Nature of the Dioxobis(tropolonato)uranium(vi) System and its Complexes with Neutral Ligands. Crystal and Molecular Structure of Dioxo(pyridine)bis(tropolonato)uranium(vi)

By Sandro Degetto,* Giampaolo Marangoni, Gabriella Bombieri, Eleonora Forsellini, and Livio Baracco, Laboratorio di Chimica e Tecnologia dei Radioelementi del C.N.R., Padova, Via Vigonovese 52, 35100 Padova, Italy
Rodolfo Gaziani, Istituto di Chimica Generale, Università di Padova, Italy

Abstract

Uranyi tropolonato-complexes, of general formula $\mathrm{UO}_{2} \mathrm{t}_{2}$ and $\mathrm{UO}_{2} \mathrm{t}_{2}, x \mathrm{H}_{2} \mathrm{O}(\mathrm{Ht}=$ tropolone) have been prepared. Physical properties are discussed and structures suggested. Their reactivities were tested by preparing adducts with a series of neutral ligands $L(L=$ methanol, water, dimethyl sulphoxide, pyridine N-oxide, triphenylphosphine oxide, cyclohexanone, pyridine, and aniline). The crystal structure of the pyridine (py) adduct $\mathrm{UO}_{2} \mathrm{t}_{2}$ (py) has been determined by X-ray diffraction methods by the heavy-atom method from counter data on 3252 reflections, and refined to $R 0.058$ by a full-matrix least-squares procedure. The monoclinic unit cell, space group $/ 2 / a$ (standard cell $C 2 / c$), has dimensions $a=17.88(1), b=12.69(1), c=16 \cdot 79(1) \AA, \beta=98.32(10)^{\circ}$ for $Z=8$. The molecule has approximately $C_{2 v}$ symmetry. Two tropolonato-groups and the pyridine ligand are displaced slightly from the plane perpendicular to the linear uranyl group. The $\mathrm{U}-\mathrm{O}$ (uranyl) distances are 1.78 and 1.79 A ; the four $U-O(e q)$ distances are almost equal ($2 \cdot 37-2.38 \AA$) and $U-N(p y)$ is $2.61 \AA$.

Chelates formed between tropolone (2-hydroxycyclo-hepta-2,4,6-trien-l-one $=\mathrm{Ht}$) and a wide range of elements are known. ${ }^{1-7}$ In particular, the ability of tropolone to form very stable solid complexes with the uranyl(vi) ion in the ratios $2: 1$ and $3: 1$ has been pointed out, ${ }^{8}$ but there is little information beyond the nature and co-ordination number of uranium in the $2: 1$ compound $\mathrm{UO}_{2} \mathrm{t}_{2}$.

Recently Plymale and Smith ${ }^{9}$ prepared a compound of formula $\mathrm{UO}_{2} \mathrm{t}_{2}$ by drying in vacuo at $80^{\circ} \mathrm{C}$ the product isolated from reaction in methanol between stoicheiometric amounts of uranyl salts and tropolone. The reddish orange compound which was hygroscopic, was characterized by several preliminary physicochemical measurements and was shown to be apparently monomeric by determination of the molecular weight in dimethyl sulphoxide solution.

We have repeated that preparation, with the same experimental conditions, and obtained the methanol adduct $\left[\mathrm{UO}_{2} \mathrm{t}_{2}(\mathrm{MeOH})\right]$. A non-hygroscopic product having elemental analysis fitting the formula $\mathrm{UO}_{2} \mathrm{t}_{2}$ (I), but an i.r. spectrum significantly different from that reported, ${ }^{1}$ was obtained by drying the methanol adduct at ca. $140{ }^{\circ} \mathrm{C}$ in vacuo. The product reported in ref. 9 is different too from the $\left[\mathrm{UO}_{2} \mathrm{t}_{2}(\mathrm{MeOH})\right]$ adduct as shown later.

By varying the experimental conditions and/or the starting materials, the same product, as small red microcrystals, and a yellow one (II) containing water were obtained. Since these compounds are virtually insoluble in all solvents that do not react with them, their physicochemical characterization was carried out by i.r. spectra, X-ray powder diffraction, and elemental

[^0]and thermogravimetric analysis in the solid state. Their reactivities were investigated by the preparation of adducts with a series of neutral ligands (L) where L is either an oxygen donor (methanol, water, dimethyl sulphoxide, pyridine N-oxide, triphenylphosphine oxide, and cyclohexanone) or a nitrogen donor (pyridine or aniline). We report the crystal structure of the pyridine complex.

EXPERIMENTAL

Materials.-Reagent-grade uranyl nitrate and cyclohexanone were used without further purification. Commercial dimethyl sulphoxide, methanol, pyridine, aniline, and benzene were distilled before use. Pyridine N-oxide and triphenylphosphine oxide were prepared as described in refs. 10 and 11. Tropolone (Aldrich Chemicals) was recrystallized several times from isopentane (m.p. 48$50{ }^{\circ} \mathrm{C}$).

Instruments.-I.r. (4000-400 cm^{-1}): Perkin-Elmer 337 and 621 spectrophotometers; visible and u.v.: Optica CF4R spectrophotometer; molecular weight: Mechrolab thermoelectric osmometer; density determinations: MohrWestphal balance; thermogravimetric analysis: Vacuum Mettler Analyser; X-ray powder spectra: Siemens automatic powder diffractometer. I.r. measurements were carried out with KBr discs or Nujol mulls, and electronic spectra in $\mathbf{l ~ c m}$ quartz cells.

Dioxo(methanol)bis(tropolonato)uranium(vi).-A stoicheiometric quantity of tropolone in methanol was added to a solution of uranyl nitrate hexahydrate in methanol and the resulting mixture was stirred for $c a .2 \mathrm{~h}$. The reddish orange microcrystalline solid which formed was washed with methanol, recrystallized (methanol), and dried in vacuo.

