Crystal and Molecular Structure of [Iminobis(ethyleneoxy)]diphenylsilane: a Five-co-ordinate Silicon Compound

By John J. Daly * and Francisco Sanz, Monsanto Research S.A., Eggbühlstrasse 36, CH 8050 Zürich, Switzerland
Crystals of the title compound (V) are orthorhombic, space group $P 2_{1} 2_{1} 2_{1}$, with $a=9.056(7), b=11.904(10)$. $c=14-175(13) \AA$. Monochromated diffractometer data for 1341 planes were used to solve the structure by Patterson and Fourier methods and were refined by least squares to a final R of 0.070 . The formal eight-membered ring is bridged by a silicon-nitrogen bond of $2 \cdot 301(6) \AA$, and the silicon atom adopts a trigonal bipyramidal geometry of approximate symmetry C_{s}.

The existence of five-co-ordinate organosilicon compounds, in which the fifth co-ordination site at the trigonal bipyramidal silicon atom is occupied by a nitrogen atom acting as a σ donor, is now well established. ${ }^{1-4}$ A typical example ${ }^{1}$ is (III), which may be regarded as a manxine ${ }^{5}$ (I) (1-aza-manxane) ${ }^{6}$ analogue with a 1,5 -ring-closure forming the silicon-nitrogen bond. A
manxine hydrochloride, may be constructed with symmetry C_{3} and with the eight-membered ring in the boatchair (BC) form. This model has the nitrogen and silicon atoms on the three-fold axis, $3 \cdot 4 \AA$ apart, and conveniently arranged for interaction between the empty silicon d orbitals and the nitrogen atom. Moreover, intramolecular repulsions between hydrogen atoms would

(I)

(II)

(III)

(TV)

(X)

Dreiding model of this molecule without the siliconnitrogen bond, (II), based on the known structure ${ }^{7}$ of
${ }^{1}$ '. J. W. Turley and F. P. Boer, J. Amer. Chem. Soc., 1968, 90, 4026.
${ }_{2}$ F. P. Boer, J. W. Turley, and J. J. Flynn, J. Amer. Chem. Soc., 1968, 90, 5102.
${ }^{3}$ J. W. Turley and F. P. Boer, J. Amer. Chem. Soc., 1969, 91, 4129.
${ }^{4}$ F. P. Boer and J. W. Turley, J. Amer. Chem. Soc., 1969, 91, 4134.
tend to decrease the silicon-nitrogen distance in (II) since a similar effect is observed in manxine hydrochloride. These repulsions are not found in a model of

[^0](III). Recently Fink ${ }^{8}$ has synthesised $\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{OCH}_{2}{ }^{-}\right.$ $\left.\mathrm{CH}_{2}\right)_{2} \mathrm{NH}$ and a model of this, (IV), may be constructed with a BC eight-membered ring of symmetry C_{s} which is free from the constraints found in (II). Nevertheless, chemical and spectroscopic evidence suggested ${ }^{8}$ that a silicon-nitrogen bond is present and that the molecule is best described as (V). We have therefore carried out an X-ray analysis on $\mathrm{Ph}_{2} \mathrm{Si}\left(\mathrm{OCH}_{2} \cdot \mathrm{CH}_{2}\right)_{2} \mathrm{NH}$ to verify the other evidence and to establish the geometrical features of the molecule.

EXPERIMENTAL
Crystal Data. $-\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{Si}, M=285 \cdot 4$, Orthorhombic, $a=9 \cdot 056(7), \quad b=11 \cdot 904(10), \quad c=14 \cdot 175(13) \AA, \quad U=$ $1528 \cdot 1 \AA^{3}, D_{\mathrm{m}}=1244, Z=4, D_{\mathrm{c}}=1240 \mathrm{~kg} \mathrm{~m}^{-3}$. Space group $P 2_{1} 2_{1} 2_{1}\left(D_{2}^{4}\right.$, No. 19), Mo- K_{α} radiation, $\lambda=0.71069 \AA$; $\mu\left(\mathrm{Mo}-K_{\alpha}\right)=157 \mathrm{~m}^{-1}$.

Unit-cell dimensions were obtained from zero-layer precession photographs by a least-squares process; the standard deviations are estimates to allow for systematic errors which are expected to be much larger than the random errors. Intensity data were collected round a on a Hilger and Watts linear diffractometer fitted with a graphite monochromator. The limit switches on the machine were set to operate when θ was 26° and 1341 intensities $>2 \sigma$ were used in the analysis.

