Heteropolytungstate Complexes of the Lanthanoid Elements. Part III. ${ }^{1}$ Crystal Structure of Sodium Decatungstocerate(Iv)-Water (1/30)

By John Iball.* John N. Low, and Timothy J. R. Weakley, Chemistry Department, Dundee University, Dundee DD1 4HN

Abstract

Crystals of the title compound are monoclinic, space group $C 2 / c, a=18 \cdot 14(1), b=18 \cdot 62(1), c=18 \cdot 51(1) \mathrm{A}$, $\beta=95 \cdot 9(5)^{\circ}, Z=4$. The heavy atoms were located by direct methods and the oxygen and sodium atoms by difference Fourier analyses, with block-diagonal least-squares refinement to $R 0.083$ for 2781 independent reflections measured on a diffractometer. The analysis confirms that the heteropolyanion is a heterodecatungstate, and not an octatungstate as originally reported. The cerium atom, on a two-fold crystal axis, takes two pentatungstate ligands. $\mathrm{W}_{5} \mathrm{O}_{18} \mathrm{H}^{5-}$, each of which is derived from a $\mathrm{W}_{6} \mathrm{O}_{19}{ }^{\text {2-- }}$ anion by the loss of one tungsten atom and its apical oxygen and consists of five WO_{6} octahedra sharing edges. The eight oxygen atoms about the cerium define a square antiprism. The sodium cations have distorted octahedral co-ordination.

The first heteropolytungstate compounds containing lanthanoid heteroatoms to be reported were the tungstocerate(IV) and tungstocerate(III) salts prepared by Ripan and Todorut, ${ }^{2}$ containing anions formulated as $\mathrm{Ce}^{n+} \mathrm{W}_{8} \mathrm{O}_{28}{ }^{(8-n)}$. Salts of heteropolyanions believed to be of this formula type with tetravalent uranium, ${ }^{3}$ thorium, ${ }^{4}$ titanium, ${ }^{5}$ zirconium, ${ }^{5}$ and hafnium ${ }^{5}$ as heteroatoms were subsequently reported. Peacock and Weakley ${ }^{6}$ confirmed the existence of the tungstocerates and prepared salts of analogous anions containing trivalent lanthanum, praseodymium, etc., as heteroatoms. However, they concluded on the basis of chemical analysis and crystal isomorphism, together with the density and unit-cell parameters of sodium tungstocerate(IV), that these anions were all heterodecatungstates, $\mathrm{Ln}^{n+} \mathrm{W}_{10}-$ $\mathrm{O}_{35+x} \mathrm{H}_{2 x}{ }^{(10-n)-}$. A reinvestigation of the uranium ${ }^{7}$ and thorium ${ }^{8}$ complexes indicated that they also were of this type. A single-crystal X-ray structural analysis of $\mathrm{Na}_{6} \mathrm{Ce}^{\mathrm{IV}} \mathrm{W}_{10} \mathrm{O}_{35+x} \mathrm{H}_{2 x},(3 \mathrm{I}-x) \mathrm{H}_{2} \mathrm{O}$ has now enabled location of all non-hydrogen anions in the anion, whose formula proves to be $\mathrm{Ce}^{\mathrm{V}} \mathrm{W}_{10} \mathrm{O}_{36} \mathrm{H}_{2}{ }^{6-}$.

EXPERIMENTAL

Roughly equidimensional multifaceted yellow crystals of $\mathrm{Na}_{6} \mathrm{CeW}_{10} \mathrm{O}_{36} \mathrm{H}_{2}, 30 \mathrm{H}_{2} \mathrm{O}$, some resembling truncated square pyramids, were supplied prepared as described previously. ${ }^{6}$