Dioxobis(tropolonato)uranium(vi), (I).-A sample of $\left[\mathrm{UO}_{2} \mathrm{t}_{2}(\mathrm{MeOH})\right]$ when heated at $150{ }^{\circ} \mathrm{C}$ for 2 h in vacuo
${ }^{5}$ N. M. D. Brown and P. Bladon, J. Chem. Soc. (A), 1969, 526.
${ }^{6}$ E. L. Muetterties, J. Amer. Chem. Soc., 1966, 88, 305, and refs. therein.
${ }^{7}$ D. Dryssen, Acta Chem. Scand., 1955, 9, 2.
${ }^{8}$ Y. Dutt and R. P. Singh, J. Indian Chem. Soc., 1965, 42, 767.
${ }^{9}$ D. L. Plymale and W. H. Smith, J. Inorg. Nuclear Chem., 1968, 30, 2267.
${ }^{10}$ E. Ochay, J. Org. Chem., 1953, 18, 534.
${ }_{11}$ J. P. Day and L. M. Venanzi, J. Chem. Soc. (A), 1966, 197.
yielded a non-hygroscopic, red, very thin microcrystalline powder, which when heated under reflux in benzene, formed brilliant red microcrystals after $c a .30 \mathrm{~h}$. (All attempts to grow single crystals suitable for X-ray analysis were unsuccessful.) The same product was obtained from (II), but without heating at $150{ }^{\circ} \mathrm{C}$ in vacuo.

Dioxobis(tropolonato)uranium (vi), $x \mathrm{H}_{2} \mathrm{O}$, (II).-Samples of (I) or of the various uranyl tropolonato-complexes (see later) were digested in benzene ($\mathrm{H}_{2} \mathrm{O} c a .0 .02 \%$) for several hours at room temperature. The yellow-orange flocculent product was washed with benzene and dried in vacuo.

Preparation of Addition Complexes.-In general the adducts were prepared by reaction of (I) or (II) with an excess of the appropriate ligand. In particular, the complexes with dimethyl sulphoxide, pyridine, aniline, and cyclohexanone were obtained by dissolving the starting materials in the liquid ligands at room temperature and
absences: $h k l$ when $h+k+l$ is odd, $h 0 l$ when h is odd, with the following equivalent positions: $\pm(x, y, z) ; \pm\left(\frac{1}{2}-\right.$ $x, y, \bar{z}) ; \pm\left(\frac{1}{2}+x, \frac{1}{2}+y, \frac{1}{2}+z\right) ; \pm\left(\bar{x}, \frac{1}{2}+y, \frac{1}{2}-z\right)$.

Bright-red prismatic crystals (elongated along b) were obtained from pyridine. A fragment of dimensions $0.01 \times 0.02 \times 0.01 \mathrm{~cm}$ was used for the measurements. Approximate unit-cell parameters and the space group were determined from preliminary oscillation, Weissenberg, and precession photographs. Accurate values of the cell constants were derived by the method of least squares from 20 angle data recorded on a diffractometer.

Intensity Data.-The selected crystal was mounted with the $[010]$ direction parallel to the ϕ axis of the goniometer. 3252 Independent reflections were collected on a computercontrolled Siemens AED., by the $\theta-2 \theta$ scan technique and the five-point measuring procedure, by use of zirconiumfiltered Mo-radiation up to $\theta_{\max } 25^{\circ} .1085$ Reflections

Table 1

removing the excess of ligand in vacuo. Triphenylphosphine and pyridine N-oxide complexes were obtained on treating (I) or (II) with concentrated solutions of the ligands in anhydrous benzene. The solids obtained on concentrating the resulting solutions were rapidly washed with benzene and then dried in vacuo. $\left[\mathrm{UO}_{2} \mathrm{t}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right]\right.$ was obtained by heating the starting materials under reflux in water. The same adducts were obtained from $\left[\mathrm{UO}_{2} \mathrm{t}_{2}(\mathrm{MeOH})\right]$ by analogous experimental procedures. Uranium was determined gravimetrically as the tetraphenylarsonium salt of uranyl (2,6-dipicolinate). ${ }^{12}$ Water content was determined thermogravimetrically. Analytical data are reported in Table 1.

Crystal Structure Determination of $\mathrm{UO}_{2} \mathrm{t}_{2}(\mathrm{py})$

Crystal Data. $-\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{NO}_{6} \mathrm{U}, M=591$, Monoclinic, $a=$ $17 \cdot 88(1), b=12 \cdot 69(1), c=16 \cdot 79(1) \AA, \beta=98 \cdot 32(10)^{\circ}, U=$ $3764 \AA^{3}, \quad D_{\mathrm{c}}=2.09, \quad Z=8, \quad D_{\mathrm{m}}=2 \cdot 08, \quad F(000)=2208$, Mo- K_{α} radiation, $\lambda=0.7107 \AA, \mu\left(\right.$ Mo- $\left.K_{\alpha}\right)=109 \mathrm{~cm}^{-1}$. Space group $12 / a$ (C2/c standard cell) from systematic
${ }^{12}$ G. Marangoni, S. Degetto, and U. Croatto, Talanta, 1973, 20, 1217.
${ }^{13}$ J. M. Stewart, F. A. Kundell, and J. C. Baldwin, ' X-Ray, System of Crystallographic Programs, version of July 1970, University of Maryland.
having $I \leqslant 2 \sigma(I)$ were considered unobserved and were given zero weight in the refinement. No absorption correction was applied. All calculations were performed with a CDC 6600 computer with programmes of ref. 13. Atomic scattering factors were taken from ref. 14. For uranium, the correction for anomalous scattering was applied. ${ }^{15}$

Structure Determination.-The structure was solved by the heavy-atom method. The uranium atom was correctly located from a sharpened Patterson function; remaining non-hydrogen atoms were successively located in subsequent three-dimensional electron-density maps. Refinement by full-matrix least-squares, with isotropic thermal parameters and $w=1$, reduced R to $0 \cdot 12$. A weighting scheme of the form $w=\left\{1+\left[\left(F_{o}-b\right) / a\right]^{2}\right\}^{-1}$ was introduced, the function minimized being $w\left(\left|F_{\mathrm{o}}\right|-\right.$ $\left.\left|F_{\mathrm{c}}\right|\right)^{2} ; a$ and b were adjusted to 250 and 200 respectively. At this stage uranium and co-ordinated atoms were allocated anisotropic thermal parameters. Refinement proceeded until parameters shifts in both atomic positional and thermal parameters were $<0 \cdot 1 \sigma$, those of the uranium atom being considerably less. The structure converged

[^1]to the final R of 0.058 , the weighted factor, R^{\prime}, being 0.066 . (An attempt to refine all atoms anisotropically produced no significant changes either in the parameters of the co-ordinated atom or in the reliability factor.) A difference

