Crystal and Molecular Structure of Di- μ-chloro-bis-\{[1-(dicarbonyl- π -cyclopentadienylferrio)-2-phenylethyne]copper(1)\}

By Russell Clark, Judith Howard, and Peter Woodward,* Department of Inorganic Chemistry, The University, Bristol BS8 1TS

Abstract

The crystal structure of the title compound has been determined by conventional methods from the intensities of 1578 non-zero reflections measured on a diffractometer and refined to $R 0.071$. Crystals are monoclinic, with $a=12 \cdot 57(1), b=18 \cdot 27(2), c=7 \cdot 15(1) \AA, \beta=115 \cdot 3(1)^{\circ}$, space group $P 2_{1} / a$, and have two dimeric molecules per unit cell. The dimer comprises two asymmetric units related by a centre of inversion to give a central planar ring of alternating Cu and Cl atoms. The $\mathrm{Cu}-\mathrm{Cl}$ distances are equivalent at $2 \cdot 287$ (3) \AA and the $\mathrm{Cu} \cdots \mathrm{Cu}$ distance across the ring is $3.069(2) \AA$. Each Cu atom is symmetrically π-bonded to the C_{2} unit of the phenylethynyl group [$\mathrm{Cu}-\mathrm{C} 2.01$ (2) \AA], and the CuC_{2} moieties are coplanar with the $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$ ring. The ethynyl link is $1.23(1) \mathrm{A}$, with $\mathrm{Fe}-\mathrm{C}-\mathrm{C}-\mathrm{Ph}$ angles of $\mathrm{ca} .162^{\circ}$.

The reaction between $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{Cl}\right]$ and $\mathrm{CuC}_{2} \mathrm{Ph}$ affords a yellow-orange crystalline air-stable adduct in 30% yield. ${ }^{1}$ The i.r. spectrum (in CHCl_{3}) shows two $v(\mathrm{CO})$ bands at 2052 and $2002 \mathrm{~cm}^{-1}$, while the ${ }^{1} \mathrm{H}$ n.m.r. spectrum shows a sharp singlet at $\tau 4.7\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)$ and a broad signal at $\div 2.7\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$. The mass spectrum shows only peaks found in the spectrum of $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$ $\left.\mathrm{Fe}(\mathrm{CO})_{2} \mathrm{C}: \mathrm{CPh}\right]$. Osmometric molecular-weight determinations indicate that dissociation occurs in solution.

EXPERIMENTAL

The crystals were characterised by photographic methods. Intensities were measured on a two-circle auto-diffractometer according to methods described previously; ${ }^{2}$ crystal axis: c; size of crystal: $0.1 \times 0.1 \times 0.5 \mathrm{~mm}$; geometry: equi-inclination; mode: ω-scan; scan speed, $1^{\circ} \mathrm{min}^{-1}$; scan interval: $(2 \cdot 0+0 \cdot 3 / L)^{\circ}$ where L is the Lorentz correction for the reflection $h k l$; background count (before and after scan): 0.5 min ; check reflection: every 20 reflections; radiation: $\mathrm{Mo}-K_{\alpha}$, with Zr filter. No. of reflections observed 1578 [according to the criterion $I>$ $2 \cdot 5 \sigma(I)]$.

Crystal Data. $-\left[\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{ClCuFeO}_{2}\right]_{2}, \quad M=753 \cdot 8$, Monoclinic, $\quad a=12.57(1), \quad b=18.27(2), \quad c=7 \cdot 15(1) \quad \AA, \quad \beta=$ $115 \cdot 3(1)^{\ominus}, U=1484 \AA^{3}, D_{\mathrm{m}}$ (by flotation) $1 \cdot 67, Z=2$, $D_{\mathrm{c}}=1 \cdot 69, F(000)=752 . \quad \mathrm{Mo}-K_{\alpha} X$-radiation, $\lambda=0.7107$ $\AA, \mu\left(\mathrm{Mo}-K_{\alpha}\right)=25 \cdot 3 \mathrm{~cm}^{-1}$. Space group $P 2_{1} / a$.

