{L}(\mathrm{II})$, trans to the basal bromine, and $\mathrm{L}(\mathrm{III})$ which brings them parallel plane-to-plane and makes the angle $\mathrm{P}(\mathrm{II})-\mathrm{M}-\mathrm{P}(\mathrm{III})<\mathrm{P}(\mathrm{II})-\mathrm{M}-\mathrm{P}(\mathrm{I})$ by ca. $5 \cdot 4^{\circ}$.

The detailed stereochemistry of the metals is explained in terms of steric effects and ligand interaction.

Five-co-ordinate complexes $\mathrm{NiL}_{3}(\mathrm{CN})_{2}{ }^{1}{ }^{1}[\mathrm{~L}=5-\mathrm{R}-5 \mathrm{H}$ dibenzophosphole, (4a), (4b) $\mathrm{R}=\mathrm{Me}, \dagger$ (5) $\mathrm{R}=\mathrm{Et}$], show either trigonal bipyramidal or tetragonal pyramidal bonds for the nickel atom and one compound has been obtained in both sterochemical forms. The proximity and parallelism of two of the ligands L suggests a possible interaction between them, but this does not determine the stereochemistry of the nickel atom. A crystal structure investigation of other members of the general series $\mathrm{ML}_{3} \mathrm{X}_{2}$, in which M and X are varied, has been undertaken in order to determine whether the ligand interaction persists and whether the stereochemistry

	R	M	X
(1) Solvent			
(2) Et	Pd	Br	PhCl
(3) Me Pt	Br	PhBr	
(4a), (4b) Me	Ni	CN	
(5) Et	Ni	CN	

of the metal is affected. In this paper $\mathrm{X}=\mathrm{Br}$ and $\mathrm{M}=\mathrm{Pd}$ or Pt .

[^0]The structures of the ethyl-substituted palladium compound (1) and the ethyl-substituted platinum compound (2) are very closely related in cell constants and

Figure 1 The molecules of the structure (1) projected on the best plane through $\mathrm{C}(\alpha, \mathrm{I}), \mathrm{C}\left(\alpha^{\prime}, \mathrm{I}\right), \mathrm{C}(\alpha, \mathrm{III})$, and $\mathrm{C}\left(\alpha^{\prime}, \mathrm{III}\right)$
molecular positions, and, although the methyl-substituted platinum compound (3) shows greater differences in cell constants, all three could be described as being isostructural. Intramolecularly (2) and (3) are very closely alike, more so than (1) and (2). Figures 1 and 2 show the asymmetric unit for compounds (1) and (3) respectively. This unit consists of one molecule of the metal complex and one molecule of chlorobenzene or bromobenzene. The three organic ligands

[^1]in each complex are labelled (I), (II), (III) and this labelling, as well as the modification of the normal chemical numbering for the ligand molecule (Figure 3), corresponds with that used for the nickel complexes.

Figure 2 The molecules of the structure (3) projected on the best plane through atoms $\mathrm{C}(\alpha, \mathrm{I}), \mathrm{C}\left(\alpha^{\prime}, \mathrm{I}\right), \mathrm{C}(\alpha, \mathrm{III})$, and $\mathrm{C}\left(\alpha^{\prime}, \mathrm{III}\right)$

Ligands (II) and (III) are always nearly parallel plane-to-plane with a separation of $3 \cdot 35-3 \cdot 50 \AA$. Ligands (II) and (III) are distinguished by the choice of angle $\mathrm{P}(\mathrm{II})-\mathrm{M}-\mathrm{P}(\mathrm{I})<\mathrm{P}(\mathrm{III})-\mathrm{M}-\mathrm{P}(\mathrm{I})$, which does not require angle $\mathrm{P}(\mathrm{II})-\mathrm{M}-\mathrm{P}(\mathrm{III})$ to be greater than $\mathrm{P}(\mathrm{II})-\mathrm{M}-\mathrm{P}(\mathrm{I})$ or the converse, but ensures that these two angles are stereochemically comparable.
The arrangement of metal bonds is much the same in all three compounds. It is derivable by small distortions from a square pyramid having the metal atom and four of its attached atoms in the base and one of the bromide atoms at the apex. Independently of valency angles the apex is always distinguishable by a $\mathrm{M}-\mathrm{Br}(2)$ distance at least $0.4 \AA$ greater than the other metal-bromine distance in the same molecule. The bond arrangement differs from the tetragonal pyramidal form in the nickel complex ($4 a)^{1}$ in two ways. In (4a) one phosphorus atom is at the apex and the other two are mutually trans in the base, but in the palladium and platinum compounds (1)-(3), three phosphorus atoms are in basal positions; in (4a) all four angles, α, between the apical bond and the basal bonds are greater than 90° by 10° or more, but for (1)-(3) they are not.

The stereochemical form differs also from tetragonal pyramids in general found in a variety of complexes formed by nickel and other metals. These usually have all angles α greater than 90°, though in a small group all are less than 90°. In the present compounds the basal bromine atom and the phosphorus atom P(II) trans to it have α greater than 90°, the atoms $\mathrm{P}(\mathrm{I})$ and $\mathrm{P}(\mathrm{III})$ have α less than 90°. The four basal bonds point to the corners of a very flattened tetrahedron. Table l summarises this stereochemistry.

Table 1 also reveals regularity in bond lengths.

Discussion of apical bond lengths is given on page 1885 in the light of conformational and environmental details. Change from palladium to platinum makes little difference in basal bond lengths, as shown by approximate constancy of values in each of the first four rows of the Table. The distances metal to $\mathrm{P}(\mathrm{I})$, $\mathrm{P}(\mathrm{II})$, and $\mathrm{P}(\mathrm{III})$ are distinguishable, the means being $2 \cdot 336,2 \cdot 266$, and $2 \cdot 306 \AA$. A M $-\mathrm{P}(\mathrm{II})$ distance smaller than $\mathrm{M}-\mathrm{P}(\mathrm{I})$ or $\mathrm{M}-\mathrm{P}(\mathrm{III})$ is understandable as being mainly a trans effect, this phosphorus being trans to $\mathrm{Br}(\mathrm{l})$. The atoms $\mathrm{P}(\mathrm{I})$ and $\mathrm{P}(\mathrm{III})$ are not in exactly equivalent chemical situations because of the $\mathrm{L}(\mathrm{II}) \cdots \mathrm{L}$ (III) interaction so a difference in bond length could be explained. The observed difference is small but consistent, and might be real; it is in the right sense for an additional attraction affecting L(III), i.e. $\mathrm{M}-\mathrm{P}(\mathrm{III})$ is shorter than $\mathrm{M}-\mathrm{P}(\mathrm{I})$. However, if real, the effect should occur in all members of the series though its magnitude could vary with the stereochemistry. In the nickel compounds of ref. I and in other compounds, ${ }^{2}$ all different stereochemically from (1)-(3), a difference is not observed. A difference in

Table 1

Bond lengths (\AA) and angles (${ }^{\circ}$) at the metal atom, with estimated standard deviations in parentheses

	(1)	(2)	(3)
(a) Bond lengths			
$\mathrm{M}-\mathrm{P}(\mathrm{I})$	2.355(9)	2.342(5)	2.312(5)
$\mathrm{M}-\mathrm{P}$ (II)	$2 \cdot 294$ (9)	$2 \cdot 257$ (5)	2.248(6)
$\mathrm{M}-\mathrm{P}$ (III)	2-303(9)	$2 \cdot 309(5)$	2-306(6)
$\mathrm{M}-\mathrm{Br}(1)$	2.555(5)	2.542(3)	$2 \cdot 534(3)$
$\mathrm{M}-\mathrm{Br}(2)$ (apical)	$2 \cdot 936$ (4)	3.143(3)	$3 \cdot 026(3)$
(b) Bond angles			
$\mathrm{P}(\mathrm{I})-\mathrm{M}-\mathrm{P}(\mathrm{II})$	97.95(32)	98.55(18)	98.40(19)
$\mathrm{P}(\mathrm{I})-\mathrm{M}-\mathrm{P}(\mathrm{III})$	168.67(33)	166.87(17)	168.57(19)
P (II) $-\mathrm{M}-\mathrm{P}$ (III)	$92 \cdot 79(32)$	93.01 (17)	$92 \cdot 62(20)$
$\operatorname{Br}(1)-\mathrm{M}-\mathrm{P}(\mathrm{I})$	$86 \cdot 11(24)$	$85 \cdot 32(14)$	84.86(14)
$\mathrm{Br}(1)-\mathrm{M}-\mathrm{P}(\mathrm{II})$	147.78(26)	154.56(14)	156.44(15)
$\operatorname{Br}(1)-\mathrm{M}-\mathrm{P}(\mathrm{III})$	86.73(25)	86.90 (13)	$86 \cdot 26(15)$
$\mathrm{Br}(2)-\mathrm{M}-\mathrm{P}(\mathrm{I})$	$87 \cdot 20(23)$	86.21 (13)	$85 \cdot 90$ (14)
$\mathrm{Br}(2)-\mathrm{M}-\mathrm{P}$ (II)	108.67(25)	106.47(13)	108.34(15)
$\mathrm{Br}(2)-\mathrm{M}-\mathrm{P}(\mathrm{III})$	85-94(24)	84-55(12)	$88.09(15)$
$\operatorname{Br}(1)-\mathrm{M}-\mathrm{Br}(2)$	103•43(14)	98.85(8)	97-15(8)

bond length for $\mathrm{P}(\mathrm{I})$ and $\mathrm{P}(\mathrm{III})$ is therefore much less certain than the difference for $\mathrm{P}(\mathrm{II})$ and the others.