Table 2

Atomic fractional co-ordinates $\left(\times 10^{4}\right)$ and thermal parameters, $U\left(\AA^{2} \times 10^{2}\right)$, with estimated standard deviations in parentheses

	x	y	z	L^{r}
U	5670(1)	-257(1)	3347(1)	*
$\mathrm{O}(1)$	5136(7)	-946(12)	2527(8)	*
$\mathrm{O}(2)$	$6169(7)$	458(11)	4169(8)	*
$\mathrm{O}(3)$	5068(6)	- 1286(11)	4255(8)	
$\mathrm{O}(4)$	6276(7)	$-1867(11)$	3793(8)	*
$\mathrm{O}(5)$	6772 (6)	-290(12)	2700(8)	*
$\mathrm{O}(6)$	5815(7)	1190(12)	2490(8)	
N	4422(7)	771 (13)	3454(9)	*
C(1)	4246(11)	1636(16)	3004(12)	$5 \cdot 1(4)$
$\mathrm{C}(2)$	3774(14)	2175(19)	3044(15)	$5 \cdot 2(6)$
$\mathrm{C}(3)$	3084(12)	1852(17)	3561 (13)	$5 \cdot 3(5)$
$\mathrm{C}(4)$	3268(11)	994(16)	4016(12)	$4 \cdot 6$ (5)
C(5)	3954(11)	425(16)	3978(12)	$5 \cdot 2(5)$
$\mathrm{C}(6)$	6048(9)	$-2521(13)$	4295(10)	3.8(4)
$\mathrm{C}(7)$	6445(12)	-3437(18)	4522(13)	$6 \cdot 4(5)$
C(8)	6319(11)	-4259(18)	5069(12)	$5 \cdot 4(5)$
$\mathrm{C}(9)$	5743(11)	-4308(17)	5536(12)	$6 \cdot 2(5)$
$\mathrm{C}(10)$	5116(13)	-3612(18)	5554(14)	$5 \cdot 9(6)$
C(11)	4958(10)	$-2696(15)$	5153(10)	4.7(4)
C.(12)	$5339(10)$	-2152(14)	4575(11)	4.2(4)
$\mathrm{C}(13)$	6426(11)	1333(16)	2151(12)	4.4(4)
C(14)	6481 (14)	2305(19)	1698(15)	$5 \cdot 6(6)$
C(15)	7061 (12)	2579(17)	1261(13)	6.2(5)
$\mathrm{C}(16)$	7763(15)	2081 (21)	1194(16)	6.7(7)
C(17)	8027(13)	1108(18)	1526(14)	6.2(6)
C(18)	7673 (12)	415(18)	1977(13)	$5 \cdot 0(5)$
C (19)	6962(9)	478(13)	2254(10)	4.2(4)

* Anisotropic thermal parameters, $U_{i j}\left(\AA^{2} \times 10^{4}\right)$ in the form: $T=\exp \left[-2 \pi^{2}\left(U_{11} a^{* 2} h^{2}+U_{22} b^{* 2} h^{2}+U_{33} c^{* 2} l^{2}\right.\right.$

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
¢	388 (4)	432(4)	470(4)	13(4)	$175(3)$	$18(5)$
O(1)	542(83)	759(101)	581 (76)	$-162(73)$	186(64)	170(71)
$\bigcirc(2)$	494(70)	700(108)	566(71)	$-137(67)$	153(56)	$-5(66)$
O(3)	401(63)	557(88)	606(75)	$62(60)$	264(56)	$83(65)$
$\bigcirc(4)$	579(74)	${ }_{5}^{50}(86)$	579(81)	26(63)	$294(63)$	126(66)
$\bigcirc(5)$	424(63)	$725(84)$	$709(80)$	99(70)	$405(59)$	144(79)
$\mathrm{O}(6)$	370 (66)	$815(98)$	595(77)	160 (64)	$232(58)$	225(68)
N	319(68)	494(95)	442 (84)	$-56(67)$	137(61)	-89(74)

Table 3

Bond distances (\AA), with estimated standard deviations in parentheses

$\mathrm{U}-\mathrm{O}(1)$	1.79(1)
$\mathrm{U}-\mathrm{O}(2)$	1.78 (1)
$\mathrm{U}-\mathrm{O}(3)$	2.38(1)
$\mathrm{U}-\mathrm{O}(4)$	2.38(1)
$\mathrm{U}-\mathrm{O}(5)$	2.38(1)
$\mathrm{U}-\mathrm{O}(6)$	2.37(1)
$\mathrm{U}-\mathrm{N}$	$2 \cdot 61$ (1)
$\mathrm{O}(5)-\mathrm{C}(19)$	1.30(2)
$\mathrm{O}(6)-\mathrm{C}(13)$	$1.31(3)$
$\mathrm{C}(13)-\mathrm{C}(14)$	1-46(3)
$\mathrm{C}(14)-\mathrm{C}(15)$	$1 \cdot 40$ (3)
$\mathrm{C}(15)-\mathrm{C}(16)$	1.42 (3)
$\mathrm{C}(16)-\mathrm{C}(17)$	$1 \cdot 41$ (3)
$\mathrm{C}(17)-\mathrm{C}(18)$	$1 \cdot 37(3)$
$\mathrm{C}(18)-\mathrm{C}(19)$	1-42(3)
$\mathrm{C}(19)-\mathrm{C}(13)$	1-44(3)

$\mathrm{N}-\mathrm{C}(1)$	$1 \cdot 34(3)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 39(3)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.38(4)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.34(3)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.43(3)$
$\mathrm{C}(5)-\mathrm{N}$	$1.37(3)$
$\mathrm{O}(3)-\mathrm{C}(12)$	$1 \cdot 29(2)$
$\mathrm{O}(4)-\mathrm{C}(6)$	$1.29(2)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.38(3)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.43(3)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.38(3)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1 \cdot 43(3)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.35(3)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.44(3)$
$\mathrm{C}(12)-\mathrm{C}(6)$	$1 \cdot 49(3)$

map computed after the final round of least-squares refinement revealed no significant peaks, and it was impossible to locate the hydrogen atoms. There was no evidence for disorder in the structure.