Structure Solution and Refinement.-The copper and iron atoms were located from a three-dimensional Patterson synthesis, and the remaining atoms from electron-density
${ }^{1}$ M. I. Bruce, R. Clark, Judith Howard, and P. Woodward, J. Organometallic Chem., 1972, 42, C107.
${ }^{2}$ C. J. Gilmore and P. Woodward, J.C.S. Dalton, 1972, 1387.
difference syntheses. Least-squares refinement of the structure (in which $\Sigma w \Delta^{2}$ was the function minimised) made use of anisotropic thermal parameters (β_{33} constant)

Table 1
Atomic positional and thermal parameters, with estimated standard deviations in parentheses

				. $\times 10^{2} /$
Atom	x / a	y / b	z / c	\AA^{2} *
Cu	0.4907(1)	0.4452(1)	$0.3311(2)$	\dagger
Cl	0.6227(2)	0.4566(2)	$0 \cdot 6695$ (4)	\dagger
Fe	$0 \cdot 6600$ (1)	0.3010(1)	$0 \cdot 2949$ (2)	\dagger
C(1)	$0.7576(13)$	$0 \cdot 3366$ (8)	$0 \cdot 1322(21)$	6.6(4)
$\mathrm{C}(2)$	$0 \cdot 8116(14)$	$0 \cdot 2727(9)$	$0 \cdot 2634(26)$	8•3(4)
$\mathrm{C}(3)$	$0 \cdot 8389(13)$	$0 \cdot 2955(9)$	$0 \cdot 4725(22)$	$7 \cdot 1$ (4)
C(4)	$0 \cdot 8051(13)$	$0 \cdot 3646(9)$	$0 \cdot 4650(22)$	7-5(4)
C(5)	$0.7574(14)$	$0 \cdot 3919$ (10)	$0 \cdot 2622(25)$	$8 \cdot 1(4)$
C(6)	$0 \cdot 5760$ (10)	$0 \cdot 2325$ (7)	$0 \cdot 1331(18)$	$4 \cdot 8(3)$
$\mathrm{O}(6)$	$0.5154(9)$	$0 \cdot 1843$ (6)	$0 \cdot 0296(15)$	$7 \cdot 6(3)$
C(7)	$0.6337(9)$	$0 \cdot 2766$ (6)	$0 \cdot 5053(16)$	$3 \cdot 8(2)$
$\mathrm{O}(7)$	$0.6134(8)$	$0 \cdot 2617(5)$	$0 \cdot 6466$ (14)	6.4(2)
C(8)	$0.5236(9)$	0.3616 (6)	$0 \cdot 1794(15)$	$3 \cdot 5(2)$
$\mathrm{C}(9)$	$0 \cdot 4281$ (9)	$0 \cdot 3890$ (6)	$0 \cdot 0649(14)$	3-3(2)
C(91)	$0 \cdot 3197(8)$	$0 \cdot 4045$ (6)	-0.1155(14)	$3 \cdot 0(2)$
C(92)	$0 \cdot 3198(10)$	$0 \cdot 4024$ (7)	-0.3079(17)	$4 \cdot 8(3)$
C(93)	$0 \cdot 2152(11)$	0.4127(8)	$-0 \cdot 4890(19)$	5•7(3)
C(94)	$0 \cdot 1125(13)$	$0 \cdot 4240$ (9)	$-0.4721(22)$	7-0(4)
$\mathrm{C}(95)$	$0 \cdot 1081(11)$	0.4289(7)	$-0.2759(19)$	$5 \cdot 3(3)$
$\mathrm{C}(96)$	$0 \cdot 2123(10)$	$0 \cdot 4185(7)$	-0.1029(17)	4.6(3)

$* B=8 \pi^{2} U . \quad \dagger$ Anisotropic thermal parameters in the form $\exp \left\{-2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+k^{2} b^{* 2} U_{22}+l^{2} c^{* 2} U_{33}+h k a^{*} b^{*} U_{12}+\right.\right.$ $\left.\left.h l a^{*} c^{*} U_{13}+k l b^{*} c^{*} U_{23}\right)\right\}$ with parameters $\left(\times 10^{2}\right)$:

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{18}	U_{29}
Cu	$3 \cdot 71(8)$	$3 \cdot 56(9)$	$3 \cdot 35$	$0 \cdot 29(6)$	$1 \cdot 16(5)$	$-0.38(5)$
CI	$4 \cdot 44(16)$	$4 \cdot 36(18)$	$4 \cdot 15$	$1 \cdot 27(13)$	$1.07(12)$	$-0 \cdot 37(12)$
Fe	$2 \cdot 90(8)$	$3 \cdot 07(10)$	$2 \cdot 82$	$0.38(6)$	$0.97(5)$	$-0.06(6)$

for Cu, Cl, and Fe in the final stages, and separate scale factors for each reciprocal layer. The final weighting
scheme, chosen to keep the variation of ΔF with ranges of F and of $(\sin \theta / \lambda)$ to a minimum, was: $l / w=\sigma_{F^{2}}{ }^{2}+$ $0.0125\left|F_{0}\right|^{2}$, in which σ_{F} is the standard deviation derived from counting statistics. ${ }^{2}$ All computational work was carried out with the ' X-Ray System' on an Atlas computer. ${ }^{3}$ Final atomic positional and thermal parameters with their standard deviations are in Table l, bond lengths