The stereochemical behaviour is considered first by reference to the metal atom and its immediate neighbours only. A model of $C_{2 v}$ symmetry which retains the pseudo-tetragonal pyramidal angles of (4a) but substitutes palladium for nickel and Br for CN , with bond lengths $\mathrm{Pd}-\mathrm{Br} 2.55$ and $\mathrm{Pd}-\mathrm{P}$ (basal) 2.317, has four equal non-bonded distances $\mathrm{P} \cdots \mathrm{Br}$ (basal) $3 \cdot 37 \AA$. This calculated value is very close to the distance observed in the different type of tetragonal pyramid actually found for the compound. There is, therefore, no steric factor involving only the basal bromine and phosphorus atoms which could destabilise the form

[^2]having the angles of ($4 a$). Other possible steric effects are between the bromine atoms and some of the carbon atoms of the ligands. The shortest contact is calculated at $3.31 \AA$ between $\mathrm{Br}(2)$ and carbon atom $\mathrm{C}(\gamma)$ of ligand (I) (Figure 3). In the real structure the distances $\mathrm{Br} \cdots \mathrm{C}$ atoms are $\geq 3.8 \AA$. This may explain why the form of $(4 a)$, the tetragonal pyramid, is not adopted by the bromides. Similar calculations show a shortest $\mathrm{Br} \cdots \mathrm{C}$ distance of $3.05 \AA$ for a trigonal bipyramidal form with the metal valency angles of the complex (5). ${ }^{1}$ Although such considerations may eliminate

Figure 3 The ligand numbering system
hypothetical molecular forms obtained by atomic substitution into those already known, they do not cover possible conformational variations and the basic stereochemistry may not be determined by such steric restrictions.

If it is assumed that for these compounds the stable form, whether or not steric factors are involved, is basically a tetragonal pyramid with one bromine atom
of angles which increase the distances between basal atoms. This has the appearance of a relief of potential overcrowding. If the overcrowding is a direct effect between phosphorus atoms it is possible to derive an empirical radius for phosphorus atoms applicable to internal contacts. If, however, the overcrowding involves ligand atoms more remote from the central metal, the argument which follows will still hold if the contact radii derived for the phosphorus and bromine are regarded as effective values applicable when these more remote interactions occur.

When there is overcrowding, as is evident from bondangle distortion, it is reasonable to take the effective contact radius as half the distance corresponding to minimum overcrowding, i.e. the largest distance between two similar atoms which are seen to be displaced so as to increase their separation. This distance for $\mathrm{P} \cdots \mathrm{P}$ is taken as $3 \cdot 48 \AA$ (the mean of three close values in Table 2); $\mathrm{P} \cdot \mathrm{Br}$ is slightly less $(3 \cdot 36 \AA)$ than this.

The detailed stereochemistry for the palladium compound may now be considered. In the discussion which follows, substitution of platinum for palladium makes only minor changes of detail in the conclusion. From the bond lengths and the empirical contact distances the angles required between adjacent basal bonds are calculated as $\mathrm{P}-\mathrm{Pd}-\mathrm{P} 97^{\circ} 20^{\prime}$ and $\mathrm{P}-\mathrm{Pd}-\mathrm{Br}$ $86^{\circ} 51^{\prime}$. The sum of the four angles is $8 \frac{1}{2}^{\circ}$ greater than 360° and is incompatible with coplanar bonds. Various deviations from coplanarity which allow all the basal angles to take up the required values may be imagined. They will be restricted initially to those which preserve a plane of symmetry relating the bond angles, e.g.

TAble 2
P..P and P...Br distances (\AA) with estimated standard deviations in parentheses

Complex	Stereochemistry *	$\mathrm{P}(\mathrm{I}) \cdots \mathrm{P}(\mathrm{II})$	$\mathrm{P}(\mathrm{III}) \cdots \mathrm{P}(\mathrm{II})$	$\mathrm{P}(\mathrm{I}) \cdots \mathrm{Br}(1)$	$\mathrm{P}(\mathrm{III}) \cdots \operatorname{Br}(\mathbf{1})$
(1)	(c)	3.508(12)	$3 \cdot 329(12)$	3.355(11)	3.341(11)
(2)	(c)	3-486(7)	3-313(7)	3-313(6)	$3 \cdot 341$ (5)
(3)	(c)	3-452(8)	3.293(8)	3-274(6)	$3 \cdot 313(6)$
(5)	(b)	3.940	3.741		
(4b)	(b)	4.076	$3 \cdot 721$		
(4a)	(a)	3.466(3)	3-401(3)		

* See page 1882 for definition.
at the apex, the stereochemistry proves to be explicable in great detail in terms of steric effects of the five ligands and the ligand-ligand interaction which has been postulated. First it is necessary to consider the nonbonded $\mathrm{P} \cdot \mathrm{P}$ separation possible in such a compound. Accurate values for observed distances are listed in Table 2. The largest values are in the nickel compounds ${ }^{1}(4 b)$ and (5) although the smallest might be expected since nickel is the smallest of the central atoms. The greater distances arise because the trigonal bipyramidal bonds to phosphorus are equatorial and the angles between them are all greater than 110°. The short distances in the palladium and platinum compounds are accompanied by unusual distortions
$P(I)-P d-P(I I)$ and $P(I I I)-P d-P(I I)$. If the three phosphorus atoms remain in the plane at right angles to the apical bond, the bond to $\operatorname{Br}(1)$ must be bent $64 \frac{1}{2}^{\circ}$ away from the plane. This gives a stereochemical form which is no longer approximately a tetragonal pyramid.

Any set of small displacements of all four atoms to one side of the plane will make the sum of the angles less than 360° and so will worsen the overcrowding. A large deviation of the $\operatorname{Pd}-\operatorname{Br}(\mathbf{1})$ bond from the tetragonal pyramidal is avoided only if $\mathrm{P}(\mathrm{I})$ and $\mathrm{P}(\mathrm{III})$ are on the opposite side of the plane to $\mathrm{Br}(\mathrm{l})$. Displacement of $\mathrm{P}(\mathrm{II})$ to the same side as $\mathrm{P}(\mathrm{I})$ and $\mathrm{P}(\mathrm{III})$ causes $P(I)$ and $P($ III $)$ to move in the direction of the fourth basal position and so forces further deviation of the
$\mathrm{Pd}-\mathrm{Br}$ bond. Displacement of $\mathrm{P}(\mathrm{II})$ to the opposite side to $\mathrm{P}(\mathrm{I})$ and $\mathrm{P}(\mathrm{III})$ has the opposite effect. The overcrowding may therefore be relieved by allowing the four bonds to displace so that they point towards the corners of a flat tetrahedron. If all bonds were inclined at the same angle to the basal plane, either above or below, their directions would be defined and the calculated values for α would be 101 and 79°.

These angles are derived from a consideration of the overcrowding of the four basal atoms only. When the apical $\operatorname{Br}(2)$ is taken into account two effects arise. First, since the repulsion will be greater for $\mathrm{Br} \cdots \mathrm{Br}$ than for Br to the neutral phosphorus, the basal bromine and consequently $\mathrm{P}(\mathrm{II})$ are the pair below the basal

Figure 4 Open circle $\alpha>90^{\circ}$, filled circle $\alpha<90^{\circ}$ for (1); open triangle $\alpha>90^{\circ}$, filled triangle $\alpha<90^{\circ}$ for (3); open square $\alpha>90^{\circ}$, filled square $\alpha<90^{\circ}$ for (2); α is the angle between a bond and the Z axis
plane; secondly, the repulsion will tend to increase α for every basal bond. Angles α for the bonds to the four atoms are: $103[\operatorname{Br}(1)], 86[\mathrm{P}(\mathrm{I})], 108 \frac{1}{2}[\mathrm{P}(\mathrm{II})]$, and 86° [P(III)]. They differ by a few degrees, always in the correct sense, from the hypothetical values calculated. To this extent the general explanation based on overcrowding is satisfactory. However, the bond angles as observed are not related by a plane of symmetry. This may be seen from the stereographic projections in Figure 4. The palladium atoms and atoms $\operatorname{Br}(1), \operatorname{Br}(2)$, and $\mathrm{P}(\mathrm{II})$ lie very close to a plane but $\mathrm{P}(\mathrm{I})$ and P (III) are not exactly in mirror-image positions relative to this plane. The deviation is not attributable to any effect confined to the metal and its immediate five attached atoms but it can be explained by an interaction of ligands (II) and (III).

In each of the three nickel compounds $\mathrm{NiL}_{3}(\mathrm{CN})_{2}$ previously examined ${ }^{1}$ two of the dibenzophosphole ligands are arranged close to each other plane-to-plane. The angle $\mathrm{P}(\mathrm{II})-\mathrm{Ni}-\mathrm{P}(\mathrm{III}) \quad(A)$ of the bonds which link the two ligands concerned is smaller than the angle
(B) $\mathrm{P}(\mathrm{II})-\mathrm{Ni}-\mathrm{P}(\mathrm{I})$ between the bonds that join nonparallel ligands. The values (A) and (B) are given in Table 3 together with corresponding angles for the

Table 3
Values $\left({ }^{\circ}\right)$ of angles $(A) \mathrm{P}(\mathrm{II})-\mathrm{M}-\mathrm{P}(\mathrm{III})$ and (B)
$\mathrm{P}(\mathrm{II})-\mathrm{M}-\mathrm{P}(\mathrm{I})$, and $(A)-(B)(=\Delta)$

Complex	Stereochemistry	(A)	(B)	Δ
(4a)	(a)	$98 \cdot 1$	$100 \cdot 7$	$-2 \cdot 6$
(4b)	(b)	$110 \cdot 8$	$116 \cdot 3$	$-5 \cdot 5$
			$(132 \cdot 8)^{*}$	$(-22.0)^{*}$
(5)	(b)	111.8	121.6 ${ }^{(126.4}$	- $10 \cdot 0$
			(126.4) *	$(-14 \cdot 6)^{*}$
(1)	(c)	$92 \cdot 8$	98.0	$-5 \cdot 2$
(2)	(c)	$93 \cdot 0$	$98 \cdot 6$	-5.6
(3)	(c)	$92 \cdot 6$	98.4	$-5 \cdot 3$

* Values in parentheses are for angles $\mathrm{P}(\mathrm{I})-\mathrm{M}-\mathrm{P}(\mathrm{III})$ and the difference between (A) and this angle.
new members of the series $\mathrm{ML}_{3} \mathrm{X}_{2}$. Among the six compounds the stereochemistry has three different forms: (a) distorted tetragonal pyramidal with $\mathrm{P}(\mathrm{II})$ apical and $\mathrm{P}(\mathrm{I})$ and $\mathrm{P}(\mathrm{III})$ trans basal, (b) distorted trigonal bipyramidal with all phosphorus atoms equatorial, and (c) distorted tetragonal pyramidal with all phosphorus atoms basal. If no selective interaction between ligands L is assumed exact equality of (A) and (B) is still not to be expected since in the polyatomic molecule a particular angle may be influenced by many factors. The difference Δ might be expected to be one or two orders of magnitude less than (A) and, for a series of such molecules, to be distributed around zero. Instead the invariable negative values shown in the Table establish the attraction between (II) and (III). The energy of the interaction is small and so the difference in the two angles is relatively small. For the trigonal bipyramidal form (b) all three $\mathrm{P}-\mathrm{M}-\mathrm{P}$ angles are stereochemically comparable (ideally 120°).

