Crystal and Molecular Structure of 1-(Dicarbonyl-m-cyclopentadienyl-ferrio)-2-(phenyl)-ethyne

By Richard Goddard, Judith Howard, and Peter Woodward,* Department of Inorganic Chemistry, The University, Bristol BS8 1 TS

Abstract

Crystals of the title compound are monoclinic, $a=9.473(2), b=9 \cdot 796(2), c=13.887(3)^{\circ} \AA, \beta=109 \cdot 70(2)^{\circ}$. space group $P 2_{1} / n, Z=4$. The structure was solved by conventional methods from 1696 intensity data collected on a diffractometer and has been refined to $R 0 \cdot 060$. The ($\pi-\mathrm{C}_{5} \mathrm{H}_{5}$) $\mathrm{Fe}(\mathrm{CO})_{2}$ fragment has the same geometry as in many other compounds, and the acetylenic linkage is essentially linear. There are no significant intermolecular interactions. The bond lengths of the metal ethynyl group ($\mathrm{Fe}-\mathrm{C} 1 \cdot 91,-\mathrm{C} \equiv \mathrm{C}-1 \cdot 21$, and $\mathrm{C}-\mathrm{Ph} 1.44 \AA$) provide a useful comparison with those in other acetylenes.

Crystals of 1-(dicarbonyl-r-cyclopentadienylferrio)-2-(phenyl)-ethyne, $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}(\mathrm{C}: \mathrm{CPh})\right]$, are formed in high yield when $[\mathrm{PhC}: \mathrm{CMgBr}]$ reacts with $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$ $\left.\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cl}\right]$ in tetrahydrofuran. ${ }^{1,2}$ Although several stable σ-bonded acetylene derivatives of the nickel group have now been prepared, ${ }^{3-5}$ the presence of ligands capable of accepting charge from the metal (usually by $d_{\pi^{-}}-d_{\pi^{*}}$ interaction) is always necessary. Details of the stereochemistry of the title compound are of special interest in relation to those compounds where the acetylenic moiety is further π-bonded to some other atom (e.g. Cu , see following paper).

EXPERIMENTAL

The crystals were characterised, and intensities collected, on a Syntex $P 2_{1}$ four-circle diffractometer. Size of crystal: $0.13 \times 0.30 \times 0.60 \mathrm{~mm}$; geometry: equatorial bisecting; mode: $0-2 \theta$ scan; scan speed: $1 \cdot 0-0.03^{\circ} \mathrm{s}^{-1}$, according to sampled intensity; scan interval: 1° below θ for $K_{\alpha 1}$ to 1° above θ for $K_{\alpha_{2}}$; background count (before and after each scan): to give total background time $=$ scan time; check reflections: every 20 measurements; radiation: Mo- K_{α} with graphite monochromator. No. of reflections measured: 2070; no. observed: 1696 [according to the criterion $I>2 \cdot 5 \sigma(I)]$.

Crystal Data.- $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{FeO}_{2}, \quad M=278 \cdot 1, \quad$ Monoclinic, $a=9.473(2), b=9.796(2), c=13.887(3) \AA, \beta=109.70(2)^{\circ}$, $U=1213 \AA^{3} ; \quad D_{\mathrm{m}}$ (flotation) $=1.51, Z=4, D_{\mathrm{c}}=1.53$, $F(000)=568$. Space group $P 2_{1} / n$. Mo- $K_{\alpha} X$-radiation, $\lambda=0.7107 \AA ; \mu\left(\mathrm{Mo}-K_{\alpha}\right)=12 \cdot 1 \mathrm{~cm}^{-1}$.
The structure was solved by conventional heavy-atom methods and has been refined to $R 0.060$ (including hydrogen atoms). Individual weights were applied according to the scheme: $1 / w=\sigma_{F}{ }^{2}$ in which σ_{F} is the standard deviation derived from counting statistics; this gave a satisfactory weight analysis. All computational work was carried out with the ' X-Ray System.'. ${ }^{6}$ No correction for X-ray absorption was applied. Final parameters, and calculated molecular characteristics, are in Tables 1 and 2. Observed and calculated structure factors are listed in Supplementary Publication No. SUP 21087 (10 pp., 1 microfiche). \dagger Atomic scattering factors are those of ref. 7.
\dagger For details sec Notice to Authors No. 7 in J.C.S. Dalton, 1973, Index issuc.
${ }^{1}$ M. L. H. Green and T. Mole, J. Organometallic Chem., 1968, 12, 404.
${ }^{2}$ P. W. Jolly and R. Pettit, J. Organometallic Chem., 1968, 12, 491.
${ }^{3}$ J. Chatt and B. L. Shaw, J. Chem. Soc., 1959, 4020; 1960, 1718.