Structure Determination and Refinement.-The structure was solved from the three-dimensional Patterson function with the assistance of a Fourier map based on the phases of the silicon atom. This trial structure was refined by a leastsquares block-diagonal process with 3×3 and 1×1 or, later, 6×6 matrices for the co-ordinates and temperature factors with $w^{-1}=2.9+\left|F_{\mathrm{o}}\right|+0.01\left|F_{\mathrm{o}}\right|^{2}$. Hydrogen atom positions were calculated and checked with a three-dimensional difference synthesis when R was 0.091 . There was good agreement for the nitrogen and phenyl hydrogen atoms, but the methylene hydrogen atoms could not be identified clearly in the difference map. The temperature factors of the methylene carbon atoms were rather high, approximate root-mean-square displacements of $0.31-0.38 \AA$, so disorder was suspected. Another difference map was then calculated, without any contribution from the methylene carbon atoms, and examined for disorder in these groups. Significant electron density was only found where the methylene carbons had previously been placed. These atoms were then put back and refinement of the positional parameters of all atoms continued till R was $0 \cdot 070$. Isotropic temperature factors for the hydrogen atoms were fixed at 0.01 units of U higher than the carbon atoms to which they are bonded.

RESULTS AND DISCUSSION

The results of the analysis are summarized in Tables $\mathbf{1 - 3}$, atomic co-ordinates are listed in Table 1, atomic thermal parameters in Table 2, and bond lengths and angles in Table 3. Figure 1 shows the molecule projected down the a axis and the labelling of the atoms: Figure 2 shows the molecule projected down the $\mathrm{Si}-\mathrm{N}$ bond. Final values of the structure factors are listed in Supplementary Publication No. SUP 21038 (10 pp., 1 microfiche).*

* For details see Notice to Authors No. 7 in J.C.S. Dalton, 1973, Index issue.

The analysis confirms that the molecule has the bicyclic form (V) with nitrogen bonded to silicon. The

Table 1
Final atomic co-ordinates (\AA) with standard deviations in parentheses

X	Y	Z
$1 \cdot 3881$ (16)	0.9599(16)	1-3516(15)
$0 \cdot 1577(47)$	$0 \cdot 1058(51)$	$0 \cdot 6730(43)$
$1.6341(51)$	2.5642(44)	$1 \cdot 0066(46)$
2-1791(56)	$0 \cdot 7681$ (69)	$-0.8011(56)$
$0.5612(61)$	$1 \cdot 1746(62)$	3.0493(57)
-0.1835(78)	$0 \cdot 1332(82)$	$3 \cdot 6222(75)$
-0.7205(84)	$0.2111(105)$	4-8973(83)
$-0.5040(88)$	$1 \cdot 3515(103)$	$5 \cdot 6681$ (80)
$0 \cdot 2222(106)$	$2 \cdot 3642(94)$	$5 \cdot 1492(82)$
$0 \cdot 7632(92)$	$\bigcirc \cdot 2853(77)$	3-8474(73)
2.9404(62)	-0.0004(73)	$1 \cdot 8257(55)$
$2.9321(100)$	$-1.3704(75)$	$1 \cdot 9759(76)$
$4 \cdot 1222(130)$	$-1.9979(110)$	$2 \cdot 3479(84)$
$5 \cdot 2565(115)$	$-1 \cdot 3048(158)$	2.5573(98)
$5 \cdot 2733(92)$	$0 \cdot 0534(164)$	$2 \cdot 4249(96)$
$4 \cdot 1365(77)$	$0.6874(100)$	2.0769(77)
$0 \cdot 1055(119)$	$-0.3109(141)$	$-0.6833(87)$
$1 \cdot 1896(128)$	$0.0169(179)$	- $1.4480(87)$
2.2268(119)	3.0423(117)	-0.1766(95)
$2 \cdot 2321(173)$	$2 \cdot 1336(118)$	$-1.2580(107)$
$2 \cdot 99(10)$	$0 \cdot 45(9)$	$-0.79(10)$
$-0.43(9)$	-0.56(9)	3.22(10)
-1.20(11)	$-0.50(9)$	5.52(10)
-0.66(12)	$1 \cdot 60$ (10)	$6 \cdot 55(10)$
$0 \cdot 35(11)$	3.47(10)	$5 \cdot 58(11)$
1.01(11)	$3 \cdot 19$ (9)	3.47(11)
$2 \cdot 10$ (11)	$-1.95(10)$	2.02(11)
3.94(12)	$-2.66(10)$	$2 \cdot 45(10)$
6.07(16)	$-1.72(13)$	$3 \cdot 00(14)$
$6.09(14)$	$0 \cdot 62(12)$	$2 \cdot 59(12)$
$4 \cdot 08(11)$	1.79 (10)	2.02(10)
$0 \cdot 02(14)$	$-1.22(11)$	$-0.59(13)$
$-0.53(14)$	$-0.35(12)$	-0.82(13)
1.82(15)	$-0 \cdot 30(13)$	$-1.47(14)$
1-07(17)	$0 \cdot 04$ (15)	$-2.31(12)$
3-13(13)	$3 \cdot 05(13)$	$0.06(14)$
$2 \cdot 03(12)$	4-11(11)	$-0.38(11)$
$3 \cdot 10(15)$	1.92(16)	-1.51(15)
$1 \cdot 42(15)$	2•37(13)	$-1.61(14)$
	H(9)	1

