## Crystal and Molecular Structure of 4-[(Diethylamino)(t-butylamino)-methylene]-4-(t-butyl isocyanide)-2,2,5,5-tetrakis(trifluoromethyl)-1,3,4dioxapalladolan: A Palladium(II) Carbene Complex

By Anthony Modinos and Peter Woodward,* Department of Inorganic Chemistry, The University, Bristol BS8 1TS

Crystals of the title compound (I) are monoclinic, space group $P 2_{1} / a$, with $Z=4$ in a unit cell of dimensions: $a=20.093(3), b=9.519(2), c=15 \cdot 201(3) \AA, \beta=96.77(2)^{\circ}$. The structure has been elucidated by conventional heavy-atom methods from 4123 diffracted intensities measured on a four-circle diffractometer, and refined to $R 0.099$. The palladium atom, which is in an approximately square-planar environment, forms part of
a five-membered condensed hexafluoroacetone ring, $\mathrm{Pd} \cdot \mathrm{C}\left(\mathrm{CF}_{3}\right)_{2} \mathrm{O} \cdot \mathrm{C}\left(\mathrm{CF}_{3}\right)_{2} \mathrm{O}$, which is of envelope conformation. The $\mathrm{O}-\mathrm{C}\left(\mathrm{CF}_{3}\right)_{2}$ bond from the oxygen atom adjacent to the metal in this ring is notably short [1.337(13) $\AA$ ]. The plane of the carbene ligand lies perpendicular to the co-ordination plane of the Pd atom: there is virtually no back-donation from Pd to carbene [Pd-C(4) $2.07 \AA$ ], and the carbene lies trans to $C(1)$ of the five-membered ring. The $C-N$ bond distances within the carbenoid fragment (mean $1.32 \AA$ ) indicate a high degree of delocalisation. The short intramolecular contact between the H atom of the $\mathrm{NHBu}^{t}$ group and one of the methylene hydrogen atoms of the $\mathrm{NEt}_{2}$ group supports spectroscopic evidence for restricted rotation around an $\mathrm{N}-\mathrm{Et}$ bond.

The overall configuration of the title compound (I) had already been established by spectroscopic studies. ${ }^{1}$ A detailed interpretation of the ${ }^{1} \mathrm{H}$ n.m.r. spectrum led to the suggestion that there must be restricted rotation about one of the $\mathrm{N}-\mathrm{Et}$ bonds caused by steric

(I) showing the systematic numbering
nteraction between one of the methylene H atoms of the Et group and the NH atom of the carbene ligand. It was also assumed (by inference from previous $X$-ray studies) ${ }^{2}$ that the $\mathrm{N}-\mathrm{C}-\mathrm{N}$ plane of the carbene would lie perpendicular to the plane of the five-membered
${ }^{1}$ C. H. Davies, C. H. Game, M. Green, and F. G. A. Stone, J.C.S. Dalton, 1974, 357.
ring. To establish these points, and to obtain further information on the details of the structure, this $X$-ray determination was undertaken.

## EXPERIMENTAL

Crystals of (I) grow as colourless prisms elongated in the $a$ direction. The dimensions of the one chosen for $X$-ray diffraction were $0.35 \times 0.30 \times 0.12 \mathrm{~mm}$; this crystal was mounted on a Syntex $P 2_{1}$ four-circle diffractometer under the control of a Nova 1200 computer. ${ }^{3}$ Lattice parameters were determined by refinement of the $x$ and $y$ co-ordinates of 15 reflections chosen from a 15 -minute rotation photograph taken (on the diffractometer) with a Polaroid film cassette mounted 97.5 mm from the crystal, with $2 \theta, \omega$, and $\chi$ all at $0^{\circ}$. The shortest three independent reciprocal vectors were used by the auto-indexing routine to generate, by linear combinations, other real-space vectors as possible unit-cell axes. Only those combinations which produced near-integer values for the indices
${ }^{2}$ F. A. Cotton and C. M. Lukehart, Progr. Inorg. Chem., 1972, 16, 487, and refs. therein.
${ }^{3}$ R. A. Sparkes, 'SYNTEX $P 2_{1}$ Operations Manual,' Syntex Analytical Instruments, Cupertino, U.S.A., 1973.
to the other 12 planes were output, with the cosines of the angles between all such axes. The unit cell was then defined by inspection. The setting angles for the $\mathbf{1 5}$ reflections were used to calculate the cell dimensions, their standard deviations, and the orientation matrix, by least-squares refinement. A number of intensities for which $30^{\circ} \leqslant 2 \theta \leqslant 36^{\circ}$ were rapidly measured by use of this matrix; 15 of these were chosen and recentred to obtain more accurate cell parameters. Intensities were measured with Mo- $K_{\alpha}$ radiation and a graphite monochromator. A preliminary peak count for 2.5 s was used to determine the scan rate. Sample counts of $>600$ were subsequently measured at the fastest scan speed $\left(0.997^{\circ} \mathrm{s}^{-1}\right)$, while those $<20$ were measured at $0.0337^{\circ}$ $\mathrm{s}^{-1}$; intermediate values were measured at appropriate submultiples of the fastest rate. A $\theta-2 \theta$ scan in 96 steps with bisecting geometry was used; backgrounds were measured before and after each scan, so that the total background time was equal to the scan time. The range