discussion

The title compound consists of discrete monomeric molecules in which a phenylethynyl group is linearly

Table 1

Atomic positional and thermal parameters, with standard deviations in parentheses

Atom	x / a	y / b	$z / c \quad U$	$\times 10^{2} / \AA^{2 *}$
Fe	0.77303(8)	$0 \cdot 90993(7)$	$0 \cdot 15461$ (5)	\dagger
Cyclopentadienyl ring				
C(1)	$0 \cdot 8575$ (9)	1-1011(7)	$0 \cdot 1349(5)$	6.0(2)
$\mathrm{C}(2)$	$0 \cdot 7252(8)$	$1 \cdot 0749$ (7)	$0 \cdot 0511(6)$	6.4(2)
$\mathrm{C}(3)$	$0.7452(7)$	$0.9592(7)$	$0 \cdot 0012(5)$	5-6(2)
C(4)	$0 \cdot 8930$ (7)	$0 \cdot 9082(6)$	$0 \cdot 0528(5)$	5-2(1)
$\mathrm{C}(5)$	0.9623 (7)	0.9971 (6)	$0 \cdot 1341$ (5)	5.4(1)
$\mathrm{H}(1)$	$0 \cdot 881$ (8)	$1 \cdot 168(8)$	$0 \cdot 193$ (5)	5(2)
$\mathrm{H}(2)$	$0 \cdot 633(9)$	$1 \cdot 132(8)$	$0 \cdot 038(6)$	6(3)
$\mathrm{H}(3)$	0.687(8)	$0 \cdot 900(7)$	-0.054(6)	5(2)
$\mathrm{H}(4)$	$0 \cdot 924(8)$	0.828(8)	$0.033(5)$	6(2)
$\mathrm{H}(5)$	1.056(9)	$0 \cdot 989(8)$	$0 \cdot 190$ (6)	6(2)
Phenylethynyl group				
$\mathrm{C}(6)$	0.6170(6)	0.9636(5)	$0 \cdot 2061$ (4)	3.9(1)
$\mathrm{C}(7)$	0.5261 (6)	0.9914 (5)	$0 \cdot 2459(4)$	$4 \cdot 2(1)$
C(71)	$0 \cdot 4232(6)$	1.0233(5)	$0 \cdot 2993$ (4)	3.8(1)
$\mathrm{C}(72)$	$0 \cdot 3983$ (8)	$0.9292(7)$	$0 \cdot 3673$ (5)	5•7(2)
C(73)	$0 \cdot 3019$ (8)	0.9610(8)	$0 \cdot 4221$ (5)	$6 \cdot 5(2)$
C(74)	$0 \cdot 2344$ (8)	1-0856(7)	$0 \cdot 4109(5)$	$6 \cdot 0(2)$
$\mathrm{C}(75)$	$0 \cdot 2554(7)$	$1 \cdot 1784(7)$	$0 \cdot 3437(5)$	$5 \cdot 5(2)$
$\mathrm{C}(76)$	$0 \cdot 3493(7)$	1-1488(6)	$0 \cdot 2865$ (5)	$4 \cdot 9(1)$
$\mathrm{H}(72)$	$0 \cdot 446$ (9)	$0 \cdot 832(8)$	$0 \cdot 375$ (5)	6(2)
$\mathrm{H}(73)$	$0 \cdot 296(8)$	$0 \cdot 887$ (7)	$0 \cdot 484(6)$	5(2)
$\mathrm{H}(74)$	$0 \cdot 177(10)$	$1 \cdot 110(9)$	$0 \cdot 470$ (6)	8(3)
$\mathrm{H}(75)$	$0 \cdot 201(8)$	1-262(8)	$0 \cdot 321$ (5)	$5(2)$
$\mathrm{H}(76)$	$0 \cdot 355$ (7)	1-207(6)	$0 \cdot 235(4)$	$3(2)$
Carbonyl groups				
C(8)	$0 \cdot 6860$ (6)	0.7498(5)	0.1219(4)	$4 \cdot 1$ (1)
$\mathrm{O}(8)$	$0.6276(5)$	$0 \cdot 6472(5)$	0.0981 (3)	6.3(1)
C(9)	$0 \cdot 8759(6)$	$0.8639(5)$	$0 \cdot 2804(4)$	4.1(1)
$\mathrm{O}(9)$	$0.9413(5)$	$0.8334(5)$	0.3636(3)	6.3(1)
* $B=8 \pi^{2} U$. \dagger Anisotropic thermal parameters in the form:$\begin{array}{r} \text { exp. }-2 \pi^{2}\left[U_{11} a^{* 2} h^{2}+U_{22} b^{* 2} k^{2}+U_{33} c^{* 2} l^{2}+2 U_{12} a^{*} b^{*} h k+\right. \\ \left.2 U_{13} a^{*} c^{*} h l+2 U_{23} b^{*} c^{*} k l\right] \end{array}$				
U_{11}	U_{22}		U_{13}	
2.94(4)	$3 \cdot 86(4) \quad 3 \cdot 4$	(5) - 0.0	$8(3) \quad 1 \cdot 61(3)$	$0 \cdot 14(3)$