Crystal Data.- $\mathrm{H}_{62} \mathrm{CeNa}_{6} \mathrm{O}_{66} \mathrm{~W}_{10}, M=3235$, Monoclinic, $a=18.14(1), b=18.62(1), c=18.51(1) \AA, \beta=95.9(5)^{\circ}$, $U=6214 \AA^{3}, \quad D_{\mathrm{c}}=3 \cdot 46, \quad Z=4, \quad D_{\mathrm{m}}=3.51 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=4856 . \quad \mathrm{Cu}-K_{\alpha} \quad\left(\lambda=1.5418 \AA, \mu=40.6 \mathrm{~mm}^{-1} ;\right.$ unit-cell measurements) and Mo- $K_{x}(\lambda=0.7107 \AA, \mu=$ $20.3 \mathrm{~mm}^{-1}$; unit-cell and intensity measurements) radiation. From the systematic absences, the space group was $C c$ or $C 2 / c$; the intensity statistics indicated the centrosymmetric space group $C 2 / c$, and the structure was determined on this basis.

Intensity data were collected by use of a Hilger and Watts linear diffractometer with balanced filters, from crystals mounted on the b axis (data collected up to k 12) and on the c axis (data collected up to $l 9$). This gave 3887 intensities

[^0]whose values were acceptable having regard to the background measurements. No corrections were madle for absorption.

Structure Analysis.-The intensities were placed on a common scale and converted to structure factors in the usual way. By use of the direct method programs NORMAL and MULTAN (supplied by Dr. F. Main, York University) eight sets of signed E values were obtained for all values of $|E|>2 \cdot 10$. The set with the highest figure of merit ($1 \cdot 001$) was used in the calculation of an E map. The starting reflections for this set are shown in Table 1

Table 1
Reflection
$\mathbf{5 , 9 , 7}$
$\mathbf{4 , 6 , \overline { 1 7 }}$
$\mathbf{1 6 , 8 , \overline { 1 4 }}$
$2,4,8$
$3,3,6$
Sign
+
+
\vdots
\pm
\pm
E
3.82
2.90
4.04
2.91
2.77

$\}$| Origin-defining |
| :---: |
| reflections |

$\}$| Variable |
| :---: |
| reffections |

A Fourier search of the E map, using programs supplied by Dr. W. D. S. Motherwell (Cambridge University) indicated the positions of six large peaks, one of which lay on a crystallographic two-fold axis. The latter peak was assigned to cerium, since the space group $C \mathbf{2} / c$ with $Z=4$ implies that the asymmetric unit contains $0.5 \mathrm{Ce}-5 \mathrm{~W}$, and that the cerium must be either at a crystallographic centre of symmetry or on a two-fold axis. The interatomic distances at this stage (Ce-W ca. $3 \cdot 8$, W-W ca. $3 \cdot 3 \AA$) were acceptable if the distorted $\mathbf{W O}_{6}$ octahedra, which were expected to be present, shared edges, as later proved to be the case. This set of atoms, together with the set related to it by the two-fold axis, is shown in Figure 1, and the final interatomic distances within the set are given in Table 2. A structure-factor calculation using the 2781 strongest reflections and based on the cerium and tungsten atoms with an overall temperature factor B of $1 \cdot 5 \AA^{2}$ gave a residual index, R, of 0.20 . Block-diagonal least-squares refinement of the atomic co-ordinates and individual isotropic temperature factors reduced R to $0 \cdot 144$, at which point a threedimensional difference-Fourier synthesis revealed the presence of eighteen oxygen atoms in the half-anion, conferring octahedral co-ordination on each tungsten, four being

[^1]in addition bonded to the cerium. These atoms were included in the refinement with isotropic temperature factors. Four cycles reduced R to $0 \cdot 114$, at which point the cerium and tungsten atoms were refined with anisotropic temperature factors. When R had fallen to $0 \cdot 100$ a second differ-ence-Fourier synthesis revealed further peaks. Some of

Figure 1 (a) The heavy-atom framework of the heteropolyanion, viewed normal to (001) plane. (b) Linked-octahedron representation of the anion on the same scale
these were evidently spurious, as they were impossibly close to atoms already located. The remainder were firmly identified on the basis of their co-ordination environments as four sodium ions (two of which lay on a two-fold crystal

Table 2

Distances (\AA) between heavy atoms within the asymmetric unit (half-anion). All $\sigma 0.003 \AA$. See also Figure 1