Final atomic positional and thermal parameters are
given in Table 2, with least-squares estimated standard deviations, and bond distances and angles in Tables 3 and 4. Planes were calculated through each of the three ligands within the molecules, and the equations are given in Table 5. Intra- and inter-molecular contacts $<4 \AA$ are listed in Table 6. Observed and calculated structure factors are listed in Supplementary Publication No. 21001 (7 pp.).*

Table 4
Bond angles $\left({ }^{\circ}\right)$, with estimated standard deviations in parentheses

$\mathrm{O}(1)-\mathrm{L}-\mathrm{O}(2)$	178(1)	$\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(7)$	121(2)
$\mathrm{O}(3)-\mathrm{U}-\mathrm{O}(4)$	$64(1)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	132 (2)
$\mathrm{O}(4)-\mathrm{U}-\mathrm{O}(5)$	76(1)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	127(2)
$\mathrm{O}(5)-\mathrm{U}-\mathrm{O}(6)$	$64(1)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	129(2)
$\mathrm{O}(3)-\mathrm{U}-\mathrm{N}$	76(1)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	129(2)
$\mathrm{O}(6)-\mathrm{U}-\mathrm{N}$	80 (1)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	131(2)
$\mathrm{U}-\mathrm{N}-\mathrm{C}(1)$	120(1)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(6)$	125(2)
$\mathrm{U}-\mathrm{N}-\mathrm{C}(5)$	119(1)	$\mathrm{C}(12)-\mathrm{C}(6)-\mathrm{C}(7)$	127(2)
$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2)$	$120(2)$	$\mathrm{O}(5)-\mathrm{C}(19)-\mathrm{C}(13)$	$114(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	121 (2)	$\mathrm{O}(5)-\mathrm{C}(19)-\mathrm{C}(18)$	119(2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	118(2)	$\mathrm{O}(6)-\mathrm{C}(13)-\mathrm{C}(19)$	115(2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$122(2)$	$\mathrm{O}(6)-\mathrm{C}(13)-\mathrm{C}(14)$	118(2)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}$	118(2)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	126(2)
$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(5)$	120 (2)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	131 (2)
$\mathrm{U}-\mathrm{O}(3)-\mathrm{C}(12)$	124(1)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	127(2)
$\mathrm{U}-\mathrm{O}(4)-\mathrm{C}(6)$	126(1)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	129(2)
$\mathrm{O}(3)-\mathrm{C}(12)-\mathrm{C}(6)$	115(2)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(10)$	131(2)
$\mathrm{O}(3)-\mathrm{C}(12)-\mathrm{C}(11)$	120 (2)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(13)$	128(2)
$\mathrm{O}(4)-\mathrm{C}(6)-\mathrm{C}(12)$	112(2)	$\mathrm{C}(19)-\mathrm{C}(13)-\mathrm{C}(14)$	127(2)

Table 5
Equations of least-squares planes in the form $A X-B Y+$ $C Z+D=0$, where X, Y, and Z are orthogonal coordinates (\AA). Deviations (\AA) of relevant atoms from the planes are given in square brackets

Plane (1): U, O(3)—(6), N $\quad 0.3840 .500 \quad 0.776 \quad 7.690$ $\left[\begin{array}{lll}\mathrm{U} & 0.03, & O(3) \\ 0.05 & \mathrm{O}(4)-0.04, & \mathrm{O}(5)-0.01, O(6) \\ 0.02\end{array}\right.$, $\mathrm{N}-0.05]$
Plane (2): N, $\mathrm{C}(1)-(5) \quad 0.377 \quad 0.578 \quad 0.72 \pm 7.375$ $[\mathrm{N}-0.01, \mathrm{C}(1) 0.01, \mathrm{C}(2) 0.00, \mathrm{C}(3) 0.00, \mathrm{C}(4) 0.00, \mathrm{C}(5) 0.00]$
Plane (3): $\mathrm{O}(3), \mathrm{O}(4), \mathrm{C}(6)-(12) \quad 0.436 \quad 0.503 \quad 0.746 \quad 7.960$ $[O(3)-001, O(4) 0.03, C(6) 0.00, C(7)-0.02, C(8)-0.02$, $\mathrm{C}(9) 0.02, \mathrm{C}(10) 0.00, \mathrm{C}(11) 0.01, \mathrm{C}(12) 0.00]$
Plane (4): $\mathrm{O}(5), \mathrm{O}(6), \mathrm{C}(13)-(19) \quad 0.331 \quad 0.454 \quad 0.827 \quad 7.329$ $[O(5)-0.01, O(6) 0.01, C(13) 0.01, C(14) 0.02, C(15)-0.04$, $\mathrm{C}(16) 0.00, \mathrm{C}(17) 0.03, \mathrm{C}(18) 0.00, \mathrm{C}(19)-0.03$
Angles (${ }^{\circ}$) between the planes:

$(1)-(2)$	$5 \cdot 4$	$(2)-(3)$	$5 \cdot 6$
$(1)-(3)$	$3 \cdot 5$	$(2)-(4)$	$9 \cdot 6$
$(1)-(4)$	$4 \cdot 9$	$(3)-(4)$	$8 \cdot 1$

RESULTS AND DISCUSSION

The Scheme summarizes the transformations which the various compounds undergo under suitable conditions. The methanol complex was also obtained by use of the same experimental conditions reported by Plymale and Smith for the preparation of their $\mathrm{UO}_{2} \mathrm{t}_{2}$ compound. The product precipitated rapidly as reddish orange microcrystals and can be recrystallized from methanol as needles.

The $\left[\mathrm{UO}_{2} \mathrm{t}_{2}(\mathrm{MeOH})\right]$ complex remains unchanged on heating at $80^{\circ} \mathrm{C}$ in vacuo, ${ }^{9}$ but the methanol is removed at $142-172{ }^{\circ} \mathrm{C}$. The product obtained (I) is not

* See Notice to Authors No. 7 in J.C.S. Dalton, 1973, Index issue (items less than 10 pp . are sent as full-size copies).