Form and Disposition of the Phosphole Ligand.-The form of the phosphole ligand is very nearly the same in all positions of all three compounds. To a first approximation it can be related to a best plane through the carbon atoms of the aromatic system. For any one ligand the displacements of individual atoms from the best plane are small and within the range of the standard deviation. However, when all nine indedependent ligands are considered the displacements indicate a slight folding towards a butterfly form. This is apparent also when the planes of the two sixmembered rings are considered separately. The angles between the normals to the best planes through them are given in Table 4. This shows a mean value of $3^{\circ} 49^{\prime}$ with a standard deviation of $c a .1^{\circ} 30^{\prime}$. For the individual ligand the displacement of the phosphorus atom from the best plane through all the nonalkyl carbon atoms is within the standard deviations, but for all nine ligands it is consistently to the side opposite to the wings of the butterfly. The alkyl
group is always placed so that there is approximately a plane of symmetry through the whole ligand.

The disposition of the ligands as a whole is next considered. For the nickel compounds it was possible

Table 4

Inclination of the two six-membered rings

Complex	(I)	(II)	(III)
(1)	$0^{\circ} 36^{\prime}$	$4^{\circ} 24^{\prime}$	$5^{\circ} 54^{\prime}$
(2)	$4^{\circ} 15^{\prime}$	$4^{\circ} 27^{\prime}$	$3^{\circ} 3^{\prime}$
(3)	$3^{\circ} 6^{\prime}$	$3^{\circ} 34^{\prime}$	$5^{\circ} 3^{\prime}$

to discuss the ligand positions in relation to a plane in which the three phosphorus atoms lie, either the equatorial plane of a trigonal bipyramid or a plane containing the apical bond and two basal bonds of the tetragonal pyramid. In the present case the distortions make it more convenient to refer the geometry to the apical bond direction, which is completely defined, and a basal plane through the metal atom at right angles to this bond. The apical bond direction is taken as the Z axis. If there were a plane of symmetry of the molecule through $\operatorname{Br}(1), \operatorname{Br}(2)$, and $\mathrm{P}(\mathrm{II})$ the intersection of this with the basal plane would have provided a fixed axis of reference in the plane. In the absence of such symmetry the plane through $\operatorname{Br}(1), \operatorname{Br}(2)$, and the metal atom is arbitrarily chosen to contain the X axis at right angles to Z. The positive direction of the axes are from the metal atom towards $\operatorname{Br}(1)$ and $\operatorname{Br}(2)$; Y is taken perpendicular to X and Z in a right-handed system. The directions of the phosphorus-metal bonds are defined by the angles (α, ϕ) of Table 5 where α is the

Table 5
Angles defining metal bond directions

Complex	$\mathrm{P}(\mathrm{I})-\mathrm{M}$	P (II)-M	P (III)-M
		$108^{\circ} 40^{\prime}$	$85^{\circ} 56^{\prime}$
(1)	$\chi_{\phi} 85^{\circ} 20^{\prime}$	$182^{\circ} 49^{\prime}$	$274{ }^{\circ} 20^{\prime}$
(2)	$\left\{\alpha^{\circ} 86^{\circ} 13^{\prime}\right.$	$106^{\circ}{ }^{29}$	$84^{\circ} 33^{\prime}$
	$\chi_{\phi} 84^{\circ}{ }^{\circ} \mathbf{4 1}^{\prime}$	$182^{\circ} 24^{\prime}$	$274{ }^{\circ} 0^{\prime}$
(3)		$108^{\circ} 20^{\prime}$	${ }_{\text {88 }} 8^{\circ} 5^{\circ} 5^{\prime} 0^{\prime}$
(3)	¢ ${ }_{\text {¢ }} 84^{\circ} 17^{\prime}$	$180^{\circ} 0^{\prime}$	$274{ }^{\circ} 0^{\prime}$

angle between the bond and the Z axis and ϕ is the angle between the $X Z$ plane and the plane containing Z and the bond.

Table 6			
Rotation angle			
Complex	L(I)	L(II)	L(III)
(1)	$53^{\circ} 52^{\prime}$	$101^{\circ} 23^{\prime}$	$310^{\circ} 49^{\prime}$
(2)	$48^{\circ} 47^{\prime}$	$112^{\circ} 7^{\prime}$	$307^{\circ} 37^{\prime}$
(3)	$45^{\circ} 32^{\prime}$	$104^{\circ} 41^{\prime}$	$307^{\circ} 52^{\prime}$

For the phosphole ligands a rotation angle is stated. The plane through the metal, $\mathrm{Br}(2)$, and the P atom is imagined as the plane of symmetry of the ligand in a reference position, with $\mathrm{P}-\mathrm{C}(\gamma)$ of the alkyl group pointing upwards towards $\operatorname{Br}(2)$. The rotation angle
given in Table 6 for the ligand is that through which the ligand must then be rotated from the reference

Table 7

Complex	\angle of inclination	Mean sep. $/ \AA$	\angle of twist
(1)	$1^{\circ} 0^{\prime}$	$3 \cdot 354$	$22^{\circ} 0^{\prime}$
(2)	$3^{\circ} 3^{\prime}$	3.387	$22^{\circ} 9^{\prime}$
(3)	5°	$\mathbf{4 5}^{\prime}$	$3 \cdot 441$

position about the metal-phosphorus bond in order that the symmetry plane may reach its observed position.

Table 8
Atomic co-ordinates for (l), with estimated standard deviations in parentheses

	x / a	y / b	z / c
Pd	$0.0267(2)$	$0 \cdot 2454(1)$	$0 \cdot 0338(3)$
$\mathrm{Br}(2)$	$0 \cdot 0981$ (4)	$0 \cdot 1470$ (2)	-0.1120(4)
$\mathrm{Br}(1)$	$0 \cdot 1857(4)$	$0 \cdot 3632(2)$	$0 \cdot 0301(4)$
$\mathrm{Cl}(1)$	$0.9498(23)$	$0 \cdot 4564(16)$	$0.3215(39)$
P (I)	$0 \cdot 1837(9)$	$0 \cdot 2301$ (5)	$0 \cdot 2252$ (9)
P (II)	-0.1490(9)	$0 \cdot 1853(5)$	$0 \cdot 0902$ (9)
P (III)	-0.0947(9)	$0 \cdot 2653(5)$	-0.1717(9)
$\mathrm{C}(\alpha, \mathrm{I})$	$0.2228(36)$	$0 \cdot 2810$ (19)	$0 \cdot 3782(32)$
$\mathrm{C}(4, \mathrm{I})$	$0.2501(34)$	0.3592 (18)	$0 \cdot 4084(40)$
$\mathrm{C}(3, \mathrm{I})$	$0.2830(31)$	$0 \cdot 3897(22)$	$0.5343(33)$
$\mathrm{C}(2, \mathrm{I})$	$0 \cdot 2750$ (37)	$0 \cdot 3401(23)$	$0 \cdot 6344(35)$
$\mathrm{C}(1, \mathrm{I})$	$0 \cdot 2440$ (38)	$0 \cdot 2714(25)$	0.6123 (44)
$\mathrm{C}(9, \mathrm{I})$	$0 \cdot 1745(31)$	$0 \cdot 1094(24)$	$0 \cdot 5295(40)$
$\mathrm{C}(8, \mathrm{I})$	$0 \cdot 1319(40)$	$0.0416(20)$	$0 \cdot 4673(55)$
C(7,I)	$0 \cdot 1132(40)$	$0.0219(26)$	$0 \cdot 3237(54)$
$\mathrm{C}(6, \mathrm{I})$	$0 \cdot 1272(40)$	$0 \cdot 0840$ (17)	$0 \cdot 2499(39)$
$\mathrm{C}\left(\alpha^{\prime}, \mathrm{I}\right)$	$0 \cdot 1550(33)$	$0 \cdot 1473(19)$	$0 \cdot 3059(39)$
$\mathrm{C}\left(\beta^{\prime}, \mathrm{I}\right)$	$0 \cdot 1847(32)$	$0 \cdot 1642(16)$	$0 \cdot 4388$ (29)
$\mathrm{C}(\beta, \mathrm{I})$	$0.2149(36)$	$0.2372(19)$	$0 \cdot 4788(33)$
$\mathrm{C}(\gamma, \mathrm{I})$	$0 \cdot 3260(28)$	$0 \cdot 2420$ (16)	$0 \cdot 1793$ (29)
$\mathrm{C}(8, \mathrm{I})$	$0 \cdot 4418$ (34)	$0 \cdot 2269(18)$	$0 \cdot 2981$ (39)
$\mathrm{C}(\alpha, \mathrm{II})$	-0.2442(33)	$0.0956(16)$	$0.0054(31)$
$\mathrm{C}(4, \mathrm{II})$	-0.2009(36)	0.0410 (18)	$0.0102(36)$
C($3, \mathrm{II}$)	-0.2965(36)	$-0.0256(19)$	-0.0623(47)
C(2,II)	-0.4183(35)	-0.0204(17)	$-0.1395(38)$
C(1,II)	-0.4611(29)	$0.0363(17)$	-0.1244(32)
C($9,1 \mathrm{II}$)	-0.5035(31)	$0 \cdot 1804(16)$	-0.0679(29)
$\mathrm{C}(8, \mathrm{II})$	-0.5153(35)	$0 \cdot 2495(25)$	--0.0412(38)
C(7,II)	$-0.3927(39)$	$0 \cdot 3085(23)$	$0.0434(38)$
C(6,II)	$-0.2821(32)$	$0.2852(21)$	$0.0699(38)$
$\mathrm{C}\left(\alpha^{\prime}, \mathrm{II}\right)$	-0.2865(34)	$0 \cdot 2131(15)$	$0.0372(36)$
$\mathrm{C}\left(\beta^{\prime}, \mathrm{II}\right)$	-0.3938(26)	$0 \cdot 1656(16)$	$-0.0322(30)$
$\mathrm{C}(\beta, \mathrm{II})$	-0.3762(31)	0.0983 (17)	-0.0512(33)
$\mathrm{C}(\gamma, \mathrm{II})$	-0.1179(39)	$0 \cdot 1775(22)$	$0.2765(31)$
$\mathrm{C}(\delta, \mathrm{II})$	-0.2453(42)	$0 \cdot 1463(22)$	$0 \cdot 3097(43)$
$\mathrm{C}(\alpha, \mathrm{III})$	-0.2339(25)	$0 \cdot 1995(18)$	$-0.2613(30)$
C(4,III)	$-0.2460(32)$	$0 \cdot 1348$ (15)	$-0.3138(31)$
$\mathrm{C}(3, \mathrm{III})$	$-0.3626(43)$	0.0861 (19)	$-0.3838(42)$
$\mathrm{C}(2, \mathrm{III})$	-0.4609(42)	$0 \cdot 1139(17)$	-0.4212(35)
C(1,III)	-0.4591(30)	$0 \cdot 1803(20)$	-0.3900(33)
$\mathrm{C}(9, \mathrm{III})$	$-0.3909(47)$	$0 \cdot 3391$ (27)	$-0.2836(41)$
$\mathrm{C}(8, \mathrm{III})$	-0.3439(47)	0-4099(23)	-0.2316(43)
C(7,III)	-0.2171(41)	$0 \cdot 4421$ (20)	-0.1636(41)
C(6,III)	-0.1314(36)	$0 \cdot 4001$ (18)	-0.1338(53)
$\mathrm{C}\left(\alpha^{\prime}, \mathrm{III}\right)$	-0.1837(36)	$0 \cdot 3297(20)$	-0.1884(34)
$\mathrm{C}\left(\beta^{\prime}, \mathrm{III}\right)$	$-0.3172(37)$	$0 \cdot 2944$ (20)	-0.2645(37)
$\mathrm{C}(\beta, \mathrm{III})$	-0.3344(27)	$0 \cdot 2263(16)$	$-0.3043(30)$
$\mathrm{C}(\gamma, \mathrm{III})$	0.0020 (28)	$0 \cdot 2902(15)$	$-0.2793(33)$
$\mathrm{C}(\delta, \mathrm{III})$	-0.0728(42)	$0 \cdot 3074(24)$	-0.4283(41)
$\mathrm{C}(1)$	$0 \cdot 8015$ (58)	$0 \cdot 4562(33)$	$0 \cdot 2859(65)$
C (2)	$0.7337(93)$	$0 \cdot 4245(30)$	$0.3813(47)$
$\mathrm{C}(3)$	$0.5975(91)$	$0 \cdot 4171$ (31)	$0 \cdot 3553(90)$
C(4)	$0 \cdot 5476(55)$	$0 \cdot 4488(42)$	$0 \cdot 2483(87)$
C(5)	$0 \cdot 6130(78)$	$0 \cdot 4832(29)$	$0 \cdot 1704(54)$
C(6)	$0.7366(62)$	$0 \cdot 4889$ (26)	$0 \cdot 1760(64)$