Table 1
Atomic positional and thermal parameters, with estimated standard deviations in parentheses

| Atom | $x / a$ | $y / b$ | $z / c$ | $10^{2} U / \AA^{2}$ * |
| :---: | :---: | :---: | :---: | :---: |
| Five-membered ring |  |  |  |  |
| Pd | 0.51441 (3) | $0 \cdot 38179(7)$ | 0.25161 (5) | $\dagger$ |
| $\mathrm{O}(1)$ | 0.5883(3) | $0 \cdot 4820$ (7) | $0 \cdot 3272(4)$ |  |
| C(2) | $0 \cdot 6465(5)$ | $0 \cdot 4847$ (12) | $0 \cdot 2927$ (7) | 8.2(3) |
| $\mathrm{O}(2)$ | $0.6537(3)$ | $0 \cdot 3924(9)$ | $0 \cdot 2220$ (5) |  |
| $\mathrm{C}(1)$ | 0.5940 (5) | $0 \cdot 3192(10)$ | $0 \cdot 1849$ (6) | $7 \cdot 4(3)$ |
| $\mathrm{C}(11)$ | $0.5867(6)$ | $0 \cdot 3530$ (14) | 0.0883 (8) | 9-4(3) |
| $\mathrm{F}(111)$ | $0.6426(3)$ | $0 \cdot 3410$ (11) | 0.0489 (5) | $\dagger$ |
| $\mathrm{F}(112)$ | $0.5674(4)$ | $0 \cdot 4831$ (10) | $0.0723(5)$ | $\dagger$ |
| F(113) | $0.5407(4)$ | $0 \cdot 2744(10)$ | $0.0408(5)$ | ${ }^{\dagger}$ |
| $\mathrm{C}(12)$ | $0.6088(6)$ | $0 \cdot 1651(13)$ | $0 \cdot 2008(8)$ | 9.0(3) |
| $\mathrm{F}(121)$ | $0.6648(3)$ | $0.1213(9)$ | $0 \cdot 1676(6)$ |  |
| $\mathrm{F}(122)$ | $0.5608(4)$ | $0.0828(7)$ | $0 \cdot 1638(6)$ |  |
| $\mathrm{F}(123)$ | $0.6182(4)$ | 0.1349 (9) | $0 \cdot 2857(6)$ | ${ }^{\dagger}{ }^{\dagger}$ |
| $\mathrm{C}(21)$ | $0.7030(9)$ | $0 \cdot 4519(22)$ | $0.3639(13)$ | 13.7(6) |
| $\mathrm{F}(211)$ | $0.7633(4)$ | $0 \cdot 4582(21)$ | $0.3366(8)$ | $\dagger$ |
| $\mathrm{F}(212)$ | 0.6961 (6) | $0 \cdot 3251(15)$ | 0.3941 (7) | $\dagger$ |
| $\mathrm{F}(213)$ | $0.7044(4)$ | $0.5264(15)$ | $0 \cdot 4378(6)$ | ${ }^{\dagger}+$ |
| $\mathrm{C}(22)$ | 0.6598 (8) | $0 \cdot 6336(19)$ | $0.2566(11)$ | 12.0(4) |
| F (221) | $0.7115(6)$ | $0 \cdot 6457(13)$ | $0.2151(8)$ |  |
| F (222) | $0 \cdot 6084$ (7) | $0 \cdot 6759(10)$ | $0 \cdot 2020$ (8) |  |
| $\mathrm{F}(223)$ | $0 \cdot 6640(6)$ | 0.7313(11) | $0 \cdot 3218$ (7) | $\dagger$ |
| Isocyanide ligand |  |  |  |  |
| $\mathrm{C}(3)$ | $0 \cdot 4464(5)$ | 0.2908(10) | $0.1758(6)$ | 6.6(2) |
| $\mathrm{N}(3)$ | $0 \cdot 4031$ (4) | $0 \cdot 2413(8)$ | $0.1300(5)$ | 7-2(2) |
| $\mathrm{C}(30)$ | $0.3499(6)$ | $0 \cdot 1705(12)$ | $0.0700(7)$ | 8.7 (3) |
| C(31) | $0.3038(8)$ | $0 \cdot 2917$ (19) | $0.0316(13)$ | + |
| $\mathrm{C}(32)$ | $0 \cdot 3833(9)$ | $0 \cdot 1035(27)$ | -0.0010(13) | $\dagger$ |
| C(33) | $0.3113(8)$ | $0.0782(20)$ | 0.1279(12) | $\dagger$ |
| Carbene ligand |  |  |  |  |
| $\mathrm{C}(4)$ | $0.4387(4)$ | 0.4448 (10) | 0.3246(6) | 6.3(2) |
| $\mathrm{N}(4)$ | 0.4216 (4) | $0 \cdot 3759(9)$ | $0 \cdot 3918$ (5) | 7-1(2) |
| $\mathrm{H}(400)$ | $0 \cdot 3829$ | 0.4154 | $0 \cdot 4180$ | 8.0 |
| $\mathrm{C}(40)$ | $0 \cdot 4510$ (5) | $0 \cdot 2467(10)$ | $0.4360(6)$ | 7.1(2) |
| $\mathrm{C}(41)$ | 0.4470 (7) | $0 \cdot 1227(12)$ | 0.3715 (8) | $\dagger$ |
| $\mathrm{C}(42)$ | $0.5235(6)$ | $0 \cdot 2773$ (14) | $0 \cdot 4761$ (9) | $\dagger$ |
| C(43) | 0.4076 (7) | 0.2141 (16) | $0.5113(9)$ | ${ }^{\dagger}$ |
| $\mathrm{N}(5)$ | $0.4044(4)$ | 0.5616 (9) | $0 \cdot 3005(6)$ | 8.0(2) |
| $\mathrm{C}(51)$ | $0 \cdot 4202(7)$ | $0.6483(13)$ | $0 \cdot 2259(11)$ | + |
| H(511) | $0 \cdot 4490$ | 0.5860 | $0 \cdot 1856$ | 8.0 |
| $\mathrm{H}(512)$ | 0.3740 | 0.6781 | $0 \cdot 1881$ | 8.0 |
| $\mathrm{C}(52)$ | $0 \cdot 4585$ (11) | $0.7777(19)$ | $0.2514(16)$ | $\dagger$ |
| C (61) | $0 \cdot 3457(6)$ | $0 \cdot 6090$ (12) | $0.3443(9)$ | ${ }^{\dagger}$ |
| $\mathrm{H}(611)$ | $0 \cdot 3563$ | 0.5945 | $0 \cdot 4143$ | 8.0 |
| $\mathrm{H}(612)$ | 0.3365 | 0.7179 | $0 \cdot 3302$ | $8 \cdot 0$ |
| C (62) | $0 \cdot 2830(6)$ | $0 \cdot 5238(17)$ | $0 \cdot 3100(13)$ | $\dagger$ |
| * $B=8 \pi^{2} U$. $\dagger$ Anisotropic thermal parameters in the form |  |  |  |  |
| $\operatorname{expp}_{x}\left\{-2 \pi^{2}\left[U_{11} a^{* 2} h^{2}+U_{2 b^{2}}{ }^{* 2} k^{2}+U_{33} c^{* 2} l^{2}+2 U_{12} a^{*} b^{*} h k+\right.\right.$ $\left.\left.2 U_{13} a^{*} c^{*} h l+2 U_{23} b^{*} c^{*} k l\right]\right\}$, with parameters $\left(\times 10^{2}\right)$ : |  |  |  |  |