Table 6
Some intra- and inter-molecular contacts (\AA) in the structure

$\mathrm{N} \cdot \cdots \mathrm{O}(3)$	$3 \cdot 08$		
$\mathrm{N} \cdots \mathrm{O}(6)$	$3 \cdot 21$		
$O(4) \cdots(5)$	$2 \cdot 94$	$\mathrm{C}(8) \cdots \mathrm{C}\left(10^{\mathrm{II}}\right)$	$3 \cdot 76$
$\bigcirc(3) \cdots O(4)$	$2 \cdot 51$	$\mathrm{C}(9) \cdots \mathrm{C}\left(9^{15}\right)$	$3 \cdot 46$
$\mathrm{O}(5) \cdots \mathrm{O}(6)$	$2 \cdot 53$	$\mathrm{C}(9) \cdots \mathrm{C}\left(10^{11}\right)$	$3 \cdot 44$
N $\cdot \cdots \mathrm{C}\left(10^{\mathrm{I}}\right)$	$4 \cdot 00$	C(13) $\cdot \cdots \mathrm{C}\left(15{ }^{\text {III }}\right)$	$3 \cdot 77$
$\mathrm{N} \cdot \mathrm{C}$ (II^{1})	$3 \cdot 45$	$\mathrm{C}(13) \cdots \mathrm{C}\left(16^{1 I I}\right)$	$3 \cdot 56$
$\mathrm{N} \cdot \cdots \mathrm{C}\left(12^{\text {I }}\right.$)	$3 \cdot 71$	$\mathrm{C}(13) \cdots \mathrm{C}(17 \mathrm{II})$	$3 \cdot 97$
$\mathrm{C}(1) \cdots \mathrm{C}\left(10^{1}\right)$	$3 \cdot 55$	C(14) $\cdot \cdots \mathrm{C}\left(15{ }^{\text {III }}\right)$	$4 \cdot 00$
$\mathrm{C}(1) \cdots \mathrm{C}\left(11^{\mathrm{I}}\right)$	$3 \cdot 48$	$\mathrm{C}(14) \cdots \mathrm{C}\left(16^{\text {III }}\right)$	$3 \cdot 68$
$\mathrm{C}(2) \cdots \mathrm{C}\left(8^{\mathrm{I}}\right)$	$4 \cdot 11$	C(14) $\cdot \cdots \mathrm{C}\left(17^{111}\right)$	$3 \cdot 60$
$\mathrm{C}(2) \cdots \mathrm{C}\left(9^{\mathrm{I}}\right)$	$3 \cdot 69$	$\mathrm{C}(14) \cdots \mathrm{C}\left(18{ }^{\text {III }}\right)$	$3 \cdot 82$
$\mathrm{C}(2) \cdots \mathrm{C}\left(10^{\mathrm{I}}\right)$	$3 \cdot 57$	C(15) $\cdot \cdots \mathrm{C}\left(18^{\text {III }}\right)$	3.88
$\mathrm{C}(2) \cdots \mathrm{C}\left(\mathrm{II}^{\mathrm{I}}\right)$	$3 \cdot 77$	$\mathrm{C}(15) \cdot \mathrm{C}(19 \mathrm{II})$	$3 \cdot 75$
$\mathrm{C}(3) \cdots \mathrm{C}\left(6^{1}\right)$	$3 \cdot 80$		
$\mathrm{C}(3) \cdots \mathrm{C}(7 \mathrm{I})$	$3 \cdot 78$	$\mathrm{N} \cdot \cdots \mathrm{C}\left(18^{\mathbf{N}}\right)$	$3 \cdot 99$
$\mathrm{C}(3) \cdots \mathrm{C}(8)$	$3 \cdot 88$	$C(2) \cdots C\left(18^{1 V}\right)$	$3 \cdot 97$
$\mathrm{C}(3) \cdots \mathrm{C}\left(9^{\mathrm{r}}\right)$	$3 \cdot 93$	$\mathrm{C}(3) \cdots \mathrm{C}\left(18^{\text {IV }}\right)$	$3 \cdot 91$
$\mathrm{C}(3) \cdots \mathrm{C}\left(11^{\text {I }}\right.$)	$3 \cdot 98$	$C(4) \cdots\left(188^{\text {IV }}\right)$	$3 \cdot 87$
$\mathrm{C}(3) \cdots \mathrm{C}(12 \mathrm{I})$	3.92	C(4) $\cdot \cdots \mathrm{C}\left(19^{\text {IV }}\right)$	$3 \cdot 96$
$\mathrm{C}(4) \cdots \mathrm{C}\left(7^{\mathrm{I}}\right)$	3.94	$\mathrm{C}(5) \cdots \mathrm{C}\left(18{ }^{\text {IV }}\right)$	$3 \cdot 93$
$\mathrm{C}(4) \cdots \mathrm{C}\left(11^{\text {I }}\right.$)	$3 \cdot 92$		
$\mathrm{C}(4) \cdots \mathrm{C}\left(12^{1}\right)$	$3 \cdot 50$		
$\mathrm{C}(5) \cdots \mathrm{C}\left(6^{1}\right)$	3.93		
$\mathrm{C}(5) \cdots \mathrm{C}\left(11^{1}\right)$	3.66		
C(5) $\cdot \cdots \mathrm{C}\left(12{ }^{\text {I }}\right.$)	$3 \cdot 38$		

The superscripts refer to the following transformations of the atomic co-ordinates x, y, z :

$$
\begin{array}{ll}
\text { I } 1-x, y, 1-z & \text { III } 1 \cdot 5-x, \frac{1}{2}-y, \frac{1}{2}-z \\
\text { If } 1-x,-1-y, 1-z & \text { IV }-\frac{1}{2}+x, y, z
\end{array}
$$

hygroscopic, as shown by the i.r. spectrum and lack of change of weight on long exposure to moist air.

The non-hygroscopic behaviour, elemental analysis, i.r., I-ray spectra, and density showed that the same compound (I) can also be obtained by heating (II) under reflux in a Soxhlet apparatus with benzene. The X-ray powder spectra (see Supplementary Publication No. 21001) clearly show that (I) is quite different both from the compound reported by Plymale and Smith and from the methanol adduct, which are both different from each other.

On digestion in benzene containing ca. 0.02% water (but not in anhydrous benzene) (I) gives the product (II).

The yellow-orange flocculent product (II), which is insoluble in benzene, has an i.r. spectrum quite different from that of product (I), displaying in particular a minor complexity in the region $800-1300 \mathrm{~cm}^{-1}$ and some indication of the presence of water; also the absorptions characteristic of water were different from those of the complex $\mathrm{UO}_{2} \mathrm{t}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)$] (see Supplementary Publication No. 21001).