$\mathrm{Ce}-\mathrm{W}(1)$	3.797	$\mathrm{W}(1)-\mathrm{W}(3)$	$3 \cdot 303$	(1) W(5)	$3 \cdot 333$
$\mathrm{Ce}-\mathrm{W}(2)$	$3 \cdot 788$	W $(1)-W(4)$	$3 \cdot 259$	$W(2)-W(5)$	$3 \cdot 327$
$\mathrm{Ce}-\mathrm{W}(3)$	3-784	$\mathrm{W}(2)-\mathrm{W}(3)$	$3 \cdot 254$	$\mathrm{W}(3)-\mathrm{W}(5)$	$3 \cdot 304$
$\mathrm{Ce}-\mathrm{W}(4)$	3.791	$\mathrm{W}(2)-\mathrm{W}(4)$	$3 \cdot 275$	W(4)-W(5)	$3 \cdot 31$

axis) and twelve oxygen atoms of water molecules per asymmetric unit. These atoms were included in the subsequent refinement with isotropic temperature factors. The weighting scheme was $w=1 /\left\{1+\left[\left(\left|F_{0}\right|-F^{*}\right) / G^{*}\right]^{2}\right\}$ where $F^{*}=$ 250 and $G^{*}=150$. The refinement was terminated when the shifts in the atomic parameters had become smaller than their standard deviations, R now being $0 \cdot 083$. Observed and calculated structure factor amplitudes are listed in Supplementary Publication No. SUP 21089 (8 pp.).*

DISCUSSION

Atomic co-ordinates are given in Table 3, and the heavy-atom framework of the anion and a representation of the anion as an assembly of linked WO_{6} octahedra are

* See Notice to Authors No. 7 in J.C.S. Dalton, 1973, Index issue (items less than 10 pp . are supplied as full-size copies).
shown in Figure 1. The mean planes $\mathrm{Ce}^{-} \mathrm{W}(1)-\mathrm{W}(5)^{-}$ $\mathrm{W}(2)$ and $\mathrm{Ce}-\mathrm{W}(3)-\mathrm{W}(5)-\mathrm{W}(4)$ intersect at an angle of $90 \cdot 6^{\circ}$, and the mean planes $\mathrm{Ce}-\mathrm{W}(1)-\mathrm{W}(5)-\mathrm{W}(2)$ and $\mathrm{Ce}-\mathrm{W}\left(\mathbf{1}^{\prime}\right)-\mathrm{W}\left(5^{\prime}\right)-\mathrm{W}\left(2^{\prime}\right)$ at an angle of $46 \cdot 6^{\circ}$. Although the point-symmetry of the anion in the crystal is only C_{2}, there is evidently a local pseudo-four-fold axis [through $\mathrm{W}(5)$ and $\left.\mathrm{W}\left(5^{\prime}\right)\right]$ and it appears that the anion would have point-symmetry $D_{4 d}$ in the absence of crystal forces.

Table 3
(a) Atomic co-ordinates and isotropic temperature parameters with estimated standard deviations in parentheses