The observed symmetry plane is defined as the 'best' plane through the metal atom, the phosphorus atom,

Table 9
Anisotropic temperature factors $\left(\AA^{2} \times 10^{3}\right) *$ for (1), with estimated standard deviations in parentheses

	U_{11}	U_{22}	U_{33}	$2 U_{23}$	$2 U_{31}$	$2 U_{12}$
Pd	43(2)	45(2)	41 (2)	18(3)	7 (3)	20(3)
$\mathrm{Br}(2)$	67(3)	56(3)	63(3)	$5(4)$	17(4)	40(4)
$\operatorname{Br}(1)$	$59(3)$	$51(3)$	86(3)	44(4)	5(5)	$-5(4)$
$\mathrm{Cl}(\mathrm{I})$	145(20)	257(31)	474(52)	-47(62)	$117(51)$	13(39)
P (III)	49(6)	$56(6)$	36(6)	$32(10)$	13(9)	31(10)
P (II)	48(6)	54(6)	$32(5)$	$2(9)$	$-7(9)$	7 (10)
$\mathrm{P}(\mathrm{I})$	48(6)	44(6)	55(6)	30(10)	-2(10)	54(10)
$\mathrm{C}(\gamma, \mathrm{III})$	37(20)	19(18)	$71(25)$	39(34)	-10 (35)	2(31)
$\mathrm{C}(\delta$, III $)$	101(36)	$109(38)$	$74(32)$	$24(54)$	-26(53)	103(60)
$\mathrm{C}(\gamma, \mathrm{II})$	100(32)	111(34)	$13(20)$	108(43)	-18(40)	24(54)
$\mathrm{C}(\delta, \mathrm{II})$	106(37)	84(33)	$95(36)$	107(55)	$144(61)$	$-11(56)$
$\mathrm{C}(\gamma, \mathrm{I})$	43(21)	$50(22)$	42(21)	$84(35)$	$63(34)$	47 (35)
$\mathrm{C}(\mathrm{\delta}, \mathrm{I})$	67(26)	$58(25)$	104(31)	153(47)	$110(47)$	92(43)
C(1)	165(58)	$157(60)$	153(62)	-263(103)	$-304(104)$	125(95)
$\mathrm{C}(2)$	373(118)	$110(51)$	43(34)	$55(62)$	$29(100)$	224(132)
$\mathrm{C}(3)$	256(106)	71(44)	239(97)	-116(104)	-137(151)	68(110)
C(4)	100(47)	180(84)	197(89)	-251(135)	19(108)	10(97)
$\mathrm{C}(5)$	218(78)	86(44)	114(46)	-71(71)	$-23(102)$	225(110)
$\mathrm{C}(6)$	141(54)	70 (38)	178(63)	$-138(77)$	$-95(100)$	$2(75)$
$\mathrm{C}(\alpha, \mathrm{III})$	1 (16)	$79(28)$	$37(20)$	7(38)	-20(29)	$-12(34)$
$\mathrm{C}(4, \mathrm{III})$	65(25)	15(19)	52(24)	-49(35)	$-30(38)$	$31(36)$
C(3,III)	124(39)	$40(26)$	108(36)	$109(51)$	$51(60)$	105(54)
C(2,III)	135(38)	$13(20)$	$59(26)$	-55(37)	$53(51)$	6(45)
C(1,III)	33(21)	$86(31)$	48(23)	-24(41)	6(35)	34(41)
C(9, III)	127(40)	121(41)	58(29)	14(53)	$59(56)$	106(67)
C(8,III)	131(42)	83(34)	$85(33)$	$51(54)$	41 (60)	$145(64)$
C(7,III)	90 (34)	$63(29)$	82(32)	01(48)	$32(53)$	22(53)
C(6,III)	70(30)	22(23)	211(54)	$51(56)$	-28(62)	79(46)
$\mathrm{C}\left(\alpha^{\prime}, \mathrm{III}\right)$	$83(30)$	68(29)	$50(25)$	85(43)	$-1(43)$	$72(49)$
$\mathrm{C}\left(\beta^{\prime}, \mathrm{III}\right)$	83(31)	$73(30)$	$72(28)$	103(49)	97(49)	91(51)
$\mathrm{C}(\beta, \mathrm{III})$	27(19)	44(22)	54(22)	67(36)	$52(33)$	42(34)
$\mathrm{C}(\alpha, \mathrm{II})$	71 (26)	24(20)	48(23)	$-3(35)$	73(40)	$-1(38)$
$\mathrm{C}(4, \mathrm{II})$	87(31)	$40(26)$	66(27)	48(43)	53(46)	26(46)
C ($3, \mathrm{II}$)	59(29)	$42(26)$	150(42)	$72(54)$	68(59)	$45(46)$
C(2,II)	64(28)	26(22)	90 (32)	-62(43)	19(48)	$-56(42)$
C(1,II)	38(21)	$34(21)$	$53(23)$	$35(37)$	$-6(35)$	-45(34)
$\mathrm{C}(9, \mathrm{II})$	69(24)	41 (22)	$36(20)$	$50(33)$	$-4(35)$	81 (39)
$\mathrm{C}(8, \mathrm{II})$	ธ3(26)	148(42)	$61(27)$	$119(56)$	92(45)	18(55)
C(7,II)	72 (31)	124(37)	$65(28)$	80 (52)	151(51)	$10(56)$
C(6,II)	31(24)	$89(33)$	$79(29)$	10(47)	62(43)	-30(44)
$\mathrm{C}\left(\alpha^{\prime}, \mathrm{II}\right)$	$82(29)$	6 (19)	87(29)	$-20(37)$	57(47)	$45(3)$
$\mathrm{C}\left(\beta^{\prime}, \mathrm{II}\right)$	23(19)	43(22)	$50(36)$	-54(34)	$44(34)$	6 (36)
$\mathrm{C}(\beta, \mathrm{II})$	45(22)	40(22)	$58(24)$	26 (36)	$25(36)$	$14(35)$
$\mathrm{C}(\alpha, I)$	92 (30)	$69(28)$	32(21)	36(38)	--26(39)	97(48)
C(4,I)	$61(26)$	48(26)	$96(33)$	45(47)	-41(47)	49(47)
C(3,I)	47(25)	126(37)	28(22)	$-101(47)$	-46(37)	$81(50)$
C(2,I)	86(31)	112(37)	$45(26)$	6 (51)	-35(44)	152(60)
C(1,I)	71 (31)	125(41)	104(35)	-31(63)	$65(52)$	$149(63)$
C(9,I)	$21(20)$	120 (36)	$95(31)$	36(52)	49(40)	68(44)
C(8,I)	93(33)	41 (26)	187(50)	$93(60)$	26(68)	137(50)
C(7,I)	$59(30)$	$129(45)$	141(46)	$119(75)$	94(62)	$72(59)$
$\mathrm{C}(6, \mathrm{I})$	82(29)	17(21)	$89(30)$	1(41)	45(47)	12(40)
$\mathrm{C}\left(\alpha^{\prime}, \mathrm{I}\right)$	$50(25)$	$54(28)$	$86(32)$	27(49)	15(45)	$11(42)$
$\mathrm{C}\left(\beta^{\prime}, \mathrm{I}\right)$	79 (27)	39(22)	31 (20)	32(35)	-60(37)	94(41)
$\mathrm{C}(\beta, \mathrm{I})$	85(29)	60 (27)	43(23)	11 (40)	29(41)	60(45)

$\mathrm{C}(\gamma)$, and the midpoints of each pair of mirror-image carbon atoms of the aromatic system. The rotation angle is defined as positive for a rotation which appears clockwise to an observer looking from the phosphorus