This product gave an extremely poor-quality X-ray powder pattern and elemental analyses of samples from different preparations gave variable values for hydrogen and carbon, higher and lower respectively than corresponding to the formula $\mathrm{UO}_{2} \mathrm{t}_{2}$. Thermogravimetric analysis showed variable water content. This did not influence the i.r. spectrum, the $v_{i s}(\mathrm{O}-\mathrm{U}-\mathrm{O})$ frequency being generally found at $915 \mathrm{~cm}^{-1}$, whereas for $\left[\mathrm{CO}_{2} \mathrm{t}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ it was at $906 \mathrm{~cm}^{-1}$. These factors

Scheme summarizing the observed transformations
and the lower temperature at which the water is lost $\left(114{ }^{\circ} \mathrm{C}\right)$, compared with $135{ }^{\circ} \mathrm{C}$ for $\left[\mathrm{UO}_{2} \mathrm{t}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, could indicate that no direct $\mathrm{U}-\mathrm{OH}_{2}$ bonds are present in (II). However, in an attempt to obtain an anhydrous form of (II) by heating at $120{ }^{\circ} \mathrm{C}$ or by digestion in anhydrous benzene, product (I) was formed.

A critical discussion on the nature of (I) and (II) is not simple owing to their very low solubilities in the solvents with which they do not react. Attempts to recrystallize them from co-ordinating organic solvents gave addition compounds, all of which contained one molecule of solvent directly co-ordinated to the uranium atom.

The molecular-weight values in dimethyl sulphoxide, in which (I) and (II) are very soluble, are not substantive because of co-ordination of the solvent to form the monomeric species $\left[\mathrm{UO}_{2} \mathrm{t}_{2}\left(\mathrm{Me}_{2} \mathrm{SO}\right)\right]$. This is shown to have occurred by comparison of the i.r. spectrum of the latter with those of (I) and (II) in dimethyl sulphoxide solution and in Nujol mulls. These conclusions are also supported by comparison of the u.v. and visible spectra of (I) and (II) in benzene solutions containing the various neutral ligands (see later).

Some characteristic features of the i.r. spectra in the region $1200-1300 \mathrm{~cm}^{-1}$ together with the $\nu_{a s}(\mathrm{O}-\mathrm{U}-\mathrm{O})$ absorption bands are listed in Supplementary Publication No. 21001.

The physicochemical properties of (I) and (II) strongly support the conclusion that they are not monomers in the solid state. In fact, in agreement with previous studies on β-diketonate-uranyl complexes of formula UO_{2} (diket) $)_{2}{ }^{1,}{ }^{16,17}$ they are insoluble in inert organic solvents, and their observed densities [2.51 (I), and $2.64 \mathrm{~g} \mathrm{~cm}^{3}$ (II)], are significantly higher than the values found for e.g. monomeric adducts with pyridine $(2 \cdot 08)$ and methanol (2.29), and also in the $\mathrm{UO}_{2} \mathrm{t}_{2}$ monomer obtained by Plymale and Smith $\left(2 \cdot 26 \mathrm{~g} \mathrm{~cm}^{-3}\right)$.

In addition, the i.r. spectra of (I) and (II) display a weak sharp loand at $c a .1575 \mathrm{~cm}^{-1}$ (not present in the spectra of the monomeric adducts) which seems to be a common feature of 'polymeric' metal tropolonates in which there is a sharing of some of the chelate oxygen atoms between metal atoms. ${ }^{18}$ Taking into account the relatively high stability of structures containing five-membered rings, ${ }^{19}$ two possible structures could be suggested as shown diagrammatically in Figure 1.

As shown by molecular models, steric hindrance excludes other types of polymer structures with six-co-ordination on the equatorial plane.

The extra stability of (a) (Figure 1) with respect to (b) (because of the presence of $\mathrm{U}^{\mathrm{t}} \cdots \mathrm{O}-\mathrm{U} \cdots \mathrm{O}$ bonds in the former), could account for the physicochemical properties of (I). In fact the transformations of (II) into (I), on dehydrating, and the stability of (I) in water

[^2]suggest that the structure of (I) is more stable. The polymeric form (b) could represent the structure of (II), the presence of water stabilizing this structure by hydrogen bonding between some of the chelate oxygen atoms.

The suggested models for (I) and (II) are in accordance with their i.r. spectra, which differ significantly only in the region $1200-1300 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{H}$ in-plane deformations ${ }^{20}$) the spectrum being less complex for the polymeric species, owing to the expected greater steric effects. ${ }^{\mathbf{6}, \mathbf{2 1}}$

Visible and U.e. Spectra.-Absorption spectra of solutions of (I) and (II) in the region $320-520 \mathrm{~nm}$ in co-ordinating solvents such as methanol and dimethyl sulphoxide are not very different. The methanolic

Figure 1 Diagrammatic representation of possible structures of compounds (I) and (II)
solution exhibits a shoulder at $324 \mathrm{~nm}(\varepsilon=24,000)$, and intense peak at $334 \mathrm{~nm}(\varepsilon=27,600)$ and a peak at $398 \mathrm{~nm}(\varepsilon=7000)$, whereas in $\mathrm{Me}_{2} \mathrm{SO}$ solution the absorptions are at $326(\varepsilon=24,900)$, $337(\varepsilon=28,900)$, and $401 \mathrm{~nm}(\varepsilon=8000)$ respectively. These differences do not clearly indicate an interaction of the solvent with the central atom. However, the co-ordination is evident on considering the following results. Samples of $c a .50 \mathrm{mg}$ of product (I) were suspended in anhydrous benzene (100 ml) containing the appropriate ligands $\mathrm{L}\left(\mathrm{L}=\mathrm{MeOH}, \quad \mathrm{Me}_{2} \mathrm{SO}\right)$ at suitable concentrations. The solutions were thermostatted at $20^{\circ} \mathrm{C}$ until equilibrium was reached. In every case the solid, always present in the heterogeneous mixture, was found (by i.r. spectra) to be unchanged (I). The spectra in the $320-520 \mathrm{~nm}$ region of the filtered solutions were run at the same temperature, and preliminary results show that in both cases the absorbance is a linear function of the ligand concentration, the form of the spectra being very similar to those reported above for MeOH and $\mathrm{Me}_{2} \mathrm{SO}$ solutions respectively.
I.r. Spectral Results.-Infrared absorptions in the solid state of the compounds (I) and (II), and of the adducts, together with some tentative assignments are listed in the Supplementary Publication.
${ }^{19}$ C. A. Crutchfield, jun., W. H. McNabb, and J. F. Harel, J. Inorg. Nuclear Chem., 1962, 24, 291.
${ }^{20}$ Y. Ikegami, Bull. Chem. Soc. Japan, 1961, 34, 94.
${ }^{21}$ J. Selbin and J. D. Ortego, J. Inorg. Nuclear Chem., 1968, 30, 313.