Figure 1 The molecule projected down the a axis and the labelling of the atoms
molecule is asymmetric, and therefore chiral, so that individual crystals are built up from one optical isomer only (space group $P 2_{1} 2_{1} 2_{1}$). However, the large thermal motion, especially that of the phenyl and methylene groups, suggests that the energy barrier for the inter-
${ }^{8} \mathrm{~W}$. Fink, personal communication; the compound was prepared in the course of studies of biologically active organosilicon compounds.

Table 2

Atom	U_{11}	U_{22}	U_{33}	$2 U_{18}$	$2 U_{23}$	$2 U_{13}$	Atom	U
Si	412(9)	482(9)	335(8)	105(20)	-31(19)	-66(19)	HN	735
$\mathrm{O}(1)$	$524(32)$	822(40)	406(28)	-106(64)	-285(59)	-63(55)	H(2)	739
$\mathrm{O}(2)$	$711(40)$	$582(35)$	$490(31)$	$4(65)$	122(54)	157(60)	H(3)	902
N	557(42)	965(59)	382(31)	358(93)	94(80)	76(64)	H(4)	953
$\mathrm{C}(1)$	$444(40)$	584(49)	318(33)	210(75)	-100 (69)	-113(67)	H(5)	954
$\mathrm{C}(2)$	590 (49)	$822(60)$	505(45)	-292(101)	66(94)	81 (86)	H(6)	770
C(3)	600 (58)	1134(87)	671(59)	-217(130)	140(127)	134(105)	H(8)	872
$\mathrm{C}(4)$	743(63)	1331(91)	486(51)	865(132)	28(118)	315(110)	$\mathrm{H}(9)$	1127
C(5)	1009(86)	978(77)	575(60)	104(153)	-515(123)	-56(132)	$\mathrm{H}(10)$	1477
C(6)	903(67)	630(54)	476(49)	4(117)	-132(91)	11(105)	H(11)	1279
C(7)	523(48)	758(52)	$254(32)$	320(90)	152(75)	-76(74)	H(12)	896
C(8)	1087(88)	719(57)	511(53)	945(130)	-133(96)	-307(122)	H (13A)	1271
C(9)	1476(130)	1049(98)	557(58)	1248(201)	-188(137)	-125(157)	$\mathrm{H}(13 \mathrm{~B})$	1271
$\mathrm{C}(10)$	857(88)	2586(193)	689(71)	1506(227)	1101(198)	-16(134)	H(14A)	1511
C(11)	529(62)	2247(177)	761 (76)	370(185)	768(205)	20(124)	H (14B)	1511
C(12)	535(51)	1251(93)	602(58)	-58(127)	651 (135)	-363(97)	$\mathrm{H}(15 \mathrm{~A})$	1043
C(13)	1099(98)	1894(148)	519(54)	-848(223)	- 1040(159)	-58(134)	$\mathrm{H}(15 \mathrm{~B})$	1043
C(14)	1219(113)	2516(201)	499(66)	- 1449(286)	-1197(203)	487(159)	$\mathrm{H}(16 \mathrm{~A})$	1542
$\mathrm{C}(15)$	1203(104)	996(79)	629(67)	--213(172)	633(128)	410(145)	H(16B)	42
C(16)	2449(240)	956(91)	862(86)	836(268)	541(164)	1797(261)		

* For heavy atoms (with standard deviations in parentheses), in the form: $\exp \left[-2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+k^{2} b^{* 2} U_{22}+l^{2} c^{* 2} U_{33}+2 h k a^{*} b^{*}\right.\right.$ $\left.l_{12}+2 k l b^{*} c^{*} U_{23}+2 h l a^{*} c^{*} U_{13}\right]$; for hydrogens: $\exp \left[-2 \pi^{2} U s^{2}\right], s=(2 \sin \theta) / \lambda$.