Table 10
Atomic co-ordinates for (2), with estimated standard deviations in parentheses

	x / a	y / b	z/c
Pt	$0 \cdot 2512(0)$	$0.0165(1)$	$0.0382(1)$
$\operatorname{Br}(2)$	$0 \cdot 3543(1)$	-0.2225(2)	-0.1196(2)
$\mathrm{Br}(1)$	$0 \cdot 1380(1)$	-0.1591(2)	0.0273 (2)
$\underset{\mathrm{Br}}{ }(3)$	0.0478(4)	$0 \cdot 3574(10)$	$0.3197(9)$
P (I)	$0 \cdot 2673(2)$	$0 \cdot 0457(4)$	$0 \cdot 2248$ (4)
P (II)	$0 \cdot 3158(1)$	$0 \cdot 2397(4)$	$0.0886(4)$
P(III)	0.2325(2)	$-0.0711(4)$	$-0 \cdot 1690(4)$
$\mathrm{C}(\alpha, \mathrm{I})$	$0 \cdot 3499(6)$	$0 \cdot 1518(14)$	$0 \cdot 3058(12)$
C(4,I)	$0 \cdot 4167(7)$	$0 \cdot 1229(28)$	$0 \cdot 2490$ (18)
$\mathrm{C}(3, \mathrm{I})$	$0 \cdot 4744$ (7)	$0 \cdot 2224(27)$	$0 \cdot 3234(21)$
C(2,I)	$0 \cdot 4577$ (6)	$0 \cdot 3218(18)$	$0 \cdot 4600(18)$
$\mathrm{C}(1, \mathrm{I})$	0.3861(8)	$0 \cdot 3574(17)$	$0 \cdot 5349(14)$
C($9, \mathrm{I}$)	$0 \cdot 2299$ (7)	$0 \cdot 3705(16)$	$0 \cdot 6210(15)$
$\mathrm{C}(8, \mathrm{I})$	$0 \cdot 1592$ (8)	$0 \cdot 3664(15)$	$0 \cdot 6437(14)$
$\mathrm{C}(7, \mathrm{I})$	$0 \cdot 1216$ (7)	$0 \cdot 2675(21)$	$0 \cdot 5283(14)$
$\mathrm{C}(6, \mathrm{I})$	$0 \cdot 1440$ (7)	$0 \cdot 1612(19)$	$0 \cdot 4049$ (18)
$\mathrm{C}\left(\alpha^{\prime}, \mathrm{I}\right)$	$0 \cdot 2151(5)$	$0 \cdot 1641$ (11)	$0 \cdot 3828(12)$
$\mathrm{C}\left(\beta^{\prime}, \mathrm{I}\right)$	$0 \cdot 2594(6)$	$0 \cdot 2694(18)$	$0 \cdot 4864(15)$
$\mathrm{C}(\beta, \mathrm{I})$	$0 \cdot 3360$ (8)	$0 \cdot 2602(19)$	$0 \cdot 4412(20)$
$\mathrm{C}(\gamma, \mathrm{I})$	0.2558(7)	-0.1414(18)	$0 \cdot 1854(17)$
$\mathrm{C}(\delta, \mathrm{I})$	$0 \cdot 2741$ (11)	-0.1419(23)	$0 \cdot 2991$ (23)
$\mathrm{C}(\alpha, \mathrm{II})$	$0 \cdot 3987(5)$	$0 \cdot 2478(13)$	$0 \cdot 0055(12)$
$\mathrm{C}(4, \mathrm{II})$	$0 \cdot 4571(6)$	$0 \cdot 1986(24)$	$-0.0022(21)$
$\mathrm{C}(3, \mathrm{II})$	0.5215 (6)	$0 \cdot 2295(19)$	-0.0657(20)
$\mathrm{C}(2, \mathrm{II})$	0.5217(7)	$0 \cdot 2920$ (24)	-0.1250(17)
C(1,II)	0.4611(9)	$0 \cdot 3381(22)$	$-0.1244(25)$
$\mathrm{C}(9, \mathrm{II})$	$0 \cdot 3200(6)$	$0 \cdot 4441$ (16)	-0.0737(19)
$\mathrm{C}(8, \mathrm{II})$	$0 \cdot 2518(8)$	$0 \cdot 4777$ (17)	-0.0383(16)
$\mathrm{C}(7, \mathrm{II})$	$0 \cdot 2013(7)$	$0 \cdot 4337(18)$	$0 \cdot 0235(14)$
$\mathrm{C}(6, \mathrm{II})$	$0 \cdot 2144(8)$	$0 \cdot 3667(22)$	$0.0766(20)$
$\mathrm{C}\left(\boldsymbol{\alpha}^{\prime}, \mathrm{II}\right)$	$0 \cdot 2818(6)$	$0 \cdot 3320$ (14)	-0.0432(14)
$\mathrm{C}\left(\beta^{\prime}, \mathrm{II}\right)$	$0 \cdot 3309$ (7)	$0 \cdot 3633(13)$	-0.0524(15)
$\mathrm{C}(\beta, \mathrm{II})$	$0 \cdot 4006(6)$	$0 \cdot 3120(14)$	-0.0524(11)
$\mathrm{C}(\gamma, \mathrm{II})$	$0 \cdot 3143$ (11)	$0 \cdot 3952(19)$	$0 \cdot 2757(15)$
$\mathrm{C}(8, \mathrm{II})$	$0 \cdot 3563(11)$	$0 \cdot 5483(25)$	$0 \cdot 2969$ (35)
C (α, III)	$0 \cdot 2986$ (6)	$-0.0357(16)$	-0.2608(16)
C($4, \mathrm{III}$)	$0 \cdot 3692(6)$	-0.0715(19)	$-0.3110(13)$
C(3,III)	$0 \cdot 4177(9)$	$-0.0234(23)$	$-0.3920(21)$
C(2,III)	$0 \cdot 3875(11)$	$0 \cdot 0345(27)$	-0.4270(24)
C(1,III)	$0 \cdot 3204(10)$	$0.0741(21)$	-0.3939(21)
C(9,III)	$0 \cdot 1640$ (7)	$0 \cdot 1009(23)$	$-0.3000(17)$
C(8,III)	$0.0876(7)$	$0 \cdot 1102(20)$	$-0.2434(18)$
C(7,III)	$0.0644(6)$	$0 \cdot 0650(23)$	$-0.1787(21)$
C(6,III)	0.0959 (7)	$0 \cdot 0050(22)$	$-0.1345(18)$
C(α^{\prime}, III $)$	$0 \cdot 1699$ (6)	$0 \cdot 0062(19)$	-0.1822(16)
C($\left.\beta^{\prime}, \mathrm{III}\right)$	$0 \cdot 1986$ (7)	$0 \cdot 0444(20)$	-0.2660(18)
C(β, III)	$0 \cdot 2753(4)$	$0.0318(11)$	$-0.3063(10)$
C $(\gamma$, III $)$	$0 \cdot 2118(11)$	-0.2818(26)	-0.2862(28)
C(δ, III)	$0 \cdot 1941$ (12)	-0.3519(31)	-0.4249(31)
C(1)	$0.0087(10)$	$0 \cdot 4494(31)$	0.1834(17)
C(2)	$0 \cdot 0478(12)$	$0 \cdot 5136(20)$	$0 \cdot 2835(25)$
C(3)	0.0847(11)	$0 \cdot 6517(23)$	$0 \cdot 3854(33)$
C(4)	$0 \cdot 0839(11)$	$0 \cdot 7460(36)$	$0 \cdot 3390$ (51)
C(5)	$0 \cdot 0560(11)$	$0.7303(36)$	$0 \cdot 2623(30)$
C(6)	0.0247(15)	$0 \cdot 5751(69)$	$0 \cdot 1686(38)$

atom of that ligand to the metal atom. Several corresponding angles in Table 5 are within $c a .1^{\circ}$ of each other, the largest difference being $3 \frac{1}{2}^{\circ}$. Corresponding rotation angles of Table 6 differ by a few degrees only, the largest difference being 11°.

The agreement in Table 5 shows that the three metal-phosphorus bond directions vary very little and the rotation angles of Table 6 indicate almost the same disposition of the ligands in all three compounds.

The geometrical aspect of the interaction of ligands (II) and (III) is summarised in Table 7. This gives (i) an inclination angle, defined as the angle between the normals to the best planes for ligands (II) and (III) taken through all carbon atoms of the aromatic system; (ii) the 'mean separation' of the planes: in this case most of the atoms in L(II) and L(III) may be considered as overlapping so the distance to the mean plane of the other ligand was calculated for each atom and the mean taken as the ' mean separation'; (iii) the angle of twist

Figure 5 Projections of the ligand $\mathrm{L}(\mathrm{II})$ on the mean plane through the ligand L(III) for: (a) (1), (b) (2), and (c) (3)
defined as an angle between lines $A B(I I)$ and $A B(I I I)$ where $A B$ is the intersection of the plane of symmetry of the ligand with a plane of projection ${ }^{1}$ [i.e. $\mathrm{L}(\mathrm{II})$ is projected on to the least-squares plane of L(III)]. This angle is a measure of the degree of geometrical overlapping of the ligands.

Table 7 shows that (a) the planes of (II) and (III) are always nearly parallel (inclination angles ideally zero are in the range $1-6^{\circ}$); (b) the mean separation, $c a$. $3 \cdot 4 \AA$ as in other members of the series, is within the range for aromatic molecular complex interaction; and (c) the geometrical overlap is almost identical in the three compounds (angles of twist the same). This can also be seen in Figure 5 where for each of the three compounds $\mathrm{L}(\mathrm{II})$ is projected on the plane of $\mathrm{L}(\mathrm{III})$.

Apical Bond Length Variation.-In view of the close similarity in the main valency and conformational angles of the three compounds, the corresponding bond lengths might also be expected to differ very little.