Table 1 (Continued)

| Atom |  | $U_{22}$ | $U_{33}$ | $U_{12}$ | U | ${ }^{23}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pd | 5.03(7) | 6.16(8) | 7-22(8) | 0.15(3) | 0.48(3) | -0.90 (4) |
| $\mathrm{O}(1)$ | $5 \cdot 7(3)$ | 9-1(5) | 8.6(4) | $-1.0(3)$ | $1 \cdot 3(3)$ | -2.5(4) |
| $\mathrm{O}(2)$ | $5 \cdot 1(3)$ | $13 \cdot 3(6)$ | 9.8(5) | $-1.5(4)$ | $1 \cdot 4(3)$ | -4.3(5) |
| F(111) | 8.6(4) | $24 \cdot 0$ (10) | $10 \cdot 2(5)$ | -1.5(5) | 4-1(4) | -2.6(6) |
| F(112) | 13.5(6) | 14.9(7) | $10 \cdot 8(5)$ | -0.6(5) | 1.6(4) | $2 \cdot 2(5)$ |
| $\mathrm{F}(113)$ | $10 \cdot 3(5)$ | $19.7(8)$ | $8.8(4)$ | $-4 \cdot 7(5)$ | $0 \cdot 8(4)$ | $-4 \cdot 2(5)$ |
| F(121) | 9.0(4) | 14.6(6) | $16 \cdot 7(7)$ | $4 \cdot 2(5)$ | 3-1(4) | $-4 \cdot 7(6)$ |
| F (122) | 10.2(5) | $8.9(5)$ | 19.4(8) | $0 \cdot 4(4)$ | $1.8(5)$ | -4.2(5) |
| F(123) | 14.5(6) | $11 \cdot 8(6)$ | $14 \cdot 1(6)$ | 5.9(5) | $2 \cdot 1(5)$ | -9(5) |
| F(211) | 6.0(4) | $55 \cdot 1$ (28) | $18 \cdot 4(9)$ | -0.1(9) | $0.7(5)$ | -13.9(14) |
| F(212) | $17 \cdot 2(9)$ | $24 \cdot 8(14)$ | $13 \cdot 2(7)$ | 7.9(9) | $-5 \cdot 7(6)$ | $-1.7(8)$ |
| F(213) | 11.4 (6) | $31 \cdot 4(15)$ | $13 \cdot 7(7)$ | $1 \cdot 6(7)$ | -2.6 (5) | $-11.7(9)$ |
| F 221 ) | $21 \cdot 7$ (10) | $21.9(11)$ | $21 \cdot 2(10)$ | $-11.8(9)$ | $14.7(9)$ | -9.7(9) |
| $\mathrm{F}(222)$ | $23 \cdot 8$ (12) | $10 \cdot 7(6)$ | $19 \cdot 0$ (10) | $-2 \cdot 2(7)$ | 4.7(9) | 2-2(6) |
| F(223) | 23.9(11) | $16.7(8)$ | 18.6(9) | $-12.0(8)$ | $11.8(8)$ | -9.8(8) |
| $\mathrm{C}(31)$ | $10 \cdot 6$ (10) | 14.8 (14) | 19.2(16) | $-1.5(10)$ | $-5 \cdot 2(11)$ | $4 \cdot 0$ (13 |
| C(32) | 13.4(13) | $28.0(27)$ | 17.8(16) | $-0.7(15)$ | 1.6(11) | $-15 \cdot 9$ ( |
| C(33) | 13.6(12) | 17.7(17) | $14 \cdot 9(13)$ | $-8.4(12)$ | $-1.0(10)$ | $3 \cdot 9$ (12) |
| $\mathrm{C}(41)$ | 14-1(10) | $5 \cdot 9(6)$ | 9.6(8) | 1.1(7) | $1.0(7)$ | 0.4(6) |
| C(42) | $8.7(8)$ | 9.4(8) | 12.4(10) | -0.6(6) | $-1.5(7)$ | $2 \cdot 4(7)$ |
| C(43) | 12.2(10) | 12.4(11) | 9.6(8) | -0.7(8) | $3 \cdot 6(7)$ | $1.5(8)$ |
| C(51) | $11.7(10)$ | 7.8(8) | $15 \cdot 5(12)$ | $2 \cdot 4(7)$ | 1-4(9) | $0 \cdot 6(8)$ |
| $\mathrm{C}(52)$ | $21 \cdot 1(20)$ | $10.0(12)$ | $22 \cdot 4(21)$ | $-2.9(13)$ | $-0.5(16)$ | 0.7(13) |
| $\mathrm{C}(61)$ | 8.5(7) | $7 \cdot 5(7)$ | $15 \cdot 0(10)$ | $3 \cdot 6(6)$ | 2.0(7) | $-1.8(7)$ |
| (62) | 6.1(7) | $12 \cdot 3(11)$ | $24 \cdot 2$ ( | $0 \cdot 6(7)$ | $-0.3(9)$ | -3.5 (12) |