The $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{C}$ vibrations in the free tropolone are shifted to lower frequencies in the complexes, the positions of these bands being remarkably constant in all the compounds examined. This seems to be quite general behaviour for an homogeneous series of uranyl β-diketonates. In particular no significant variations were observed for well established monomeric and polymeric species of uranyl acetylacetonates. ${ }^{22,23}$ Relative to the spectrum of tropolone, ${ }^{20}$ a new strong and very sharp band is observed in all the compounds in the narrow region $495-500 \mathrm{~cm}^{-1}$. This band may be associated with metal-oxygen vibrations. ${ }^{4}$ As far as the antisymmetric ($\mathrm{O}-\mathrm{U}-\mathrm{O}$) stretching frequencies are concerned the general behaviour of the shift on coordination ${ }^{24}$ is also found in this case. In fact $\nu_{\text {as }}$ occurs at 912 and $915 \mathrm{~cm}^{-1}$ for compounds (I) and (II) respectively, but in the range $895-906 \mathrm{~cm}^{-1}$ for the adducts not strongly affected by the nature of the co-ordinated neutral ligand.

The anomalously high $\nu_{a s}(\mathrm{O}-\mathrm{U}-\mathrm{O})$ absorption (914 $\left.\mathrm{cm}^{-1}\right)$ for $\left[\mathrm{UO}_{2} \mathrm{t}_{2}\right.$ (cyclohexanone) $]$ and the $\vee(\mathrm{C}=\mathrm{O})$ at $1696 \mathrm{~cm}^{-1}$ ($1715 \mathrm{~cm}^{-1}$ in free cyclohexanone) indicate a weak interaction of the neutral ligand towards the central atom.

In this respect it is significant to note that we were unable to isolate the adduct with acetone.

The co-ordination of the neutral ligands results in characteristic shifts with respect to free-ligand vibrations (see Supplementary Publication No. 21001).

The presence of MeOH in the co-ordination sphere of the complex $\left[\mathrm{UO}_{2} \mathrm{t}_{2}(\mathrm{MeOH})\right]$ is not fully evident in the i.r. spectrum, but was independently confirmed by thermogravimetric and elemental analysis. As far as the $\left[\mathrm{UO}_{2} \mathrm{t}_{2}(\mathrm{py})\right]$ complex is concerned it seems possible to apply Gill's statement 'each band in the spectrum of pyridine is faithfully reproduced with only minor shifts or splittings in the spectra of the complexes' ${ }^{25}$ in the region free from bands due to co-ordinated tropolone. In particular the spectrum displays a strong sharp band at $630 \mathrm{~cm}^{-1}$, not present in all other adducts, and very near to the fundamental absorption of pure pyridine at $605 \mathrm{~cm}^{-1} .26,27$

With the aim of better characterizing the molecular structure of the adducts $\mathrm{UO}_{2} \mathrm{t}_{2} \mathrm{~L}$, an X-ray singlecrystal analysis has been carried out on the $\left[\mathrm{UO}_{2} \mathrm{t}_{2}-\right.$ (pyridine)] compound. ${ }^{28}$

Crystal Structure of $\left[\mathrm{UO}_{2} \mathrm{t}_{2}(\mathrm{py})\right]$.-Figures 2 and 3 show the molecule of $\left[\mathrm{UO}_{2} \mathrm{t}_{2}(\mathrm{py})\right]$ with the numbering scheme used and a projection of the unit-cell contents along $[010]$. The co-ordination polyhedron has the expected geometry with the uranyl group perpendicular to the equatorial plane in which four oxygens from two tropolonato-groups, and the nitrogen from the pyridine,

22 A. E. Comyns, M. Gatehouse, and E. Wait, J. Chem. Soc., 1958, 4655.
${ }^{23}$ K. Nakamoto, Y. Morimoto, and A. Martell, J. Amer. Chem. Soc., 1961, 83, 4533.
${ }^{24}$ L. Cattalini, U. Croatto, S. Degetto, and E. Tondello, Inorg. Chim. Acta Rev., 1971, 5, 19.
${ }_{25}$ N. S. Gill, R. H. Nutall, D. E. Scaife, and D. W. A. Sharp, J. Inorg. Nuclear Chem., 1961, 18, 79.
are co-ordinated to uranium. The molecule has approximately $C_{2 v}$ symmetry.
Calculations by least-squares fitting of the mean plane for pyridine and for the atoms of each tropolonatoskeleton show them to be planar, within experimental

Figure 2 A molecule of $\left[\mathrm{CO}_{2} \mathrm{t}_{2}(\mathrm{py})\right]$ showing the atom numbering system used

Figure 3 Projection of the unit-cell contents along [010]
error, and to form angles of a few degrees with the coordination plane (Table 5). The resulting distortion results in a slight twisting of the two tropolonato-groups about the line passing through N and U . Some departure from $C_{2 v}$ symmetry in the molecule arises also from incomplete equivalence of the $\mathrm{N} \cdots \mathrm{O}$ contact distances between nitrogen and the two adjacent oxygen atoms, and in the $\mathrm{N} \cdots \mathrm{U} \cdots \mathrm{O}$ angles (Table 6),

[^3]but this distortion seems to have structural significance only in connection with the crystal packing.

The two $\mathrm{U}-\mathrm{O}$ (uranyl) bond lengths $[\mathbf{1} \cdot 78(\mathbf{1})$ and $1 \cdot 79(1) \AA]$ are equal; the four $\mathrm{U}-\mathrm{O}(\mathrm{eq})$ bond lengths are very close to those found in many structures in which five oxygen atoms are equatorially bonded to uranium. ${ }^{29,30}$ The pentagonal girdle in the molecule carries two $\mathrm{O} \cdots \mathrm{O}$ contacts of 2.51 and $2.53 \AA$ which represent the normal 'bite' of the tropolonato-ligand; the contact of $2.94 \AA$ between oxygens of adjacent groups, and the two $\mathrm{O} \cdots \mathrm{N}$ contacts of 3.21 and $3.08 \AA$ are greater than the sum of the van der Waals radii ($2 \cdot 80$ and $2.90 \AA$), excluding the presence of destabilizing energy.