Table 11
Anisotropic temperature factors $\left(\AA^{2} \times 10^{3}\right)$ for (2), with estimated standard deviations in parentheses

	U_{11}	U_{22}	U_{33}	$2 U_{23}$	$2 U_{31}$	$2 U_{12}$
Pt	31 (0)	$34(0)$	37(0)	$35(1)$	$-11(1)$	07(1)
$\underset{\mathrm{Br}}{ }(2)$	$57(1)$	$64(1)$	56(1)	$62(2)$	$4(2)$	43(2)
$\mathrm{Br}(1)$	45(1)	70 (1)	65(1)	77(2)	-23(2)	$-10(1)$
$\mathrm{Br}(3)$	250(7)	195(9)	286(10)	$305(16)$	132(13)	137(13)
$\mathrm{P}(\mathrm{I})$	35(1)	39(2)	45(2)	39(3)	$-8(3)$	16(3)
P(III)	36(1)	$35(2)$	$35(2)$	34(3)	$-15(3)$	6 (2)
P (II)	34(1)	31 (2)	$43(2)$	36(3)	$2(3)$	$9(2)$
$\mathrm{C}(\gamma, \mathrm{I})$	$45(7)$	48 (8)	46 (8)	43(13)	$-37(12)$	-35(12)
$\mathrm{C}(\delta, \mathrm{I})$	105(16)	54(12)	77(19)	$52(24)$	-75(27)	43 (24)
C $(\gamma$, III)	109(11)	$55(14)$	119(20)	$51(28)$	-31(22)	19(19)
C $(\delta$, III $)$	75(13)	$79(16)$	149(29)	81 (35)	64(29)	87(24)
$\mathrm{C}(\gamma, \mathrm{II})$	162(18)	$40(9)$	17(8)	49(15)	$-20(18)$	$-9(20)$
$\mathrm{C}(\delta, I I)$	$111(15)$	67(15)	244(39)	258(47)	$53(38)$	$8(23)$
$\mathrm{C}(1)$	77(12)	111(18)	6(7)	-38(17)	$2(13)$	6(23)
$\mathrm{C}(2)$	145(19)	48(12)	132(24)	164(33)	122(35)	$75(26)$
$\mathrm{C}(3)$	99(15)	$51(12)$	$216(35)$	$179(37)$	83(36)	57(22)
C(4)	53(13)	91 (22)	326(52)	220(64)	107(42)	4(27)
C(5)	70(14)	181(33)	$150(27)$	$292(58)$	135(31)	$175(39)$
$\mathrm{C}(6)$	90 (20)	330 (70)	106(28)	294(79)	76(35)	123 (63)
$\mathrm{C}(\alpha, \mathrm{I})$	42 (6)	$33(6)$	14 (6)	12(10)	14(9)	25(9)
C(4,I)	48(8)	136(20)	55(12)	144(28)	33(14)	71 (20)
C(3,I)	33(7)	107(16)	$65(13)$	105(25)	$55(14)$	$51(16)$
$\mathrm{C}(2, \mathrm{I})$	30(6)	56(10)	55(12)	54(18)	$-00(13)$	12(12)
C(1,I)	69(10)	$39(7)$	20 (7)	4(12)	$21(13)$	49(13)
$\mathrm{C}(9, \mathrm{I})$	$50(6)$	38(7)	32(8)	39(12)	$31(10)$	$9(10)$
C(8,I)	71(9)	33(7)	23(8)	9 (12)	18(13)	32(13)
$\mathrm{C}(7, \mathrm{I})$	$55(8)$	$76(10)$	17(7)	34(13)	72(11)	89(15)
$\mathrm{C}(6, \mathrm{I})$	53(8)	55(9)	$59(12)$	70 (18)	47(15)	49(14)
$\mathrm{C}\left(\alpha^{\prime}, \mathrm{I}\right)$	34(5)	14(5)	34(7)	4(10)	12(10)	$35(8)$
$\mathrm{C}\left(\beta^{\prime}, \mathrm{I}\right)$	$39(6)$	$59(9)$	45(9)	80(16)	42(11)	24(12)
$\mathrm{C}(\beta, \mathrm{I})$	61(7)	$62(10)$	87(14)	126(22)	26(15)	48(14)
C(α, III)	$30(5)$	51 (8)	64(11)	69(16)	41(12)	$52(11)$
C(4,III)	42(7)	91 (11)	$33(9)$	116(18)	95(12)	45(13)
C(3,III)	66(9)	62(11)	49(13)	41 (21)	53(17)	44(16)
C(2,III)	99(13)	75(15)	63(16)	$86(28)$	-6(22)	19(22)
C(1,III)	98(11)	55(9)	56(11)	87(18)	-32(17)	$-24(17)$
C(9,III)	47(7)	102(14)	50(10)	129(21)	61 (12)	61 (16)
C(8,III)	$63(8)$	74(10)	74(12)	135(21)	89(15)	92(15)
C(7,III)	22(6)	$96(16)$	107(19)	106(30)	11(17)	67(17)
C(6,III)	38(7)	92(14)	64(12)	119(24)	27(14)	42(15)
C($\left.\alpha^{\prime}, \mathrm{III}\right)$	$30(5)$	78(10)	$53(9)$	104(18)	6(11)	20(11)
C($\left.\beta^{\prime}, \mathrm{III}\right)$	42(7)	64(9)	54(13)	31 (18)	-5(15)	58(13)
C(β, III)	28(12)	20(12)	17(16)	$-13(23)$	-3(22)	-4(19)
$\mathrm{C}(\alpha, \mathrm{II})$	$35(5)$	$26(5)$	$24(6)$	8(9)	17(9)	33(8)
$\mathrm{C}(4, \mathrm{II})$	25(6)	$99(14)$	97(16)	145(28)	18(15)	36(13)
C(3,II)	29(6)	$62(10)$	$92(16)$	109(23)	21 (15)	8(12)
$\mathrm{C}(2, \mathrm{II})$	36(7)	87(13)	47(11)	70 (20)	30(13)	$54(15)$
$\mathrm{C}(1, \mathrm{II})$	$6 \mathrm{I}(10)$	53(11)	$99(19)$	55(25)	-47(22)	1(16)
$\mathrm{C}(9, \mathrm{II})$	38(6)	33(7)	73(12)	41(16)	15(13)	20(10)
$\mathrm{C}(8, \mathrm{II})$	74(11)	49(12)	36(11)	19(19)	$-7(17)$	53(19)
$\mathrm{C}(7, \mathrm{II})$	$54(7)$	$64(10)$	$33(9)$	62(17)	18(12)	65(14)
$\mathrm{C}(6, \mathrm{II})$	68(10)	$63(12)$	$65(13)$	94(23)	-4(17)	-7(17)
$\mathrm{C}\left(\alpha^{\prime}, \mathrm{II}\right)$	37(5)	$35(7)$	40(9)	43(13)	$9(10)$	$23(9)$
$\mathrm{C}\left(\beta^{\prime}, \mathrm{II}\right)$	$55(7)$	20 (5)	34(8)	$5(10)$	-1(11)	$24(10)$
$\mathrm{C}(\beta, \mathrm{II})$	51 (10)	$35(6)$	14(6)	34(11)	$51(9)$	48(11)

In agreement with this the differences for the basal bonds average only $0.01 \AA$ but there is a striking difference of ten times that amount in the $\mathrm{Pt}-\mathrm{Br}$ apical bond lengths. The bond is weak and there is a possible internal electronic reason for a difference. This may be the effect of change of R from Me to Et on the donating power of the phosphorus atom. This would be in the right sense, requiring $\mathrm{Pt}-\mathrm{Br}(2)$ greater for $\mathrm{R}=\mathrm{Et}$ than for $\mathrm{R}=\mathrm{Me} .^{3}$ There is, however, some difference in the environments of the molecules in the Me and Et compounds. This is in contrast to the pair (1) and (2), both with $\mathrm{R}=\mathrm{Et}$, which have nearly identical structural constants. The difference is readily seen in diagrams where whole molecules are projected on a particular plane through a neighbouring molecule. Another expression of it is that corresponding distances between the lines of the two parallel apical bonds in the structures differ by $0.5 \AA$. The variation in apical bond length may also be influenced by these differences.

The difference in apical bond length between (1) and (2) is $0 \cdot 2 \AA$, twice as much as the difference between Me and Et compounds of Pt , (2) and (3). In this case the structural constants are very similar and the corresponding intermolecular distances will be nearly the same except for a few where the apical bond length difference is directly involved. For these few, the difference in intermolecular distance will not exceed $0.2 \AA$. The difference in apical bond lengths in the two compounds must be due almost entirely to the chemical difference between the metal atoms.

EXPERIMENTAL

Crystal Preparation.-The micro-crystalline green form of (1) was dissolved in chlorobenzene and recrystallised in a capillary tube. One green crystal $0.3 \times 0.5 \times 0.5 \mathrm{~mm}$ was obtained.

Yellow crystals of (2) and of (3) were obtained by evaporation of their solutions in bromobenzene.

Data Collection.-Intensity data for all three structures were collected on a Hilger and Watts four-circle diffractometer with Mo radiation for (1) and Cu radiation for (2) and (3). Balanced filters, zirconium and ytterbium in the Bragg angle range $0-10^{\circ}$ or cobalt and nickel in the Bragg angle range $0-30^{\circ}$ were used for Mo and Cu radiation respectively. The limiting Bragg angles for (1), (2), and (3) were $20(\sin \theta / \lambda=0.49), 70(\sin \theta / \lambda=0.60)$, and 62° $(\sin \theta / \lambda=0.56)$. Values for the merging $R, \Sigma\left(F_{i}-\right.$ $\left.F_{\text {mean }}\right) / \Sigma F_{\text {mean }}$ were $0.087,0.054$, and 0.051 . The numbers of independent reflections involved were: compound (1) $1930(I>2 \sigma)$, (2) $5817(I>3 \sigma)$, and (3) $3320(I>3 \sigma)$. Absorption corrections were carried out ${ }^{4}$ on the data for (2) and (3).