	x / a	y / b	\sim / c	$B_{\text {iso }} / \AA^{2}$
Ce	$-0.5000(0)$	0.2564(2)	$-0 \cdot 2500(0)$	
W(1)	$-0.3786(1)$	$0 \cdot 3064(1)$	-0.3976(1)	
W(2)	-0.3055(1)	$0 \cdot 2077(1)$	$-0 \cdot 1707(1)$	
W(3)	-0.3568(1)	$0 \cdot 1423(1)$	-0.3311(1)	
W(4)	-0.3261(1)	0.3706(1)	-0.2367(1)	
W(5)	-0.2164(1)	$0 \cdot 2561(1)$	-0.3115(1)	
$\bigcirc(1)$	$-0 \cdot 3364(15)$	$0 \cdot 2520$ (18)	$-0.2837(16)$	0.4(4)
$\mathrm{O}(2)$	-0.4656(21)	$0 \cdot 2993(22)$	-0.3628(22)	$2 \cdot 1$ (7)
$\mathrm{O}(3)$	-0.2690(17)	0-2986(19)	-0.3968(18)	1.0(5)
$\mathrm{O}(4)$	-0.2485(18)	$0 \cdot 1645$ (18)	$-0.3450(18)$	$1 \cdot 1(6)$
$\mathrm{O}(5)$	-0.1237(20)	$0 \cdot 2539(23)$	$-0.3327(22)$	1.9(7)
$\mathrm{O}(6)$	-0.2103(16)	0.2162(16)	$-0.2175(16)$	0.4(4)
$\mathrm{O}(7)$	-0.4492(21)	$0 \cdot 1548(22)$	$-0.3053(22)$	$1 \cdot 9(7)$
$\mathrm{O}(8)$	$-0.3782(18)$	$0 \cdot 2079$ (19)	$-0.4138(19)$	1-3(6)
$\mathrm{O}(9)$	-0.2240(20)	0.3477(21)	$-0 \cdot 2682(20)$	$1 \cdot 7(6)$
$\mathrm{O}(10)$	-0.2948(19)	$0 \cdot 3091$ (20)	$-0.1522(20)$	$1.5(6)$
$\mathrm{O}(11)$	$-0.3625(18)$	$0 \cdot 0601(18)$	$-0.3717(18)$	0.9(5)
$\mathrm{O}(12)$	-0.4022(21)	$0 \cdot 2130(23)$	$-0 \cdot 1657(22)$	$2 \cdot 0$ (7)
O(13)	$-0.4197(20)$	$0 \cdot 3576(21)$	$-0.2225(21)$	1.8(6)
$\mathrm{O}(14)$	$-0.3973(20)$	$0 \cdot 3452(20)$	$-0.4817(19)$	$1.5(6)$
$\mathrm{O}(15)$	-0.3174(19)	$0 \cdot 1203(20)$	-0.2264(19)	$1 \cdot 3(6)$
$\mathrm{O}(16)$	-0.3090(22)	$0 \cdot 4547(24)$	$-0.2015(23)$	$2 \cdot 3$ (7)
$\mathrm{O}(17)$	-0.2700(22)	$0 \cdot 1692(22)$	-0.0846(22)	$2 \cdot 1$ (7)
$\mathrm{O}(18)$	$-0 \cdot 3500(19)$	$0 \cdot 3927(20)$	$-0.3378(20)$	$1 \cdot 4(6)$
$\mathrm{O}(19)$	-0.1133(23)	$0 \cdot 4232(24)$	-0.1966(23)	2.4(8)
$\mathrm{O}(20)$	-0.4441(24)	$0 \cdot 0396(25)$	$-0.1782(24)$	$2 \cdot 6(8)$
$\mathrm{O}(21)$	-0.1792(25)	$0 \cdot 3689(26)$	$-0.4770(25)$	3.0(9)
$\mathrm{O}(22)$	$-0 \cdot 2000(26)$	$0 \cdot 3809$ (27)	$-0.0457(26)$	$3 \cdot 3(9)$
$\mathrm{O}(23)$	$-0.4944(26)$	$0 \cdot 4741$ (25)	-0.1607(27)	$2 \cdot 9(9)$
$\mathrm{O}(24)$	-0.1867(27)	$0.0461(27)$	$-0.4147(26)$	$3 \cdot 2(9)$
$\mathrm{O}(25)$	-0.1345(32)	$0 \cdot 0790(31)$	-0.2205(31)	4.4(11)
$\mathrm{O}(26)$	-0.0713(28)	0.0416(29)	$-0.0327(29)$	3.8(10)
$\mathrm{O}(27)$	-0.0242(24)	$0 \cdot 1474(25)$	$-0.3525(24)$	2.6(8)
$\mathrm{O}(28)$	-0.2401(45)	$0 \cdot 0049(46)$	-0.1044(43)	7.5(19)
$\mathrm{O}(29)$	-0.4261(33)	$0 \cdot 0215(33)$	$-0.0281(33)$	$4 \cdot 8(13)$
$\mathrm{O}(30)$	-0.0470(45)	$0 \cdot 3779$ (45)	$-0.3801(44)$	7-8(19)
$\mathrm{Na}(1)$	-0.3031(15)	$0 \cdot 0077(16)$	$-0.4860(15)$	$3 \cdot 2(5)$
$\mathrm{Na}(2)$	-0.0558(13)	$0 \cdot 0530(14)$	$-0.4416(13)$	$2 \cdot 5(4)$
$\mathrm{Na}(3)$	$0.0000(0)$	$0 \cdot 0704(21)$	$-0.2500(0)$	2.8(7)
$\mathrm{Na}(4)$	$0 \cdot 0000(0)$	0.4379(29)	$-0 \cdot 2500(0)$	5.1(10)