Table 3
Bond lengths (\AA) and angles (${ }^{\circ}$), with standard deriations in parentheses
(a) Bond lengths

To si		Ph groups	
$\mathrm{Si}-\mathrm{C}(1)$	1.901(6)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.403(10)
$\mathrm{Si}-\mathrm{C}(7)$	$1.886(7)$	$\mathrm{C}(2)-\mathrm{C}(3)$	1-386(12)
$\mathrm{Si}-\mathrm{N}$	$2 \cdot 301$ (6)	$\mathrm{C}(3)-\mathrm{C}(4)$	1-393(13)
$\mathrm{Si}-\mathrm{O}(1)$	1-644(5)	$\mathrm{C}(4)-\mathrm{C}(5)$	$1-350$ (13)
$\mathrm{Si}-\mathrm{O}(2)$	1.659(5)	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.412(13)$
		$\mathrm{C}(6)-\mathrm{C}(1)$	1-383(10)
Oxygen Carbon		$\mathrm{C}(7)-\mathrm{C}(8)$	$1 \cdot 378(11)$
$0(1)-\mathrm{C}(13)$	1-420(13)	$\mathrm{C}(8)-\mathrm{C}(9)$	1-396(14)
$\bigcirc(2)-C(15)$	1-407(12)	$\mathrm{C}(9)-\mathrm{C}(10)$	$1 \cdot 346(17)$
		$\mathrm{C}(10)-\mathrm{C}(11)$	$1-365(18)$
Nitregen-(${ }^{\text {arbon }}$		$\mathrm{C}(11)-\mathrm{C}(12)$	$1 \cdot 347(15)$
N -C(14)	1-401(15)	$\mathrm{C}(12)-\mathrm{C}(7)$	1-402(11)
$\mathrm{N}-\mathrm{C}(16)$	1•441(15)	Mean C	1.380
$\mathrm{C}\left(s p^{3}\right)-$ C($\left.s p^{3}\right)$		$\mathrm{C}\left(\mathrm{s} p^{2}\right)-\mathrm{H}$	
C(13)-C(14)	1-367(18)	Average	0.99(12)
C(15)-C(16)	1-413(18)		
$\left.{ }^{(1)}(s)^{3}\right)^{3}-11$			
Average $\mathrm{N}-\mathrm{H}$	$0.88(15)$		
$\mathrm{N}-\mathrm{H}$	0.87(9)		

(b) Bond angles

$\mathrm{C}(1)-\mathrm{Si}-\mathrm{C}(7)$	101.0(3)
C(1)-Si-()(1)	$95 \cdot 8(3)$
$\mathrm{C}(1)-\mathrm{Si}-\mathrm{O}(2)$	98.1(3)
C(1)- $\mathrm{Si}-\mathrm{N}$	174.0(3)
$\mathrm{N}-\mathrm{Si-C}(7)$	84.8(3)
$\mathrm{N}-\mathrm{Si}-\mathrm{O}(\mathrm{J})$	$80 \cdot 1(2)$
$\mathrm{N}-\mathrm{Si}-\mathrm{O}(\underline{2})$	$80.5(2)$
C(7)-Si-O(1)	117.1(3)
$\mathrm{C}(7)-\mathrm{Si}-\mathrm{C}(2)$	115.0 (3)
O(1)-Si-O)(2)	$121 \cdot 8(3)$
Five-membered rings	
Si ()(1)-C(13)	1225.0(6)
$\mathrm{Si}-\mathrm{C}(2)-\mathrm{C}(15)$	124.5(6)
()(1)-C(13)-C(14)	$115 \cdot 8(10)$
()(2)-C(15)-C(16)	115•3(10)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{N}$	$115.5(11)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{N}$	111.5(10
C(14)--N-Si	$1193.5(6)$
C(16)-N-Si	103-3(6)
$\mathrm{N}-\mathrm{Si-O}(1)$	$80 \cdot 1(2)$
$\mathrm{N}-\mathrm{Si}-()(\underline{2})$	80.5 (2)
Other	
$\mathrm{C}(14)-\mathrm{N}-\mathrm{C}(16)$	119.8(9)