σ-bonded to a $\mathrm{Fe}(\mathrm{CO})_{2}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ group (Figures 1 and 2). The $\mathrm{Fe}(\mathrm{CO})_{2}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ moiety has its usual geometry;
${ }^{4}$ G. Calvin and G. E. Coates, J. Chem. Soc., 1969, 2008.
${ }^{5}$ G. W. Parshall, J. Amer. Chem. Soc., 1966, 88, 705.
${ }^{6}$ J. M. Stewart, F. A. Kundell, and J. C. Baldwin, X-Ray System of Crystallographic Programs for any Computer, Computer Science Centre, University of Maryland Report TR 6758 , revised 1970.
${ }^{7}$ H. P. Hanson, I. Herman, J. D. Lea, and S. Skillman, Acta Cryst., 1964, 17, 1040.
the two carbonyl groups are mutually orthogonal, and the Fe atom attains approximately octahedral geometry if the cyclopentadienyl ring is assumed to occupy three co-ordination sites. Interest focusses on the detailed structure of the metal-ethynyl sequence.

Figure 1 The molecular structure in projection along a looking towards the origin of the monoclinic unit cell. The atom numbering sequence is also shown

Atoms $\mathrm{Fe}, \mathrm{C}(6), \mathrm{C}(7)$, and $\mathrm{C}(71)-(76)$ are substantially coplanar. The $-\mathrm{C} \equiv \mathrm{C}$ - bond length is not significantly different from that expected for a normal triple bond but, as is well known, ${ }^{8,9}$ the lengths of bonds of order $\mathbf{2}$ to $\mathbf{3}$ are not very sensitive to small changes of bond

Table 2
Molecular geometry
(a) Distances (\AA)

(i) Cyclopentadienyl ring	
$\mathrm{Fe}-\mathrm{C}(1)$	$2.091(7)$
$\mathrm{Fe}-\mathrm{C}(2)$	$2 \cdot 108(7)$
$\mathrm{Fe}-\mathrm{C}(3)$	$2.113(7)$
$\mathrm{Fe}(4)$	$2.992(8)$
$\mathrm{Fe}-\mathrm{C}(5)$	$2.090(7)$

(ii) Phenylethynyl group

$\mathrm{Fe}-\mathrm{C}(6)$	$1.920(6)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.201(9)$
$\mathrm{C}(7)-\mathrm{C}(71)$	$1.444(9)$
$\mathrm{C}(71)-\mathrm{C}(72)$	$1.396(9)$
$\mathrm{C}(72)-\mathrm{C}(73)$	$1.407(12)$

$\mathrm{C}(73)-\mathrm{C}(74)$	$1 \cdot 363(10)$
$\mathrm{C}(74)-\mathrm{C}(75)$	$1 \cdot 364(10)$
$\mathrm{C}(75)-\mathrm{C}(76)$	$1 \cdot 409(11)$
$\mathrm{C}(76)-\mathrm{C}(71)$	$1 \cdot 396(8)$