(b) Anisotropic temperature parameters $\left(\times 1 \mathbf{1 0}^{5}\right)$,* with estimated standard deviations in parentheses

	b_{11}	b_{22}	b_{33}	b_{12}	b_{13}	b_{23}
	$71(9)$	$124(11)$	$97(10)$	$0(0)$	$1(16)$	$0(0)$
Ce	$75(5)$	$96(5)$	$75(5)$	$7(9)$	$8(8)$	$40(11)$
$\mathrm{W}(1)$	$75(5)$	$68(5)$	$106(6)$	$81(6)$	$11(10)$	$-17(8)$
$\mathrm{W}(2)$	$10(11)$					
$\mathrm{W}(3)$	$68(5)$	$76(5)$	$103(5)$	$-7(9)$	$26(8)$	$-8(11)$
$\mathrm{W}(4)$	$72(5)$	$78(5)$	$102(5)$	$-20(9)$	$-3(8)$	$-20(11)$
$\mathrm{W}(5)$	$53(4)$	$101(6)$	$117(6)$	$3(10)$	$10(8)$	$11(11)$

* In the form $T=\exp \left[-\left(h^{2} b_{11}+k^{2} b_{22}+l^{2} b_{33}+2 h k b_{12}+\right.\right.$ $\left.\left.2 h l b_{13}+2 k l b_{23}\right)\right]$.

The orientation of two of the anions in the unit cell is slightly different to that of the other two (Figure 2), but the local four-fold axes are all parallel to one another and to (010), and all make the same small angle ($12 \cdot 1^{\circ}$) with (001). The shortest distances between oxygen atoms in different anions are 3.81 and $3.89 \AA$.

The polytungstate portion of the half-anion is derived
from the compact hexatungstate $\mathrm{W}_{6} \mathrm{O}_{19}{ }^{2-}$, which was shown ${ }^{9}$ to be isostructural with hexaniobate, ${ }^{10}$ by removal of one tungsten atom and its unshared oxygen. Four oxygen atoms formerly bonded to the missing tungsten atom are now bonded to the cerium atom. The union of two pentatungstate moieties with the elimination of four oxygen atoms would give the decatungstate

Figure 2 Orientation of the four anions in the unit cell; c-axis projection. Large circles, cerium; small circles, tungsten. Heights given as $100 z$
anion, $\mathrm{W}_{10} \mathrm{O}_{32}{ }^{4-}$, of Fuchs et al. ${ }^{11}$ The tungsten-tungsten distances (Table 2) are similar to those in hexatungstate. ${ }^{9}$ Precise tungsten-oxygen distances in the latter anion were not reported. In Table 4, to be read in conjunction with Figure 3, we give the mean values of the

Table 4
Ranges of tungsten-oxygen and cerium-oxygen bond lengths (\AA) and mean values