In Ph groups		
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$122 \cdot 7(7)$	
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$119.7(8)$	
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$119.0(9)$	
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$121 \cdot 2(9)$	
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$121 \cdot 4(7)$	
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	$116 \cdot 0(6)$	
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$118 \cdot 1(8)$	
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$121 \cdot 9(10)$	
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$120.5(12)$	
$\mathrm{C}(10)-\mathrm{C}(1)-\mathrm{C}(12)$	$118.9(11)$	
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(7)$	$122 \cdot 4(9)$	
$\mathrm{C}(12)-\mathrm{C}(7)-\mathrm{C}(8)$	$118 \cdot 2(7)$	

conversion of the two forms is low (cf. Figure 2), and that in solution the molecule may well adopt the average symmetry C_{s}.

The ligands round the silicon atom form a trigonal bipyramid which approximates closely to the symmetry C_{s} (see Table 3). The silicon-nitrogen bond length

$C(15)$
$1 \cdot 876(4) \AA$ in $\mathrm{Ph}_{4} \mathrm{Si}^{11}$ but they are close to the value found in (III) ${ }^{1}[1.882(6) \AA]$. Curiously enough they tend to be longer than the $\mathrm{Si-C}\left(s p^{3}\right)$ bond lengths [ax. $1 \cdot 877(5)$ and eq. $1 \cdot 898(5) \AA$] in (VI), ${ }^{4}$ which also has local symmetry C_{s} at silicon, but the $\mathrm{Si}-\mathrm{C}$ equatorial bond is longer than the axial one.

(VI)

The silicon-oxygen bond lengths lie in the range of values found in related compounds ${ }^{1-4}$ and are a little longer than those in aliphatic phenyl ethers. ${ }^{12}$ The considerable thermal motion of the carbon atoms not bonded to silicon leads to artificially low values for the $\mathrm{C}-\mathrm{C}$, $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{N}$, and $\mathrm{C}-\mathrm{O}$ bond lengths.

One of the five-membered rings is almost planar, with torsion angles: $-\mathrm{l} \cdot 4(7) \mathrm{O}(1)-\mathrm{C}(13), 2 \cdot 5(4) \mathrm{C}(13)-\mathrm{C}(14)$,
$-2 \cdot 3(7) \mathrm{C}(14)-\mathrm{N}, 1 \cdot 3(7) \mathrm{N}-\mathrm{Si}$, and $0 \cdot 0(7) \mathrm{Si}-\mathrm{O}(1)$. The second is in a twisted envelope form in which no four consecutive atoms are coplanar, the torsion angles are: $-19 \cdot 1(7) \mathrm{N}-\mathrm{C}(16), 25 \cdot 3(4) \mathrm{C}(16)-\mathrm{C}(15),-19 \cdot 3(10) \mathrm{C}(15)^{-}$ $\mathrm{O}(2), 5 \cdot 3 \mathrm{O}(2)-\mathrm{Si}$, and $8 \cdot 3(9) \mathrm{Si}-\mathrm{N}$. The large thermal motion of the ethylene groups suggests that these fivemembered rings are not rigid. The co-ordination around the nitrogen atom is approximately tetrahedral with the lone pair electrons occupying an axial site of the trigonal bipyramidal nitrogen atom.
The van der Waals contacts present no evidence for hydrogen bond formation of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ type; the shortest contacts found for the various types are: 2.76 $\mathrm{O} \cdots \mathrm{H}, 2.74 \mathrm{C} \cdots \mathrm{H}, 2.30 \mathrm{H} \cdots \mathrm{H}$, and $3.51 \AA$ for $\mathrm{C} \cdot \mathrm{N}$.

We thank Dr. W. Fink who suggested the problem, supplied the crystals, and measured the density.
[4/291 Received, 14th February, 1974]
${ }_{11}$ C. Glidewell and G. M. Sheldrick, J. Chem. Soc. (A), 1971, 3127.
${ }^{12}$ Chem. Soc. Special Publ., No. 18, 1965.

[^0]: 5 J. C. Coll, D. R. Crist, M. C. G. Barrio, and N. J. Leonard, J. Amer. Chem. Soc., 1972, 94, 7092.
 ${ }^{6}$ M. Doyle, W. Parker, P. A. Gunn, J. Martin, and D. D. MacNicol, Tetrahedron Letters, 1970, 3619.
 ${ }^{7}$ A. H.-J. Wang, R. J. Missavage, S. R. Byrn, and I. C. Paul, J. Amer. Chem. Soc., 1972, 94, 7100.