of $2 \theta$ was from $1^{\circ}$ below the Bragg angle for Mo- $K_{\alpha 1}$ to $1^{\circ}$ above the angle for Mo- $K_{\alpha 2}$. A linear correction for counter coincidence effects was made for each intensity step for which the count exceeded 5000 . (For counts exceeding 50,000 this correction is considered invalid and the reflection flagged for re-investigation; no such reflections occurred for the crystal under study.) Five reflections were remeasured between every 55 measured intensities in order to check the stability of the apparatus and of the crystal. The check reflections were analysed by the program DRSYN on the local ICL $4 / 75$ computer. ${ }^{4}$ Reflections for which $I<2 \cdot 5 \sigma(I)$ were regarded as 'unobserved' for the purposes of structure solution, but were included in the final stages of the refinement. Of the total 5118 independent reflections (complete for $3 \cdot 7^{\circ} \leqslant 2 \theta \leqslant 50 \cdot 0^{\circ}$ ), 2344 were unobserved. Weighted and unweighted leastsquares plots of $(I)$ and of $\ln (I)$ vs. exposure time for the 5 check reflections showed insignificant time dependence: overall changes in intensity varied between $-8 \%$ and $2 \%$ over the 174 h crystal exposure time. The 103 measurements of each reference reflection gave standard deviations $1.1-1.8$ times those derived from counting statistics, indicating reasonable constancy. Of the 342 systematic absences measured, 7 were above the $2 \cdot 5 \sigma$ threshold, and for 13 others the value of $I / \sigma$ fell below $-2 \cdot 5$, the ratio $I: \sigma$ ranging from $-4 \cdot 6$ to $4 \cdot 1$.

RESULTS
Crystal Data.- $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~F}_{12} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Pd}, \quad M=677 \cdot 9$. Monoclinic, $a=20.093(3), b=9.519(2), c=15.201(3) \AA, \beta=$ $96.77(2)^{\circ}, Z=4, D_{\mathrm{c}}=1.56 \mathrm{~g} \mathrm{~cm}^{-3}, D_{\mathrm{m}}=1.51, F(000)=$ 1360. Space group $P 2_{1} / a$. Mo- $K_{\alpha} X$-radiation (graphite monochromator), $\lambda=0.71069 \AA ; \mu\left(\mathrm{Mo}-K_{\alpha}\right)=7.38 \mathrm{~cm}^{-1}$.

The probable position of the Pd atom was apparent from pseudoabsences for $h k l: 2 h+k=4 n+2$, and $h+k+$ $l=2 n+1$. The resulting approximate co-ordinates $\left(\frac{1}{2}, \frac{3}{8}, \frac{1}{4}\right)$ were confirmed by Patterson synthesis, and the remainder of the structure was elucidated by electrondensity difference syntheses. Subsequent structure refinement by full-matrix least squares, using 2774 'observed ' reflections and with isotropic thermal parameters for all atoms except Pd , led to $R 0 \cdot 106\left(R^{\prime} 0 \cdot 113\right)$. Further

Table 2
Bond lengths ( $\AA$ ) and angles ( ${ }^{\circ}$ )