Bond type *	No. of bonds	Range	Mean
a	1	$1 \cdot 76(4)$	
b	4	$1 \cdot 70(3)-1 \cdot 80(4)$	$1 \cdot 73(4)$
c	4	$1 \cdot 88(3)-1 \cdot 93(3)$	$1 \cdot 90(3)$
d	4	$1 \cdot 99(3)-2 \cdot 05(3)$	$2 \cdot 02(3)$
e	8	$1 \cdot 86(4)-2 \cdot 03(3)$	$1 \cdot 95(4)$
i	4	$1 \cdot 76(4)-1 \cdot 80(4)$	$1 \cdot 78(4)$
g	1	$\mathbf{2} \cdot 29(3)$	
h	4	$2 \cdot 24(3)-2 \cdot 39(3)$	$2 \cdot 32(3)$
j	4	$2 \cdot 38(4)-2 \cdot 40(4)$	$2 \cdot 38(4)$
k	1	$3 \cdot 09(4)$	
	* See Figure 3.		

lengths of those bonds which are presumed to be equivalent in the free anion, as was done for other hetero- and iso-polyanions in a recent review, ${ }^{12}$ and also the ranges of lengths for each bond type. The expected dependence

[^2]of lengths of bonds to oxygen on the co-ordination number of the oxygen is observed (cf. tabulated parameters in ref. 12).

In the majority of heteropolyanions of known structure the ' ligand' attached to the heteroatom consists of a continuous polymetallate sheath. The decatungstocerate anion, like dodecaniobomanganate(IV), ${ }^{13}$ $\mathrm{Mn}\left(\mathrm{Nb}_{6} \mathrm{O}_{19}\right)_{2}{ }^{12-}$, is an exception in that two discrete polymetallate ligands are present, but whereas the hexaniobate ligand in the latter complex is a well-characterised isopolyanion both in crystalline salts and in solution, ${ }^{\mathbf{1 4}}$ the pentatungstate anion $\mathrm{W}_{5} \mathrm{O}_{18} \mathrm{H}^{5-}$ has not hitherto been identified. The charge distribution in free $\mathrm{W}_{5} \mathrm{O}_{18} \mathrm{H}^{5-}$ would be uneven, however (four adjacent oxygens that would otherwise be co-ordinated to cerium would all bear formal negative charges) so probably this isopolyanion can only be stabilised through co-ordination. The analytical cation : cerium ratio and the 36 oxygen atoms in the anion together require the presence of two non-acidic hydrogen atoms. The present study gave no indication of their position. The failure ${ }^{6}$ to distinguish by thermal analysis between the one molecule of 'water of constitution' and the thirty molecules of lattice water may be due both to the number of the latter and to the onset of hydrolytic attack on the anion in the broad temperature range over which the crystal loses water. This anion and its isomorphs are certainly very susceptible to hydrolytic attack in solution.

The two sets of four oxygen atoms bonded to the cerium define a square antiprism. The oxygen-oxygen distances in the CeO_{8} group for atoms in the same and in

Figure 3 Numbering of atoms in the half-anion. Large circles, oxygen; small circles, tungsten. Letters identify different classes of bonds; $c f$. Table 4
different half-anions are similar (means 2.87 and $2.94 \AA$). There is no room for additional co-ordination of water molecules. The cerium-oxygen bond lengths (mean $2.38 \AA)$ are similar to those in $\mathrm{CeO}_{2}(2.34 \AA$; cubic coordination) and are appreciably shorter, as expected, than the bond lengths for twelve-co-ordinate cerium ${ }^{15}$ in $\mathrm{CeMo}_{12} \mathrm{O}_{42}{ }^{8-}(2.51 \AA)$. The second-nearest oxygen atoms [(1) and ($\left.\left.1^{\prime}\right)\right]$ are too far from the cerium ($3 \cdot 09 \AA$) for effective bonding.

[^3]In some salts of heteropolyanions [e.g. $\mathrm{Na}_{3} \mathrm{CrMO}_{6}{ }^{-}$ $\mathrm{O}_{24} \mathrm{H}_{6}, 8 \mathrm{H}_{2} \mathrm{O}$ (ref. 16), $\mathrm{Na}_{6} \mathrm{P}_{2} \mathrm{Mo}_{5} \mathrm{O}_{23}, 13 \mathrm{H}_{2} \mathrm{O}$ (ref. 17), and $\mathrm{Na}_{3} \mathrm{PMo}_{9} \mathrm{O}_{34} \mathrm{H}_{6}, 13 \mathrm{H}_{2} \mathrm{O}$ (ref. 18)] the cations play a prominent role in linking together the anions, but in