In addition the two contacts $\mathrm{C}(1) \cdots \mathrm{O}(6)[3 \cdot 10(2) \AA]$ and $C(5) \cdots O(3)[2 \cdot 94(2) \quad \AA]$ strongly suggest the presence of hydrogen bonds. In fact, according to the criterion of ref. 31, both distances between the calculated positions of the two hydrogen and the corresponding oxygen atoms are shorter than $2 \cdot 4 \AA$.

The four $\mathrm{C}-\mathrm{O}$ bond distances in the two tropolonatoligands are of the same order as those found in tropolon-ato-complexes of iron $1 \cdot 294,{ }^{32}$ thorium $1 \cdot 277,{ }^{33}$ tin $1 \cdot 287,1 \cdot 285,{ }^{34}$ and in sodium tropolonate $1 \cdot 284 \AA .^{35}$ However, the fact that two independent tropolonatogroups (A and B in Figure 3) are unequally influenced by crystal packing force, seems to have some influence on the $\mathrm{C}-\mathrm{C}$ bond lengths. In ligand $\mathrm{A}, \mathrm{C}(6)-\mathrm{C}(\mathrm{I} 2)$ $\left[1-49(3) A\right.$ has the predicted value for a $\mathrm{C}\left(s p^{2}\right)-\mathrm{C}\left(s p^{2}\right)$ single bond. ${ }^{32,36,37}$ In addition, the other six $\mathrm{C}-\mathrm{C}$ lengths show the regular bond alternation already found in Cut 2^{38} In ligand B , no bond alternation is observed in the six corresponding $\mathrm{C}-\mathrm{C}$ distances while the $C(13)-C(19)$ distance $[1 \cdot 44(3) \quad A]$ does not differ significantly from the corresponding value in A .

The molecules are arranged in the crystal to form infinite parallel layers, approximately perpendicular to the crystallographic direction [223]. The separation between successive layers is ca. $3 \cdot 7 \AA$, with minor

[^4]fluctuations for the planes of the single ligands due to the fact that they do not exactly coincide with the co-ordination plane. Two important points may be noted about this mode of packing. The separation between layers is small and the pyridine ring (which in principle could assume any position around the $\mathrm{U}-\mathrm{N}$ direction) lies in the plane of the molecule. These points suggest the presence of some weak interaction between the layers which would be associated with an increase in crystal binding energy and would make hydrogen bonding possible, as already mentioned. Thus, as shown in Table 6, the pyridine ring makes with the tropolonatoligand A at $1-x, \bar{y}, 1-z$, a number of short contacts which can be reasonably related to some degree of π interaction between the two aromatic systems, whereas it makes only few such contacts with ligand B at $x-\frac{1}{2}$, \bar{y}, z. Ligand B is in a less favourable position: it is not matched by other aromatic rings apart from a few contacts with the equivalent ring at $1.5-x$, $\frac{1}{2}-y$, $\frac{1}{2}-z$. It can therefore be concluded that only ligand A (in which alternation is observed) is directly involved in possible van der Waals interaction in the crystal.

On the other hand it has been suggested ${ }^{32}$ that in the crystal the molecules can adopt a state in which there is a large measure of π-electron localization, with consequent reduction in the electron delocalization energy, provided that the loss of delocalization energy is balanced by an increase in crystal binding energy. Thus, the observed alternation in bond length of the tropolonato-ligand A, which is nevertheless at best only just significant, could be ascribed to the decrease in π-electron delocalization required to maximize the crystal binding energy. In this way the crystal could have a higher total electronic binding energy than would be possible if π-electron delocalization were complete.

We thank Mrs. M. Magnabosco, Miss A. Coin, and A. Berton for technical assistance.
[3/1082 Received, 25th May, 1973]
${ }^{34}$ J. J. Park, D. M. Collins, and J. L. Hoard, J. Amer. Chem. Soc., 1970, 92, 3636.
${ }^{35}$ R. Shiono, Acta Cryst., 1961, 14, 42.
${ }^{36}$ D. W. J. Cruickshank, Tetrahedron, 1962, 1y, 155.
${ }^{37}$ M. J. S. Dewar, ' The Molecular Orbital Theory of Organic
Compounds,' McGraw-Hill, New York, 1968, p. I75.
${ }_{38}$ J. M. Robertson, J. Chem. Soc., 1951, 1222.

[^0]: * To whom correspondence should be addressed.
 ${ }^{1}$ D. L. Plymale and W. H. Smith, J. Inorg. Nuclear Chem., 1969, 31, 233.
 ${ }^{2}$ J. W. Cook, A. R. Gibb, R. A. Paphael, and A. R. Sommerville, J. Chem. Soc., 1951, 503.
 ${ }^{3}$ 'B. E. Bryont, W. C. Fernelius, and B. E. Douglas, J. Amer. Chem. Soc., 1953, 75, 3784.
 ${ }^{4}$ D. Brown and C. E. F. Rickard, J. Chem. Soc. (A), 1970, 3373.

[^1]: 14 'International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962, p. 201.

 15 Ref. 14, p. 216.

[^2]: 16 I. Sacconi and G. Giannoni, J. Chem. Soc., 1954, 2369.
 17 'Chemistry of the Metal Chelate Compounds,' Prentice-Hall, New York, 1952.
 ${ }^{18}$ I.. L. Muetterties and C. M. Wright, J. Amer. Chem. Soc., $1965,87,4706$, and refs. therein.

[^3]: ${ }^{26}$ C. H. Kline and J. Turkevitch, J. Chem. Phys., 1944, 12, 300.
 ${ }_{27}$ J. K. Wilmshurst and H. Bernstein, Canad. J. Chem., 1957, 35, 1185.
 ${ }_{28}$ G. Bombieri, S. Degetto, G. Marangoni, R. Graziani, and E. Forsellini, Inorg. Nuclear Chem. Letters, 1973, 9, 233.

[^4]: ${ }^{29}$ C. Panattoni, R. Graziani, G. Bandoli, B. Zarli, and G. Bombieri, Inovg. Chem., 1969, 8, 320.
 ${ }^{30}$ N. K. Dalley, M. H. Mueller, and S. H. Simousen, Inorg. Chene., 1972, 11, 1840.
 ${ }^{31}$ W. C. Hamilton and J. A. Ibers, 'Hydrogen Bonding in Solids,' Benjamin, New York, 1968.

 32 T. A. Hamor and D. J. Watkin, Chem. Comm., 1969, 440.
 ${ }^{33}$ V. W. Day and J. L. Hoard, J. Amer. Chem. Soc., 1970, 92, 3626.