Structure Determinations.-The structures were solved by Patterson and Fourier methods. Positions of the six heavy atoms were found in each case from the Patterson vectors. They were used to phase the Fourier synthesis for the complete structures. Ploto plot ${ }^{5}$ was used in each
${ }^{3}$ D. W. Allen, F. G. Mann, and I. T. Miller, J. Chem. Soc. (C), 1971, 3937.
${ }^{4}$ 'Single-crystal Diffractometry,' by U. W. Arndt and B. T. M. Willis, Cambridge University Press, 1966, pp. 234-243.
case to check for any solvent molecules previously undetected. Structure (1) was refined anisotropically by using Killean ${ }^{6}$ absolute weights till R converged to 0.095 . Structures (2) and (3) were anisotropically refined to R

Table 12

Atomic co-ordinates for (3), with estimated standard deviations in parentheses

	x / a	y / b	z/0
Pt	-0.0228(1)	-0.0148(1)	$0 \cdot 2445(0)$
$\mathrm{Br}(2)$	$0 \cdot 1191$ (2)	-0.0876(2)	$0 \cdot 1415$ (1)
$\mathrm{Br}(1)$	-0.0043(4)	-0.1863(4)	$0 \cdot 3580$ (2)
$\mathrm{P}(\mathrm{I})$	-0.2234(14)	-0.1735(14)	$0 \cdot 2274$ (9)
$\mathrm{C}(\alpha, \mathrm{I})$	-0.3204(20)	-0.1538(16)	$0 \cdot 1462(11)$
$\mathrm{C}(4, \mathrm{I})$	$-0.2738(20)$	-0.1219(17)	$0.0738(10)$
$\mathrm{C}(3, \mathrm{I})$	$-0.3651(21)$	-0.1184(18)	$0.0205(11)$
$\mathrm{C}(2, \mathrm{I})$	-0.5083(19)	-0.1482(16)	$0.0358(11)$
$\mathrm{C}(1, \mathrm{I})$	$-0.5530(17)$	$-0.1755(15)$	$0 \cdot 1069(11)$
$\mathrm{C}(9, \mathrm{I})$	-0.6224(19)	-0.2377(16)	0.2713(11)
$\mathrm{C}(8, \mathrm{I})$	-0.6347(21)	$-0.2655(17)$	$0 \cdot 3461(11)$
$\mathrm{C}(7, \mathrm{I})$	-0.5239(16)	-0.2702(14)	$0.3885(9)$
$\mathrm{C}(6, \mathrm{I})$	$-0.3768(19)$	$-0.2136(16)$	0.2831 (10)
$\mathrm{C}\left(\alpha^{\prime}, \mathrm{I}\right)$	$-0.3864(14)$	$-0.2411(13)$	$0 \cdot 3571$ (8)
$\mathrm{C}\left(\beta^{\prime}, \mathrm{I}\right)$	-0.4907(12)	$-0.2099(13)$	$0 \cdot 2398(9)$
$\mathrm{C}(\beta, \mathrm{I})$	$-0.4600(18)$	-0.1798(16)	$0 \cdot 1630$ (10)
$\mathrm{C}(\boldsymbol{\gamma}, \mathrm{I})$	-0.1976(14)	-0.3275(14)	$0 \cdot 2369$ (2)
P (II)	-0.0746(17)	$0 \cdot 1581(14)$	$0 \cdot 1786(9)$
$\mathrm{C}(\alpha, \mathrm{II})$	$0.0131(24)$	$0 \cdot 2545$ (18)	$0.0959(10)$
$\mathrm{C}(4, \mathrm{II})$	$0.0257(24)$	$0 \cdot 2227(18)$	$0.0325(10)$
$\mathrm{C}(3, \mathrm{II})$	$0.0962(23)$	$0.3182(21)$	-0.0309(11)
$\mathrm{C}(2, \mathrm{II})$	$0 \cdot 1598(22)$	$0 \cdot 4460(20)$	-0.0280(12)
$\mathrm{C}(1, \mathrm{II})$	$0 \cdot 1495(20)$	$0 \cdot 4817(18)$	$0.0357(11)$
C (9, II)	$0.0858(18)$	$0.5236(16)$	$0 \cdot 1791$ (11)
$\mathrm{C}(8, \mathrm{II})$	$0.0485(20)$	$0 \cdot 5238(18)$	$0 \cdot 2458(12)$
C(7,II)	-0.0230(19)	$0 \cdot 4094(18)$	$0 \cdot 2994(11)$
$\mathrm{C}(6, \mathrm{II})$	-0.0634(20)	$0 \cdot 2906(17)$	$0 \cdot 2843(10)$
$\mathrm{C}\left(\alpha^{\prime}, \mathrm{II}\right)$	-0.0250(16)	$0 \cdot 2916$ (14)	$0 \cdot 2158(9)$
$\mathrm{C}\left(\beta^{\prime}, \mathrm{II}\right)$	$0.0498(15)$	$0 \cdot 4058(14)$	$0 \cdot 1633(9)$
$\mathrm{C}(\beta, \mathrm{II})$	$0.0739(17)$	$0 \cdot 3869(15)$	$0.0945(9)$
$\mathrm{C}(\gamma, \mathrm{II})$	-0.2598(19)	$0 \cdot 1310(18)$	$0 \cdot 1614(13)$
P (III)	$0 \cdot 1948(15)$	$0 \cdot 1105(14)$	$0 \cdot 2695$ (9)
$\mathrm{C}(\alpha, \mathrm{III})$	$0 \cdot 2997(18)$	$0 \cdot 2545(17)$	$0 \cdot 2051(10)$
$\mathrm{C}(4, \mathrm{III})$	$0 \cdot 3436(20)$	$0 \cdot 2679(19)$	$0 \cdot 1369(19)$
C(3,III)	$0 \cdot 4363(21)$	$0 \cdot 3853(20)$	$0.0954(13)$
$\mathrm{C}(2, \mathrm{III})$	$0 \cdot 4796$ (19)	$0 \cdot 4940$ (17)	$0 \cdot 1235(11)$
C(1,III)	$0 \cdot 4318(20)$	$0 \cdot 4807(20)$	$0 \cdot 1925(12)$
C(9,III)	$0 \cdot 3141$ (26)	$0 \cdot 4063(24)$	0.3519(13)
C (8,III)	$0 \cdot 2620$ (24)	$0 \cdot 3590$ (24)	$0 \cdot 4194(12)$
C(7,III)	$0 \cdot 1746(20)$	$0 \cdot 2308(19)$	$0 \cdot 4485(10)$
$\mathrm{C}(6, \mathrm{III})$	$0 \cdot 1516(17)$	$0 \cdot 1454(16)$	$0 \cdot 4044$ (9)
$\mathrm{C}\left(\alpha^{\prime}, \mathrm{III}\right)$	$0 \cdot 2087$ (16)	0-1923(15)	$0 \cdot 3363(10)$
$\mathrm{C}\left(\beta^{\prime}, \mathrm{III}\right)$	$0 \cdot 2906$ (16)	$0 \cdot 3260$ (15)	$0 \cdot 3075(10)$
$\mathrm{C}(\beta, \mathrm{III})$	$0.3431(15)$	$0 \cdot 3593(16)$	$0.2331(11)$
$\mathrm{C}(\gamma, \mathrm{III})$	$0 \cdot 3160(14)$	$0 \cdot 0243(14)$	$0 \cdot 2941$ (12)
$\mathrm{Br}(3)$	0.6314(4)	$0 \cdot 0290$ (3)	$0 \cdot 4224(2)$
C (1)	$0 \cdot 6880(25)$	$0 \cdot 2003(21)$	$0 \cdot 4369(12)$
C(2)	$0 \cdot 7969(22)$	$0 \cdot 2344(22)$	$0 \cdot 4798(11)$
C(3)	$0.8402(26)$	$0 \cdot 3595(24)$	$0 \cdot 4851$ (25)
C(4)	0.7671 (27)	$0 \cdot 4402(21)$	$0 \cdot 4468$ (11)
C(5)	$0.6670(24)$	$0 \cdot 4141$ (25)	$0 \cdot 4099(13)$
C(6)	$0 \cdot 6151$ (27)	0.2784(25)	$0 \cdot 3974(14)$

0.097 and 0.092 with relative weights calculated from $1 / w=\left[1+\left(F_{0}-P_{2}\right) / P_{1}\right]^{2}, \quad\left[P_{1}=52 \cdot 3, \quad P_{2}=13 \cdot 8\right.$ for structure (2) and $P_{1}=38.7, P_{2}=13.8$ for structure (3)]. The sums of squares of ratios were reduced to $28 \cdot 2,18 \cdot 3$, and $48 \cdot 6$ respectively. The root-mean-squares (shift-to- σ) were less than $0.02,0.01$, and 0.03 .

Detailed results of positional and temperature parameters are given in Tables 8-13. Final observed and calculated structure factors for all three compounds are

[^3]listed in Supplementary Publication No. SUP 21008 (58 pp., 1 microfiche).*

Crystal Data.-For each compound the constants given first are those of a unit cell found convenient for data collection and structure determination. At the end of each section an alternative cell is given. For (1) and (2) this is the cell obtained by Delaunay reduction which leads to
$F(000)=1020$. Space group, $P \overline{1}$. Mo- K_{α} radiation, $\lambda=$ $0.7107 \AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=25 \cdot 18 \mathrm{~cm}^{-1} ; \quad t_{\mathrm{op}}=0.79 \mathrm{~mm}$; terminal $R 0.095$; green crystal $0.30 \times 0.51 \times 0.52 \mathrm{~mm}$. Reduced cell constants (Delaunay): $a=19.96 \pm 0 \cdot 03$, $b=20.07 \pm 0.03, c=10.59 \pm 0.02 \AA, \alpha=99.69 \pm 0.02^{\circ}$, $\beta=90.32 \pm 0.02^{\circ}, \gamma=146.56 \pm 0.03^{\circ} ; \quad$ transformation matrix ($1,1,0 /-1,0,0 / 0,0,1$).