Table 5
Bond lengths (\AA) in NaO_{6} groups; all $\sigma 0.05 \AA$

$\mathrm{Na}(1)$			$\mathrm{Na}(2)$		
$O(11)$	(anion)	$2 \cdot 66$	$\bigcirc(24)$	$\left(\mathrm{H}_{2} \mathrm{O}\right)$	$2 \cdot 48$
O(24)	$\left(\mathrm{H}_{2} \mathrm{O}\right)$	$2 \cdot 48$	$\mathrm{O}(27)$	$\left(\mathrm{H}_{2} \mathrm{O}\right)$	$2 \cdot 44$
$\bigcirc(28)$	$\left(\mathrm{H}_{2} \mathrm{O}\right)$	$2 \cdot 61$	$\bigcirc\left(26^{\prime}\right)$	$\left(\mathrm{H}_{2} \mathrm{O}\right)$	$2 \cdot 42$
$\bigcirc(29)$	$\left(\mathrm{H}_{2} \mathrm{O}\right)$	$2 \cdot 35$	$\bigcirc(26)(4)$	$\left(\mathrm{H}_{2} \mathrm{O}\right)$	$2 \cdot 44$
$\bigcirc\left(21^{\prime}\right)\left(2^{\prime}\right)$	$\left(\mathrm{H}_{2} \mathrm{O}\right)$	$2 \cdot 41$	$\mathrm{O}\left(23^{\prime}\right)\left(3^{\prime}\right)$	$\left(\mathrm{H}_{2} \mathrm{O}\right)$	$2 \cdot 49$
$\bigcirc\left(22^{\prime}\right)\left(3^{\prime}\right)$	$\left(\mathrm{H}_{2} \mathrm{O}\right)$	$\underline{2} \cdot 43$	$O\left(14^{\prime}\right)\left(2^{\prime}\right)$	(anion)	$2 \cdot 47$
$\mathrm{Na}(3)$			$\mathrm{Na}(4)$		
$\bigcirc(25)$	$\left(\mathrm{H}_{2} \mathrm{O}\right)$	2.56	$\mathrm{O}(19)$	$\left(\mathrm{H}_{2} \mathrm{O}\right)$	$2 \cdot 39$
$\bigcirc(27)$	$\left(\mathrm{H}_{2} \mathrm{O}\right)$	$2 \cdot 38$	$\mathrm{O}(30)$	$\left(\mathrm{H}_{2} \mathrm{O}\right)$	$2 \cdot 71$
$\bigcirc\left(25^{\prime}\right)$	$\left(\mathrm{H}_{2} \mathrm{O}\right)$	$\stackrel{5}{2} 56$	$\mathrm{O}(20)(3)$	$\left(\mathrm{H}_{2} \mathrm{O}\right)$	$2 \cdot 47$
O(27)	$\left(\mathrm{H}_{2} \mathrm{O}\right)$	2.38	$\mathrm{O}\left(19^{\prime}\right)$	$\left(\mathrm{H}_{2} \mathrm{O}\right)$	$2 \cdot 39$
$\mathrm{O}(23)(3)$	$\left(\mathrm{H}_{2} \mathrm{O}\right)$	$2 \cdot 43$	$\bigcirc\left(30^{\prime}\right)$	$\left(\mathrm{H}_{2} \mathrm{O}\right)$	$2 \cdot 71$
$\mathrm{O}\left(23^{\prime}\right)\left(3^{\prime}\right)$	$\left(\mathrm{H}_{2} \mathrm{O}\right)$	$2 \cdot 43$	$O\left(20^{\prime}\right)\left(3^{\prime}\right)$	$\left(\mathrm{H}_{2} \mathrm{O}\right)$	$2 \cdot 49$