Table 2
Bond lengths (\AA) and bond angles (${ }^{\circ}$)*
(a) Distances

$\mathrm{Cu}-\mathrm{Cl}^{\prime}$	$2 \cdot 283(3)$	$\mathrm{Cu}-\mathrm{C}(9)$	$2 \cdot 003(10)$
$\mathrm{Cu}-\mathrm{Cl}^{\prime}$	$2 \cdot 291(3)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1 \cdot 234(13)$
$\mathrm{Cu}-\mathrm{Cu}^{\prime}$	$3 \cdot 069(2)$	$\mathrm{Fe}-\mathrm{C}(8)$	$1 \cdot 906(10)$
$\mathrm{Cl}-\mathrm{Cl}^{\prime}$	$3 \cdot 392(4)$	$\mathrm{C}(9)-\mathrm{C}(91)$	$1 \cdot 447(11)$
$\mathrm{Cu}-\mathrm{C}(8)$	$2 \cdot 016(12)$		

Carbonyl groups
$\mathrm{Fe}-\mathrm{C}(6)$
$\mathrm{C}(6)-\mathrm{O}(6)$
$\quad \mathrm{Cyclopentadieny}$

adienyl ring			
$\mathrm{Fe}-\mathrm{C}(1)$	2-12(2)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.47(2)
$\mathrm{Fe}-\mathrm{C}(2)$	2.08(2)	$\mathrm{C}(2)-\mathrm{C}(3)$	1-44(2)
$\mathrm{Fe}-\mathrm{C}(3)$	2.06(1)	$\mathrm{C}(3)-\mathrm{C}(4)$	$1 \cdot 33(2)$
$\mathrm{Fe}-\mathrm{C}(4)$	2.06(1)	$\mathrm{C}(4)-\mathrm{C}(5)$	1-40(2)
$\mathrm{Fe}-\mathrm{C}(5)$	$2 \cdot 13(2)$	$\mathrm{C}(5)-\mathrm{C}(1)$	1-37(2)
	(Mean 2.09)		(Mean 1-40)
Phenyl group			
$\mathrm{C}(91)-\mathrm{C}(92)$	1-38(2)	$\mathrm{C}(94)-\mathrm{C}(95)$	1-43(2)
$\mathrm{C}(92)-\mathrm{C}(93)$	1-41(1)	$\mathrm{C}(95)-\mathrm{C}(96)$	1-38(1)
$\mathrm{C}(93)-\mathrm{C}(94)$	1-36(2)	$\mathrm{C}(96)-\mathrm{C}(91)$	1-41(2)

(b) Angles			
$\mathrm{Cu}-\mathrm{Cl}-\mathrm{Cu}^{\prime}$	$84 \cdot 3(1)$	$\mathrm{C}(93)-\mathrm{C}(94)-\mathrm{C}(95)$	$122(1)$
$\mathrm{Cl}-\mathrm{Cu}-\mathrm{Cl}$	$95 \cdot 7(1)$	$\mathrm{C}(94)-\mathrm{C}(95)-\mathrm{C}(96)$	$117(1)$
$\mathrm{Fe}-\mathrm{C}(8)-\mathrm{C}(9)$	$164 \cdot 3(9)$	$\mathrm{C}(95)-\mathrm{C}(96)-\mathrm{C}(91)$	$122(1)$
$\mathrm{C}(6)-\mathrm{Fe}-\mathrm{C}(7)$	$96 \cdot 0(6)$	$\mathrm{C}(96)-\mathrm{C}(91)-\mathrm{C}(92)$	$119(1)$
$\mathrm{C}(7)-\mathrm{Fe}-\mathrm{C}(8)$	$93 \cdot \mathrm{I}(5)$	$\mathrm{Fe}-\mathrm{C}(6)-\mathrm{O}(6)$	$176(1)$
$\mathrm{C}(6)-\mathrm{Fe}-\mathrm{C}(8)$	$87 \cdot 2(5)$	$\mathrm{Fe}-\mathrm{C}(7)-\mathrm{O}(7)$	$178(1)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(91)$	$161(1)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$106(1)$
$\mathrm{C}(9)-\mathrm{C}(91)-\mathrm{C}(92)$	$119(1)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$108(1)$
$\mathrm{C}(9)-\mathrm{C}(91)-\mathrm{C}(96)$	$123(1)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$112(1)$
$\mathrm{C}(91)-\mathrm{C}(92)-\mathrm{C}(93)$	$121(1)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	$108(1)$
$\mathrm{C}(92)-\mathrm{C}(93)-\mathrm{C}(94)$	$119(1)$	$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	$107(1)$