(iii) Carbonyl groups

$\mathrm{Fe}-\mathrm{C}(8)$	$1.759(5)$	$\mathrm{Fe}-\mathrm{C}(9)$	1.749(5)
$\mathrm{C}(8)-\mathrm{O}(8)$	1-142(7)	$\mathrm{C}(9)-\mathrm{O}(9)$	1-151(7)
(b) Angles (${ }^{\circ}$)			
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	109.3(6)	$\mathrm{Fe}-\mathrm{C}(6)-\mathrm{C}(7)$	174.4(4)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	108.2(6)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(71)$	$176 \cdot 8(5)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	107.5(6)	$\mathrm{C}(7)-\mathrm{C}(71)-\mathrm{C}(72)$	120.1(5)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	108.2(5)	$\mathrm{C}(71)-\mathrm{C}(72)-\mathrm{C}(73)$	120.6(6)
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	$106.8(6)$	$\mathrm{C}(72)-\mathrm{C}(73)-\mathrm{C}(74)$	$120 \cdot 1(7)$
$\mathrm{Fe}-\mathrm{C}(8)-\mathrm{O}(8)$	178.2(5)	$\mathrm{C}(73)-\mathrm{C}(74)-\mathrm{C}(75)$	120-3(8)
$\mathrm{Fe}-\mathrm{C}(9)-\mathrm{O}(9)$	178.8(6)	$\mathrm{C}(74)-\mathrm{C}(75)-\mathrm{C}(76)$	120.9(6)
$\mathrm{C}(9)-\mathrm{Fe}-\mathrm{C}(8)$	94.8(2)	$\mathrm{C}(75)-\mathrm{C}(71)-\mathrm{C}(71)$	119.6(6)
$\mathrm{C}(9)-\mathrm{Fe}-\mathrm{C}(6)$	$86.4(3)$	$\mathrm{C}(76)-\mathrm{C}(76)-\mathrm{C}(72)$	118.4 (6)
$\mathrm{C}(8)-\mathrm{Fe}-\mathrm{C}(6)$	89-3(3)	$\mathrm{C}(76)-\mathrm{C}(71)-\mathrm{C}(7)$	121.5(5)

and the stretching frequency of the $-\mathrm{C} \equiv \mathrm{C}$ - bond (2117 cm^{-1}) lies close to the observed range of frequencies for disubstituted acetylenes ($\left.2190-2260 \mathrm{~cm}^{-1}\right)^{10}$ and

Figure 2 The contents of one unit cell, viewed down b, looking towards the origin
order. There is substantial evidence, however, that the real bond order is close to 3 ; the bond angles at the two carbon atoms of the ethynyl group are close to 180°,

[^0]within the range observed for σ-bonded $A u^{I}$ alkynyls $\left(2107-2135 \mathrm{~cm}^{-1}\right) .{ }^{11}$

The $\mathrm{Fe}-\mathrm{C}(6)$ bond length to the C_{2} unit of the phenyl-

[^1]ethynyl moiety $[\mathbf{1} \cdot 920$ (6) $\AA]$ is, as expected, notably longer than the $\mathrm{Fe}-(\mathrm{CO})$ distance [mean $1 \cdot 754(6) \AA$] because of the partial double-bond character of all metal-carbonyl bonds. Just how close the $\mathrm{Fe}-\mathrm{C}(6)$ distance is to that of a true single bond is, however, much more difficult to assess. The sum of the covalent radii for $\mathrm{Fe}^{\mathrm{II}}$ and $\mathrm{C}(s p)$ could reasonably be assessed within the range $1.98-2.03 \AA,{ }^{12}$ and to this extent the $\mathrm{Fe}-\mathrm{C}_{2}$ bond can be asserted to possess some doublebond character.
The length of the bond between the ethynyl group and the phenyl ring $[1 \cdot 438(10) \AA$] is in close agreement
with the sum of the radii for $C\left(s p^{2}\right)$ in aromatic rings $(0.75 \AA)$ and $\mathrm{C}(s p)(0.65-0.70 \AA) .{ }^{13}$

We thank Professor M. I. Bruce and Dr. O. M. Abu Salah for crystals, and the S.R.C. for financial support and for facilities at the Atlas Computer Laboratory, Chilton, Berkshire, where help was given by Mrs. Carol Hirst.
[4/515 Received, 15th March, 1974]
12 M. R. Churchill, Perspectives in Structural Chem., 1970, 3, 91.
${ }^{13}$ F. A. Cotton and G. Wilkinson, 'Advanced Inorganic Chemistry,' 3rd edn., Wiley, London, 1972, p. 117.

[^0]: ${ }^{8}$ F. A. Cotton, T. G. Dunne, and J. S. Wood, Inorg. Chem., 1964, 3, 1495.
 ${ }^{9}$ F. A. Cotton and R. M. Wing, Inorg. Chem., 1965, 4, 314.

[^1]: 10 J. P. Collman and J. W. Kang, J. Amer. Chem. Soc., 1967, 89, 844.
 ${ }_{11}$ G. E. Coates and C. Parkin, J. Chem. Soc., 1962, 3220.