Symbols (2), (z^{\prime}), ctc., refer to atoms in other asymmetric units. Corresponding primed and unprimed units are related by two-fold axes.
$\mathrm{Na}_{6} \mathrm{CeW}_{10} \mathrm{O}_{36} \mathrm{H}_{2}, 30 \mathrm{H}_{2} \mathrm{O}$ two of the four structurally distinct sodium atoms are present as $\mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{+}$, the other

[^4]two being bonded to just one terminal oxygen atom of an anion and five water molecules each. Bond lengths in the NaO_{6} octahedra are listed in Table 5 . The remaining terminal oxygen atoms, however, and most (possibly all) of the other oxygen atoms on the outside of the anion, participate in hydrogen bonds to water molecules, with lengths ranging from 2.66 to $2 \cdot 96 \AA$. Three of the fifteen water molecules which analysis indicates are present per asymmetric unit could not be located. It is possible that the water molecules not co-ordinated to sodium or forming liydrogen bonds to the anion are disordered. In certain other types of heteropolyanion salts, particularly salts of $\mathrm{XW}_{12} \mathrm{O}_{40}{ }^{n-}$ and $\mathrm{XMo}_{12} \mathrm{O}_{40}{ }^{n-}$ and structurally related anions, both the cation and lattice water sites may be disordered; in some X-ray studies few ${ }^{19}$ or none ${ }^{20}$ of the last two species could be located, although there was evidently considerable electron density in the interanionic spaces.

We are indebted to the S.R.C. for financial support and Dr. R. D. Peacock for supplying the crystals used.
[4/471 Received, 11th March, 1974]
19 P. M. Smith, Ph.D. Thesis, Georgetown University, 1972.
20 L. C. W. Baker, V. S. Baker, K. Eriks, M. T. Pope, M. Shibata, O. W. Rollins, J. H. Fang, and L. L. Koh, J. Amer. Chem. Soc., 1966, 88, 2329.

[^0]: ${ }^{1}$ Part II, R. D. Peacock and T. J. R. Weakley, J. Chem. Soc. (A), 1971, 1937.
 ${ }_{2}$ R. Ripan and I. Todorut, Roczniki Chem., 1964, 38, 1787 Rev. Roumaine Chim., 1966, 11, 691, 1279.
 ${ }^{3}$ R. Ripan and A. Botar, Rev. Roumaine Chim., 1970, 15, 1529, 1537; G. Marcu and A. Botar, ibid., 1971, 16, 1341.
 ${ }^{4}$ (r. Marcu, I. Todorut, and A. Botar, Rev. Roumaine Chim. 1971, 16, 1335

[^1]: ${ }^{5}$ G. Marcu, R. Vatulescu, and T. Budiu, Studia Univ. BabesBolyai, Ser. Chem., 1972, 17, 87.
 ${ }_{6}$ R. D. Peacock and T. J. R. Weakley, J. Chem. Sec. (A), 1971, 1836.
 ${ }^{7}$ A. Botar, personal communications, 1972, 1973
 s A. Botar and T. J. R. Weakley, Rev. Roumaine Chim., 1973 , 18. 1155.

[^2]: ${ }^{9}$ G. Henning and A. Hüllen, Z. Krist., 1969, 130, 162.
 10 I. Lindqvist, Avkiv Kemi, 1953, 5, 247.
 11 J. Fuchs, H. Hartl, and W. Schiller, Angew. Chem., 1973, 85 , 417.
 ${ }^{12}$ H. T. Evans, jun., Perspectives in Structural Chem., 1971, 4, 1.

[^3]: ${ }^{13}$ C. M. Flynn and G. D. Stucky, Inorg. Chem., 1969, 8, 335.
 ${ }^{14}$ M. T. Pope and B. W. Dale, Quart. Rev., 1968, 22, 527.
 ${ }_{15}$ D. D. Dexter and J. V. Silverton, J. Amer. Chem. Soc., 1968, 90, 3589.

[^4]: 16 A. Perloff, Inorg. Chem., 1970, 9, 2228.
 17 R. Strandberg, Acta Chem. Scand., 1973, 27, 1004.
 18 IR. Strandberg, Acta Chem. Scand., 1974, A28, 217.