| (a) Distances |  | O(2) C(2)-C(22) | 105•2(10) |
| :---: | :---: | :---: | :---: |
| Five-membered ring |  | $\mathrm{C}(21)-\mathrm{C}(2)-\mathrm{C}(22)$ | 107.2(12) |
| $\mathrm{Pd}-\mathrm{O}(\mathbf{1})$ | 2.008(6) | $\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{F}(111)$ | $115 \cdot 5(9)$ |
| $\mathrm{O}(1)-\mathrm{C}(2)$ | $1 \cdot 337$ (13) | $\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{F}(112)$ | $112 \cdot 2(10)$ |
| $\mathrm{C}(2)-\mathrm{O}(2)$ | $1.409(14)$ | $\mathrm{C}(1)-\mathrm{C}(11)-\mathrm{F}(113)$ | $113 \cdot 2(10)$ |
| $\mathrm{O}(2)-\mathrm{C}(1)$ | 1.444(11) | $F(111)-C(11)-F(112)$ | 104•1(11) |
| $\mathrm{C}(1)-\mathrm{Pd}$ | $2 \cdot 080$ (10) | $\mathrm{F}(111)-\mathrm{C}(11)-\mathrm{F}(113)$ | $105 \cdot 9(10)$ |
| $\mathrm{C}(1)-\mathrm{C}(11)$ | $1.493(15)$ | $\mathrm{F}(112)-\mathrm{C}(11)-\mathrm{F}(113)$ | $105 \cdot 0(10)$ |
| $\mathrm{C}(11)-\mathrm{F}(111)$ | $1 \cdot 338$ (15) | $\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{F}(121)$ | 113.3(10) |
| $\mathrm{C}(11)-\mathrm{F}(112)$ | 1-311(16) | $\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{F}(122)$ | $112 \cdot 9(9)$ |
| $\mathrm{C}(11)-\mathrm{F}(113)$ | $1 \cdot 333(14)$ | $\mathrm{C}(1)-\mathrm{C}(12)-\mathrm{F}(123)$ | $111 \cdot 8(10)$ |
| $\mathrm{C}(1)-\mathrm{C}(12)$ | $1 \cdot 511(16)$ | $\mathrm{F}(121)-\mathrm{C}(12)-\mathrm{F}(122)$ | $105 \cdot 0(10)$ |
| $\mathrm{C}(12)-\mathrm{F}(121)$ | $1 \cdot 353(15)$ | $\mathrm{F}(121)-\mathrm{C}(12)-\mathrm{F}(123)$ | $105 \cdot 6(9)$ |
| $\mathrm{C}(12)-\mathrm{F}(122)$ | $1 \cdot 316$ (14) | $\mathrm{F}(122)-\mathrm{C}(12)-\mathrm{F}(123)$ | 107.6(10) |
| $\mathrm{C}(12)-\mathrm{F}(123)$ | $1 \cdot 315(15)$ | $\mathrm{C}(2)-\mathrm{C}(21)-\mathrm{F}(211)$ | 113.9(15) |
| $\mathrm{C}(2)-\mathrm{C}(21)$ | 1-506(21) | $\mathrm{C}(2)-\mathrm{C}(21)-\mathrm{F}(212)$ | $110 \cdot 0(14)$ |
| $\mathrm{C}(21)-\mathrm{F}(211)$ | $1 \cdot 327(22)$ | $\mathrm{C}(2)-\mathrm{C}(21)-\mathrm{F}(213)$ | $115 \cdot 9(15)$ |
| $\mathrm{C}(21)-\mathrm{F}(212)$ | $1 \cdot 305(25)$ | $\mathrm{F}(211)-\mathrm{C}(21)-\mathrm{F}(212)$ | 106.9(17) |
| $\mathrm{C}(21)-\mathrm{F}(213)$ | $1 \cdot 326(23)$ | $\mathrm{F}(211)-\mathrm{C}(21)-\mathrm{F}(213)$ | 108.2(15) |
| $\mathrm{C}(2)-\mathrm{C}(22)$ | $1.555(21)$ | $\mathrm{F}(212)-\mathrm{C}(21)-\mathrm{F}(213)$ | $100 \cdot 9(15)$ |
| $\mathrm{C}(22)-\mathrm{F}(221)$ | 1-283(21) | $\mathrm{C}(2)-\mathrm{C}(22)-\mathrm{F}(221)$ | 116.0(14) |
| $\mathrm{C}(22)-\mathrm{F}(222)$ | $1 \cdot 309(19)$ | $\mathrm{C}(2)-\mathrm{C}(22)-\mathrm{F}(222)$ | $110.5(12)$ |
| $\mathrm{C}(22)-\mathrm{F}(223)$ | $1 \cdot 354(20)$ | $\mathrm{C}(2)-\mathrm{C}(22)-\mathrm{F}(223)$ | 111.5(12) |
| Isocyanide ligand |  | $\begin{aligned} & \mathrm{F}(221)-\mathrm{C}(22)-\mathrm{F}(222) \\ & \mathrm{F}(221)-\mathrm{C}(22)-\mathrm{F}(223) \end{aligned}$ | $\begin{aligned} & 106 \cdot 5(14) \\ & 108 \cdot 3(14) \end{aligned}$ |
| $\mathrm{Pd}-\mathrm{C}(3)$ | $1.891(9)$ | $\mathrm{F}(222)-\mathrm{C}(22)-\mathrm{F}(223)$ | $103 \cdot 3(13)$ |
| $\mathrm{C}(3)-\mathrm{N}(3)$ | $1 \cdot 149(11)$ | Isocyanide ligand |  |
| $\mathrm{N}(3)-\mathrm{C}(30)$ | $1 \cdot 482(13)$ | Isocyanide ligand |  |
| $\mathrm{C}(30)-\mathrm{C}(31)$ | 1-551(20) | $\mathrm{Pd}-\mathrm{C}(3)-\mathrm{N}(3)$ | 176.6(8) |
| $\mathrm{C}(30)-\mathrm{C}(32)$ | 1-480(24) | $\mathrm{C}(3)-\mathrm{N}(3)-\mathrm{C}(30)$ | $176 \cdot 7(10)$ |
| C(30)-C(33) | $1 \cdot 520(22)$ | $\mathrm{N}(3)-\mathrm{C}(30)-\mathrm{C}(31)$ | 104.4(10) |
| Carbene ligand |  | $\mathrm{N}(3)-\mathrm{C}(30)-\mathrm{C}(32)$ | $106 \cdot 8(10)$ |
| $\mathrm{Pd}-\mathrm{C}(4)$ |  | $\mathrm{N}(3)-\mathrm{C}(30)-\mathrm{C}(33)$ | 106.7(10) |
| $\mathrm{C}(4)-\mathrm{N}(4)$ | $1 \cdot 294(12)$ | $\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(32)$ | $110 \cdot 3(13)$ |
| $\mathrm{N}(4)-\mathrm{C}(40)$ | $1 \cdot 490$ (13) |  |  |
| $\mathrm{C}(40)-\mathrm{C}(41)$ | 1.531 (15) |  |  |
| $\mathrm{C}(40)-\mathrm{C}(42)$ | $1 \cdot 539(15)$ | Carbene ligand |  |
| $\mathrm{C}(40)-\mathrm{C}(43)$ | $1 \cdot 550$ (17) | $\mathrm{Pd}-\mathrm{C}(4)-\mathrm{N}(4)$ | 123•8(7) |
| $\mathrm{C}(4)-\mathrm{N}(5)$ | $1 \cdot 337$ (12) | $\mathrm{Pd}-\mathrm{C}(4)-\mathrm{N}(5)$ | $118 \cdot 7(7)$ |
| $\mathrm{N}(5)-\mathrm{C}(51)$ | $1 \cdot 467$ (18) | $\mathrm{N}(4)-\mathrm{C}(4)-\mathrm{N}(5)$ | $117 \cdot 5(9)$ |
| $\mathrm{C}(51)-\mathrm{C}(52)$ | $1 \cdot 479(23)$ | $\mathrm{C}(4)-\mathrm{N}(4)-\mathrm{C}(40)$ | 130.3(8) |
| $\mathrm{N}(5)-\mathrm{C}(62)$ | $1 \cdot 491$ (15) | $\mathrm{N}(4)-\mathrm{C}(40)-\mathrm{C}(41)$ | $111 \cdot 1(8)$ |
| C(61)-C(62) | $1 \cdot 535(18)$ | $\mathrm{N}(4)-\mathrm{C}(40)-\mathrm{C}(42)$ | 109•1(8) |
| (b) Angles |  | $\mathrm{N}(4)-\mathrm{C}(40)-\mathrm{C}(43)$ | 105•7(8) |
| Five-membered |  | $\mathrm{C}(41)-\mathrm{C}(40)-\mathrm{C}(42)$ | $112 \cdot 0(9)$ |
| $\mathrm{C}(1)-\mathrm{Pd}-\mathrm{O}(1)$ | 81•7(3) | $\mathrm{C}(41)-\mathrm{C}(40)-\mathrm{C}(43)$ | $109 \cdot 1(9)$ |
| $\mathrm{Pd}-\mathrm{O}(1)-\mathrm{C}(2)$ | $114 \cdot 0$ (6) | $\mathrm{C}(42)-\mathrm{C}(40)-\mathrm{C}(43)$ $\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(51)$ | $109.5(9)$ $121.9(9)$ |
| $\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{O}(2)$ | $117.5(8)$ | $\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(51)$ $\mathrm{C}(4)-\mathrm{N}(5)-\mathrm{C}(61)$ | $121 \cdot 9(9)$ $122.6(9)$ |
| $\mathrm{C}(2)-\mathrm{O}(2)-\mathrm{C}(1)$ | 116.3(7) | $\mathrm{C}(51)-\mathrm{N}(5)-\mathrm{C}(61)$ | $115.4(9)$ |
| $\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{Pd}$ | $108 \cdot 8(6)$ | $\mathrm{N}(5)-\mathrm{C}(51)-\mathrm{C}(52)$ | $114 \cdot 8(14)$ |
| $\mathrm{Pd}-\mathrm{C}(1)-\mathrm{C}(11)$ | $115 \cdot 2(7)$ | $\mathrm{N}(5)-\mathrm{C}(61)-\mathrm{C}(62)$ | $110.4(11)$ |
| $\mathrm{Pd}-\mathrm{C}(1)-\mathrm{C}(12)$ | 110.3(7) | Co-ordination aroun |  |
| $\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(11)$ | $105 \cdot 2(8)$ | Co-ordination aroun |  |
| $\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(12)$ | $105 \cdot 5(8)$ | $\mathrm{C}(1)-\mathrm{Pd}-\mathrm{C}(3)$ | $96 \cdot 5(4)$ |
| $\mathrm{C}(11)-\mathrm{C}(1)-\mathrm{C}(12)$ | $111 \cdot 2(9)$ | $\mathrm{C}(1)-\mathrm{Pd}-\mathrm{C}(4)$ | $176 \cdot 8(5)$ |
| $\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(21)$ | 109.6(11) | $\mathrm{O}(\mathbf{1})-\mathrm{Pd}-\mathrm{C}(4)$ | $95 \cdot 5(3)$ |
| $\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(22)$ | $110.5(10)$ | $\mathrm{O}(1)-\mathrm{Pd}-\mathrm{C}(3)$ | 177.4(7) |
| $\mathrm{O}(2)-\mathrm{C}(2)-\mathrm{C}(21)$ | 106.4(11) | $\mathrm{C}(3)-\mathrm{Pd}-\mathrm{C}(4)$ | $86 \cdot 3(4)$ |