* Estimated standard deviations include cell parameter errors.

Table 3
Equations of some least-squares planes in fractional coordinates, x, y, z; distances (\AA) of relevant atoms from these planes are given in square brackets
Plane (1): Cyclopentadienyl ring $\mathrm{C}(1)-(5)$
$11 \cdot 909 x+5 \cdot 455 y-2 \cdot 157 z=10.581$
$[\mathrm{C}(1)-0.008, \mathrm{C}(2) 0.004, \mathrm{C}(3) 0.002, \mathrm{C}(4)-0.008, \mathrm{C}(5) 0.010]$
Plane (2): Phenyl ring $C(91)-(96)$

$$
\begin{aligned}
& \quad 2 \cdot 181 x+17.977 y-0.269 z=8.011 \\
& \quad[\mathrm{C}(91)-0.010, \mathrm{C}(92) 0.004, \mathrm{C}(93) 0.009, \mathrm{C}(94)-0.016, \mathrm{C}(95) \\
& \quad 0.009, \mathrm{C}(96) 0.004] \\
& \text { Plane (3): Central planar portion of dimer: } \mathrm{Cu}, \mathrm{Cl}, \mathrm{Fe} \mathrm{C}(8), \\
& \mathrm{C}(9), \mathrm{C}(91), \mathrm{Cu}^{\prime}, \mathrm{Cl}^{\prime}, \mathrm{Fe}^{\prime}, \mathrm{C}\left(8^{\prime}\right), \mathrm{C}\left(9^{\prime}\right), \mathrm{C}\left(91^{\prime}\right) \\
& \quad 8.911 x+11 \cdot 380 y-4.308 z=7.991 \\
& {[\mathrm{Cu} 0.021, \mathrm{Cl}-0.131, \mathrm{Fe} 0.045, \mathrm{C}(8) 0.016, \mathrm{C}(9)-0.030,} \\
& \mathrm{C}(91)-0.042]
\end{aligned}
$$

and angles in Table 2, and some least-squares planes in Table 3. Observed and calculated structure factors are listed in Supplementary Publication No. SUP 21088 (10 pp., 1 microfiche).* Atomic scattering factors are those of ref. 4.

* For details see Notice to Authors No. 7 in J.C.S. Dalton, 1973, Index issue.

DISCUSSION
The crystal structure of the title compound shows that it is dimeric in the solid state, of molecular formula $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{Cu}_{2} \mathrm{Fe}_{2} \mathrm{O}_{4}$ with two asymmetric units related by a centre of inversion (see Figure 1, which also shows the atom numbering sequence). The $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$ ring is planar, with angles at $\mathrm{Cu} 95 \cdot 7(1)$ and at $\mathrm{Cl} 84 \cdot 3(1)^{\circ}$. The $\mathrm{Cu}-\mathrm{Cl}$ distances are not significantly different, mean $2 \cdot 287(3) \AA$. Across the ring the $\mathrm{Cu} \cdots \mathrm{Cu}$ distance is $3.069(2) \AA$. Each copper atom is symmetrically bonded to the C_{2} unit of the phenylethynyl group, the CuC_{2} moieties being coplanar with the $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$ ring (Table 3). The $\mathrm{Cu} \cdots \mathrm{Cu}^{\prime}$ vector bisects the two multiple bonds orthogonally: the distances $\mathrm{Cu}-\mathrm{C}(8)$ and $\mathrm{Cu}-\mathrm{C}(9)$ are not significantly different [mean $2.01(1) \AA]$. The multiple bond $\mathrm{C}(8)-\mathrm{C}(9)$ is of length $1-23(1) \AA$. Atom $\mathrm{C}(9)$ is σ-bonded to a phenyl group