Table 13
Anisotropic temperature factors for (3), with estimated standard deviations in parentheses

	U_{11}	U_{22}	U_{33}	$2 U_{23}$	$2 U_{31}$	$2 U_{12}$
Pt	55(0)	49(0)	75(0)	-20(1)	15(1)	$39(1)$
Br(2)	73 (1)	78(1)	102(1)	-46(2)	$30(2)$	59(2)
$\mathrm{Br}(1)$	87(1)	$71(1)$	88(1)	-4(2)	$-2(2)$	48(2)
$\mathrm{P}(\mathrm{I})$	$61(2)$	55(2)	$76(3)$	-20(4)	$21(4)$	$50(4)$
$\mathrm{C}(\alpha, \mathrm{I})$	$43(7)$	$69(9)$	83(10)	$-59(15)$	-21(13)	35(13)
$\mathrm{C}(4, \mathrm{I})$	93(12)	$65(10)$	101(13)	-41(18)	49(21)	54(18)
$\mathrm{C}(3, \mathrm{I})$	90 (12)	71 (10)	84(12)	-43(17)	$-19(19)$	52(18)
$\mathrm{C}(2, \mathrm{I})$	101(13)	81 (11)	92(14)	-45(20)	$1(21)$	62(20)
$\mathrm{C}(1, \mathrm{I})$	77(11)	64(9)	113(14)	-40(18)	$-2(20)$	36(16)
$\mathrm{C}(9, \mathrm{I})$	$64(9)$	61 (8)	116(14)	-44(18)	39(18)	50(15)
$\mathrm{C}(8, \mathrm{I})$	80(11)	64(9)	113(14)	-24(18)	$34(20)$	62(17)
$\mathrm{C}(7, \mathrm{I})$	94(13)	80(11)	99(14)	$-18(19)$	78(22)	55(19)
$\mathrm{C}(6, \mathrm{I})$	$72(9)$	56(8)	91 (12)	$-40(15)$	19(16)	37(14)
$\mathrm{C}\left(\alpha^{\prime}, \mathrm{I}\right)$	86(12)	78(10)	$84(12)$	-40(17)	43(19)	59(18)
$\mathrm{C}\left(\beta^{\prime}, \mathrm{I}\right)$	51 (7)	48(7)	$80(10)$	-16(13)	18(13)	$31(12)$
$\mathrm{C}(\beta, \mathrm{I})$	$35(6)$	66 (8)	88(11)	-44(15)	-13(12)	42(11)
$\mathrm{C}(\gamma, \mathrm{I})$	78(10)	63 (9)	108(13)	-32(17)	33(18)	63(16)
P (II)	$65(2)$	53(2)	80 (3)	-24(4)	14(4)	49(4)
$\mathrm{C}(\alpha, \mathrm{III})$	51 (8)	$60(8)$	93(11)	-33(15)	17(15)	38(13)
C(4,III)	73(11)	83(11)	89(12)	-35(18)	$21(18)$	$65(18)$
C($3, \mathrm{III}$)	77(11)	76(11)	$110(15)$	$-17(21)$	41 (21)	27(18)
C(2,III)	$89(13)$	88(13)	117(17)	4(23)	48(23)	$60(21)$
C(1,III)	75(11)	81(11)	$114(15)$	$-26(20)$	$8(20)$	$64(18)$
C $(9$, III $)$	88(12)	103(14)	$115(16)$	-103(25)	-22(22)	80 (21)
C(8,III)	120(18)	108(17)	115 (17)	-86(28)	$-17(28)$	$93(29)$
C(7,III)	104(16)	$130(18)$	$105(15)$	-96(17)	- 10(24)	107(28)
C(6,III)	84(12)	$91(12)$	86(12)	-29(19)	22(19)	68(19)
C (α^{\prime}, III)	$65(9)$	$79(10)$	88(11)	-76(18)	-6(16)	$52(16)$
$\mathrm{C}\left(\beta^{\prime}, \mathrm{III}\right)$	59(9)	$58(8)$	111(13)	$-67(17)$	0 (17)	43(14)
C $(\beta$, III $)$	63(9)	58(8)	$115(13)$	-58(17)	8(17)	53(14)
C (γ, IIII)	48(7)	73(10)	132(15)	-64(20)	$-13(17)$	64(14)
P (III)	67(2)	52(2)	82 (3)	-26(4)	17(4)	$51(4)$
$\mathrm{C}(\alpha, \mathrm{II})$	$79(10)$	$65(8)$	77(10)	$-17(14)$	$25(16)$	76(16)
C(4,II)	139(18)	79(11)	85(12)	-21(19)	19(22)	110(24)
$\mathrm{C}(3, \mathrm{II})$	116 (16)	$105(14)$	90 (13)	-28(22)	$20(22)$	120(25)
$\mathrm{C}(2, \mathrm{II})$	107(14)	88(13)	98(14)	-4(22)	37(23)	95(23)
C(1,II)	79(12)	80(11)	102(14)	-8(19)	$33(20)$	56(18)
$\mathrm{C}(9, \mathrm{II})$	66(10)	$72(10)$	113(14)	-48(18)	-9(18)	$59(16)$
$\mathrm{C}(8, \mathrm{II})$	86(11)	76(12)	116(16)	-73(16)	2 (21)	73(19)
C(7,II)	83(12)	85(12)	110(15)	-78(22)	$9(21)$	$69(20)$
$\mathrm{C}(6, \mathrm{II})$	$72(10)$	76 (11)	94(12)	$-46(18)$	$-1(17)$	57(17)
$\mathrm{C}\left(\boldsymbol{\alpha}^{\prime}, \mathrm{II}\right)$	65(9)	$59(8)$	$95(11)$	-44(15)	3(16)	80 (14)
$\mathrm{C}\left(\beta^{\prime}, \mathrm{II}\right)$	58(8)	$55(8)$	101(12)	-37(15)	7(15)	$55(13)$
$\mathrm{C}(\beta, \mathrm{II})$	$79(10)$	63(9)	81 (10)	-25(15)	15(16)	$73(16)$
$\mathrm{C}(\gamma, \mathrm{II})$	77(11)	74(11)	156(19)	-32(23)	-34(23)	102(19)
$\mathrm{Br}(3)$	148(3)	96(2)	186(3)	-48(4)	-48(5)	$78(3)$
$\mathrm{C}(1)$	115(16)	88(14)	105(15)	$-10(23)$	54(25)	54(25)
$\mathrm{C}(2)$	83(13)	104(16)	100(14)	-31(23)	$-21(21)$	$64(23)$
$\mathrm{C}(3)$	118(18)	116(17)	105(16)	$-36(26)$	$53(26)$	$54(29)$
$\mathrm{C}(4)$	$130(19)$	89(14)	106(16)	-37(24)	117(28)	$60(27)$
$\mathrm{C}(5)$	88(14)	121(18)	$111(17)$	8(27)	$49(24)$	100(27)
C(6)	118(18)	122(18)	139(21)	$-22(31)$	16(31)	126(31)

structurally comparable cells. For (3) the cell given is structurally comparable with those for (1) and (2) but does not obey the Delaunay convention of $b>a$. The matrix for transformation from one cell to the reduced form is given in each case.
(1) Dibromotris-(5-ethyl-5H-dibenzophosphole)palladium(II). $\left(\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{P}\right)_{3} \mathrm{PdBr}_{2}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}, M=1015 \cdot 5$, Triclinic, $a=$ $11.52 \pm 0.02, b=19.96 \pm 0.03, c=10.59 \pm 0.02 \AA, \alpha=$ $89.68 \pm 0.02, \beta=107.65 \pm 0.02, \gamma=106.18 \pm 0.02^{\circ}, U=$ $2220 \AA^{3}, D_{\mathrm{m}}=1.52$ (by flotation), $Z=2, D_{\mathrm{c}}=1.52$,
(2) Dibromotris-(5-ethyl-5H-dibenzophosphole)platinum(II). $\left(\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{P}\right)_{3} \mathrm{PtBr}_{2}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}, M=1148 \cdot 70$, Triclinic, $a=$ $19.92 \pm 0.02, b=11.48 \pm 0.02, c=13.12 \pm 0.02 \AA, \alpha=$ $129.55 \pm 0.02, \beta=76.21 \pm 0.02, \gamma=105.95 \pm 0.02^{\circ}, U=$ $2216.3 \AA^{3}, D_{\mathrm{m}}=1.73, Z=2, D_{\mathrm{c}}=1.72, F(000)=1120$. Space group $P \overline{\mathbf{1}}$. $\mathrm{Cu}-K_{\alpha}$ radiation, $\lambda=1.5418 \AA, \mu(\mathrm{Cu}-$ $\left.K_{\alpha}\right)=108.47 \mathrm{~cm}^{-1} ; \quad t_{\mathrm{op}}=0.18 \mathrm{~mm}$; terminal $R 0.092$; yellow crystal $0.25 \times 0.27 \times 0.70 \mathrm{~mm}$. Reduced cell

* See Notice to Authors No. 7 in J.C.S. Dalton, 1973, Index issue.
constants (Delaunay): $\quad a=19.92 \pm 0.02, \quad b=20.07 \pm$ $0.02, c=10.58 \pm 0.02 \AA, \alpha=99.57 \pm 0.02, \beta=90.02 \pm$ $0.02, \quad \gamma=146.62 \pm 0.03^{\circ}$; transformation matrix $(-1,0,0 /-1,-1,0 / 1,1,1)$.
(3) Dibromotris-(5-methyl-5H-dibenzophosphole)platinum(11). $\left(\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{P}\right)_{3} \mathrm{PtBr}_{2}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}, M=1106 \cdot 6$, Triclinic, $a=$ $10.26 \pm 0.02, b=11.61 \pm 0.02, c=10.46 \pm 0.03 \AA, \alpha=$ $72.41 \pm 0.02, \beta=94 \cdot 12 \pm 0.02, \gamma=110.58 \pm 0.02^{\circ}, U=$ $2067 \AA^{3}, D_{\mathrm{m}}=1.78, Z=2, D_{\mathrm{c}}=1.78, \quad F(000)=1072$. Space group $P \overline{1}$. $\mathrm{Cu}-K_{\alpha}$ radiation, $\mu\left(\mathrm{Cu}-K_{\alpha}\right)=116 \cdot 29$
$\mathrm{cm}^{-1} ; t_{\mathrm{op}}=0.17 \mathrm{~mm}$; terminal $R 0.097$; yellow crystal $0.18 \times 0.30 \times 0.40 \mathrm{~mm}$. Reduced cell constants: $a=$ $19.46 \pm 0.03, b=19.42 \pm 0.03, c=10.26 \pm 0.02 \AA, \alpha=$ $97.93 \pm 0.02, \beta=94 \cdot 12 \pm 0.02, \gamma=145 \cdot 20 \pm 0.02^{\circ}$; transformation matrix ($-1,0,0 / 0,0,1 / 1,1,0$).

We thank Dr. F. G. Mann, F.R.S., for the compounds used, the S.R.C. for a research grant, and the Oxford University Computing Laboratory for facilities.
[3/2343 Received, 15th November, 1973]

[^0]: $\dagger a$ And b denote different stereochemistries, for definition, see p. 1882.

[^1]: ${ }^{1}$ H. M. Powell, D. J. Watkin, and J. B. Wilford, J. Chem. Soc. (A), 1971, 1803.

[^2]: ${ }^{2}$ H. M. Powell, K. M. Chui, and D. J. Watkin, unpublished work.

[^3]: ${ }^{5}$ D. J. Watkin, Acta Cryst., 1972, A28, 33.
 ${ }^{6}$ D. C. G. Killean, Acta Cryst., 1969, B25. 374.