refinement allowed anisotropic thermal parameters for the O, F, and terminal methyl and ethyl $C$ atoms as well as for the Pd atom, but with so large a matrix it was necessary to define two blocks comprising (i) the Pd atom and all the atoms of the five-membered ring, scale factor, and overall temperature factor, and (ii) the two chain ligands. Hydrogen atoms (except those in methyl groups) were incorporated at calculated positions ( $\mathrm{C}-\mathrm{H} 1 \cdot 08, \mathrm{~N}-\mathrm{H} 0.99 \AA$ ) with $U$ $0.08 \AA^{2}$ and were not refined, but three reflections with large $\left|F_{0}\right|$ were deleted $(0,0,2,2,0, \overline{1}$, and $2,0,2)$. Weights were applied according to $1 / w=a+b|F|+c|F|^{-1}$, with

[^0]$a=-10, b=0 \cdot 3$, and $c=164$; convergence was obtained at $R 0.059\left(R^{\prime} 0.075\right)$. Finally, unobserved reflections for which $F_{\mathrm{o}}<\left|F_{\mathrm{c}}\right|$ were introduced into the refinement. A new weighting scheme ${ }^{8} 1 / w=x . y$, where $x=b / \sin \theta$ if $\sin \theta<b, \quad x=1$ if $\sin \theta>b$, and $y=F / a$ if $F>a$, $y=1$ if $F \leqslant a(a=100, b=0.31)$ in which unobserved reflections were weighted by 0.36 times the calculated weight, led to $R 0.099$ (for 4123 data including 1352 unobserved reflections). For the observed reflections only, the new agreement indices were $R 0.061, R^{\prime} 0.069$. In the final difference synthesis the largest peaks ( $c a .0 .6 \mathrm{e}^{\AA}{ }^{-3}$ ) were in the region of the $\mathrm{Pd}, \mathrm{C}(22)$, and the $\mathrm{C}(51)$ atoms, and in the last cycle the mean shift-to-error was $0 \cdot 11$.

Positional and thermal parameters are in Table 1, interatomic distances in Table 2, and some least-squares planes in Table 3. No absorption correction was applied, and the atomic scattering factors were the analytic types of ref. 5 for palladium (corrected for anomalous dispersion), ${ }^{6}$ fluorine, oxygen, nitrogen, and carbon, and those of ref. 7 for hydrogen. All computational work was carried out (on the CDC 7600 of the University of London) by use of the $X$-Ray system of programs. ${ }^{8}$ Observed and calculated structure factors are listed in Supplementary Publication No. SUP 21086 ( 30 pp ., 1 microfiche).*

## Table 3

(a) Equations of some least-squares planes: distances $(\AA)$ of relevant atoms from these planes are given in square brackets
(i) Five-membered ring

Plane (1): $\mathrm{Pd}, \mathrm{O}(1), \mathrm{C}(2), \mathrm{O}(2), \mathrm{C}(1)$
$2.8761 x-7.4301 y+8.9279 z=0.9453$
$[\mathrm{Pd}-0.056, \mathrm{O}(1) 0.087, \mathrm{C}(2)-0.074, \mathrm{O}(2) 0.001, \mathrm{C}(1) 0.042]$
Plane (2): Pd, C(2), $\mathrm{O}(2), \mathrm{C}(1)$
$2 \cdot 5667 x-7 \cdot 1018 y+9 \cdot 6352 z=1.0350$
$[\mathrm{Pd}-0.002, \mathrm{O}(1) 0.205, \mathrm{C}(2) 0.003, \mathrm{O}(2)-0.005, \mathrm{C}(1) 0.004]$
Plane (3): $\mathrm{C}(1), \mathrm{C}(11), \mathrm{C}(12)$

$$
19.6961 x+1.7954 y-0.8609 z=12.1138
$$

Plane (4) : C(2), C(21), C(22)
$12 \cdot 1527 x-3 \cdot 8580 y-11 \cdot 4305 z=2 \cdot 6406$
(ii) Carbene ligand