Figure 1 View of the dimeric molecule, showing the atom numbering sequence
$\mathrm{C}(91)-\mathrm{C}(96)$ at a distance of $1 \cdot 45(1) \AA$, while $\mathrm{C}(8)$ is σ-bonded to the iron atom of a $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}$ unit at a distance of $1.91(1) \AA$; both bonds are coplanar with the whole central portion of the molecule. The $\mathrm{C}(91)-\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{Fe}$ sequence is coplanar but nonlinear, with angles at $\mathrm{C}(9)$ and $\mathrm{C}(8)$ of $161(1)$ and $164(1)^{\circ}$. The geometry of the $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}$ group closely resembles that found in many other compounds containing it; the iron atom can be considered to take up an octahedral configuration, with the cyclopentadienyl ring occupying three facial positions. Figure 2 shows the packing of the molecules in the monoclinic unit cell.

The structure of the title compound is generally similar to that of $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{Ph}_{2}\right),{ }^{5}$ but differs from
${ }^{3}$ J. M. Stewart, F. A. Kundell, and J. C. Baldwin, X-Ray System of Crystallographic Programs for any Computer, Computer Science Centre, University of Maryland, Report TR 6758 , revised 1970.
${ }^{4}$ H. P. Hanson, F. Herman, J. D. Lea, and S. Skillman, Acta Cryst., 1964, 17, 1040.
${ }_{5}$ J. O. Glanville, J. M. Stewart, and S. O. Grim, J. Organometallic Chem., 1967, 7, P9.
it in having a transition metal σ-bonded to the acetylene. The length of the carbon-carbon multiple bond in $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{Ph}_{2}\right)$ was not very accurately measured ($1.32 \pm 0.09 \AA$), so little can be deduced from its magnitude, but the angles between the $\mathrm{C}-\mathrm{C}$ bond and the $\mathrm{C}-\mathrm{Ph}$ bonds were ca. 140° (no σ given). The $\mathrm{C}-\mathrm{C}$ stretching frequency is lowered considerably, to the range $1750-1770 \mathrm{~cm}^{-1}$, and the co-ordination around the Pt atom is substantially planar. The diphenylethynyl
configuration and the bond lengths suggest that extensive delocalisation occurs, involving both metal atoms, the acetylenic fragment, and possibly the phenyl group. This feature, which probably involves back-bonding from filled orbitals on the Cu atom into π^{*} orbitals on the acetylene, must contribute to the enhanced stability of the complex over that of the free acetylide. ${ }^{6}$ The $\mathrm{Fe}-\mathrm{C}(8)$ distance $[1 \cdot 906(10) \AA]$ is somewhat shorter than expected for an $\mathrm{Fe}-\mathrm{C}(s p)$ single bond, ${ }^{7,8}$ but is

Figure 2 Contents of one unit cell, seen in projection down b, looking towards the origin
ligand in $\mathrm{Pt}\left(\mathrm{PPh}_{3}\right)_{2}\left(\mathrm{C}_{2} \mathrm{Ph}_{2}\right)$ is thus most simply formulated as divalent and bidentate. On the other hand, the simple acetylide $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2}\left(\mathrm{C}_{2} \mathrm{Ph}\right)$, the structure of which is reported in the preceding paper, shows bond angles at the C_{2} unit which do not differ significantly from 180° and has a $\mathrm{C}-\mathrm{C}$ bond length of $1 \cdot 201(9)$ \AA. The title compound is intermediate between these two situations in that the $\mathrm{C}-\mathrm{C}$ bond is of length $1.233(13)$ and the angles at the C atoms are $c a .162^{\circ}$. Both the
closely similar to that found for $\mathrm{Ni}-\mathrm{C}$ in two separate determinations ${ }^{9,10}$ of the crystal structure of trans$\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{Ph}\right)_{2}\left(\mathrm{PEt}_{3}\right)_{2}[1.87(1)$ and $1.847(11) \AA$.

We thank Miss Sheila Lindsay for some preliminary measurements on the crystal which was provided by Professor M. I. Bruce, and the S.R.C. for financial support and for facilities at the Atlas Computer Laboratory, Chilton, Berkshire, where help was given by Mrs. Carol Hirst.
[4/516 Received, 15th March, 1974]

- G. R. Davies, R. H. B. Mais, and P. G. Owston, J. Chem. Soc. (A), 1967, 1750.
${ }^{10}$ W. A. Spofford, P. D. Garfagna, and E. L. Amma, Inorg. Chem., 1967, 1553 and Errata, 2677.