Plane (5): $\mathrm{Pd}, \mathrm{C}(40), \mathrm{N}(4), \mathrm{C}(4), \mathrm{N}(5), \mathrm{C}(51), \mathrm{C}(61)$
$11.5351 x+5 \cdot 2050 y+8 \cdot 1710 z=10.0222$
$[\mathrm{Pd}-0.045, \mathrm{C}(40) 0.027, \mathrm{~N}(4) 0.000, \mathrm{C}(4) 0.007, \mathrm{~N}(5) 0.020$, $\mathrm{C}(51) 0.044, \mathrm{C}(61)-0.052]$
Plane (6): N(4), C(4), N(5)

$$
11 \cdot 6297 x+5 \cdot 1221 y+8.2123 z=10.0468
$$

$[\mathrm{Pd}-0.043, \mathrm{C}(40) 0.042, \mathrm{C}(51) 0.015, \mathrm{C}(61)-0.081]$
(iii) Co-ordination plane around Pd

Plane (7): $\mathrm{Pd}, \mathrm{O}(1), \mathrm{C}(1), \mathrm{C}(3), \mathrm{C}(4)$
$1 \cdot 3850 x-7 \cdot 7766 y+8 \cdot 5186 z=-0.1153$
[Pd 0.002, $\mathrm{O}(1)-0.031, \mathrm{C}(1) 0.030, \mathrm{C}(3)-0.031, \mathrm{C}(4) 0.029]$
(b) Angles ( ${ }^{\circ}$ ) between least-squares planes

| $(1)-(3)$ | $88 \cdot 3$ | $(1)-(4)$ | $89 \cdot 2$ | (1)-(5) | $88 \cdot 5$ |
| :--- | :--- | :--- | ---: | :--- | :--- |
| $(5)-(7)$ | $86 \cdot 7$ | $(2)-(7)$ | $7 \cdot 0$ |  |  |

## DISCUSSION

Our results show that (I) contains a nearly planar five-membered $\mathrm{Pd} \cdot \mathrm{C}\left(\mathrm{CF}_{3}\right)_{2} \mathrm{O} \cdot \mathrm{C}\left(\mathrm{CF}_{3}\right)_{2} \mathrm{O}$ ring with two other ligands $\mathrm{CNBu}^{\mathrm{t}}$ and $\left[\mathrm{C}\left(\mathrm{NEt}_{2}\right) \mathrm{NHBu}^{\mathrm{t}}\right]$ on the
${ }^{6}$ D. T. Cromer, Acta Cryst., 1965, 18, 17.
7 R. F. Stewart, E. Davidson, and W. Simpson, J. Chem. Phys., 1965, 42, 3175.
${ }_{8}$ Technical Report TR 192, of the Computer Science Center, University of Maryland, June 1972.
palladium; this gives the palladium an approximately square-planar configuration. The carbene $\mathrm{N}-\mathrm{C}-\mathrm{N}$ plane


Figure 1 View of molecule normal to the plane of the carbene ligand, showing atom numbering
is, as expected, approximately perpendicular to the co-ordination plane of the metal atom. Figure 1 shows

Figure 2 shows the packing of the molecules. Several portions of the molecule possess detailed features of peculiar interest and will be considered in turn.

Five-membered Ring. The $\mathrm{Pd}-\mathrm{C}(1)$ distance $[2.080(11)$ $\AA]$ is close to the sum of the covalent radii for palladium(II) ( $1.31 \AA$ ) and for $\mathrm{C}\left(s p^{3}\right)(0.77 \AA)$; ${ }^{9}$ the structure determination reveals that this bond lies trans to the carbene ligand. The adjacent $\mathrm{C}(1)-\mathrm{O}(2)$ bond $[1 \cdot 444(11) \AA]$ is rather longer than its next neighbour $\mathrm{O}(2)-\mathrm{C}(2) \quad[1 \cdot 409(14) \AA]$. The sum of the radii would suggest a bond length of $1 \cdot 43 \AA$ here, and neither bond differs significantly from this. The next bond, $\mathrm{C}(2)-\mathrm{O}(1)$, however, is decidedly short $[1 \cdot 337(13) \AA]$, suggesting a bond order of $c a .1 \cdot 3 .{ }^{10}$ It adjoins the $\mathrm{Pd}-\mathrm{O}(1)$ bond which, at $2 \cdot 008(6) \AA$, is close to the value found in other comparable compounds. This bond lies trans to the isocyanide ligand. Structures which are directly com-
 $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt} \cdot \mathrm{OCMe}_{2} \mathrm{O}_{2},{ }^{12} \quad \mathrm{Pd} \cdot\left(\mathrm{OC}_{9} \mathrm{H}_{6} \mathrm{~N}\right)_{2},{ }^{13}$ $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PtOC}(\mathrm{Ph}) \mathrm{NN}(\mathrm{CPhO}),{ }^{\text {, }} \quad \mathrm{Mn}\left[\cdot \mathrm{OC}(\mathrm{O}) \cdot \mathrm{NH} \cdot \mathrm{NH}_{2}\right]_{2},{ }^{15}$ and $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pt} \cdot \mathrm{OC}\left(\mathrm{CF}_{3}\right)_{2} \mathrm{O} \cdot \mathrm{C}\left(\mathrm{CF}_{3}\right)_{2} \mathrm{O},{ }^{16}$ in which similarly short bonds were found between an oxygen atom attached to a metal and the adjacent carbon atom (lengths range from $1.31(2)$ to $1 \cdot 35(2) \AA$ ). These values are


Figure 2 Arrangement of molecules in the unit cell, viewed down b, looking towards the origin
the molecule viewed perpendicular to the plane of the carbene fragment; it also gives the atom numbering sequence used in the crystallographic analysis. There are no abnormally short intermolecular contacts:
${ }^{9}$ L. Pauling, ' The Nature of the Chemical Bond,' Cornell University Press, 1960.
${ }_{10}$ F. A. Cotton and R. M. Wing, Inorg. Chem., 1965, 4, 314.
${ }_{11}$ R. Countryman and B. R. Penfold, Chem. Comm., 1971, 1598
${ }_{12}$ F. Ugo, F. Conti, S. Cenini, R. Mason, and G. B. Robertson, Chem. Comm., 1968, 1498.
${ }^{13}$ B. Kamenar, C. K. Prout, and J. D. Wright, J. Chem. Soc., 1965, 4851 ; J. Chem. Soc. (A), 1966, 661.
similar to those of $\mathrm{C}\left(s p^{2}\right)-\mathrm{O}$ bonds in phenols, carboxylic acid derivatives, ${ }^{17}$ and thiocarbamates such as $\stackrel{P d[S \cdot C(O E t) N(R)]_{2}}{ }{ }^{\mathbf{1 8 , 1 9}}$ where the shortening is usually attributed to electron delocalisation via adjacent
${ }_{14}$ S. D. Ittel and J. A. Ibers, Inorg. Chem., 1973, 12, 2290.
15 A. Braibanti, A. Tiripicchio, A. M. Manotti-Lanfredi, and M. Camellini, Acta Cryst., 1967, 23, 248.

16 A. Modinos and P. Woodward, unpublished results.
17 Chem. Soc. Special Publ., No. 18, 1965.
18 L. Gastaldi and P. Porta, Gazzetta, 1971, 101, 641.
${ }^{18}$ C. Furlani, T. Tarantelli, L. Gastaldi, and P. Porta, J. Chem. Soc. (A), 1971, 3778.
$\pi$-bonded systems. In the present compound, $C(2)$ is uniquely placed in that it is surrounded by four highly electronegative groups which will tend to lower the energies of the antibonding orbitals for both the $\mathrm{C}-\mathrm{CF}_{3}$ and $\mathrm{C}-\mathrm{F}$ bonds, ${ }^{20}$ while $\mathrm{O}(1)$ is likely to have the energies of its lone-pair orbitals raised as a result of its proximity to the electropositive metal atom. Electron delocalisation from $\mathrm{O}(1)$ towards $\mathrm{C}(2)$, with increase of the $\mathrm{C}(2)-\mathrm{O}(1)$ bond order, is therefore possible. Standard deviations on the $\geq \mathrm{C}\left(\mathrm{CF}_{3}\right)_{2}$ parameters do not allow accurate assessment of small changes in bond length corresponding to occupation of antibonding orbitals.

The five-membered ring is not accurately planar, but has an envelope conformation; the atom $\mathrm{O}(1)$ deviates from the plane of $\mathrm{C}(2), \mathrm{O}(2), \mathrm{C}(1), \mathrm{Pd}$ by some $0 \cdot 20 \AA$ (see Figure 1 and Table 3). The four $\mathrm{CF}_{3}$ groups have mean $\mathrm{C}_{-} \mathrm{CF}_{3} 1.512(25) \AA$, and the angle between the two $\mathrm{C}-\mathrm{C}$ bonds for the two groups on the same carbon atom does not differ significantly from the ideal tetrahedral value. Also, the plane defined by these two $\mathrm{C}-\mathrm{C}$ bonds is perpendicular to that defined by the two adjoining ring bonds. The mean $\mathrm{C}-\mathrm{F}$ bond length is $1.325(19) \AA$, compared with a mean for many fluorocarbons of $1.333(5) ~ \AA .{ }^{17}$ The fluorine atoms have high thermal activity, but a difference synthesis made without any contribution from the fluorine atoms showed no evidence for structural disorder. The bond lengths given in Table 2 have not been corrected for the effects of thermal motion.
$\mathrm{CNBu}^{\mathrm{t}}$ Ligand.-The $\mathrm{Pd}-\mathrm{C}$ distance $[1.891(9) \AA]$ is notably shorter than that expected for a single bond (ca. $2 \cdot 00 \AA$ ) but is similar to distances found in other isocyanide complexes. ${ }^{21-25}$ Some degree of multiple bonding in the $\mathrm{Pd}-\mathrm{C}$ distance can certainly be inferred, but the $\mathrm{C}-\mathrm{N}$ distance $[\mathrm{l} \cdot 149(11) \AA$ ] is not significantly different from that found in a variety of isocyanide molecules (mean $1 \cdot 16 \quad \AA$ ). ${ }^{17,21-26}$ The $N(3)-C(30)$ distance $[1 \cdot 482(13) \AA]$ is as expected, as are the three $\mathrm{C}-\mathrm{Me}$ bonds [mean $1.521(35) \AA$ ]. The $\mathrm{Pd}-\mathrm{C}(3)-\mathrm{N}(3)-$ $\mathrm{C}(30)$ sequence is approximately, but not accurately, linear.

[^1]$\left\{\mathrm{C}\left(\mathrm{NEt}_{2} \mathrm{NHBu}^{t}\right\}\right.$ (Carbene) Ligand.-Here the metalcarbon distance $[2 \cdot 074(9) \AA]$ is at least that expected for a bond between Pd and $\mathrm{C}\left(s p^{2}\right)$, suggesting an almost total absence of $\pi$-bonding in this link. It is to be expected, therefore, that the other two bonds of the carbenoid link will be correspondingly shorter, and this is borne out by their determined distances $\left[\mathrm{C}-\mathrm{NEt}_{2}\right.$ $\left.1.337(12), \quad \mathrm{C}-\mathrm{N}(\mathrm{H}) \mathrm{Bu}^{\mathrm{t}}, 1.294(12) \AA\right]$; both may be compared with an expected $\mathrm{C}\left(s p^{2}\right)-\mathrm{N}\left(s p^{2}\right)$ length of $c a$. $1.44 \AA^{9,27}$ and with distances $[1.309(6)-1 \cdot 362(6) \AA]$ found in other carbenes. ${ }^{2,28}$ As a result of the bonding delocalisation in the $\mathrm{N}-\mathrm{C}-\mathrm{N}$ fragment, the atoms $\mathrm{Pd}, \mathrm{C}(4), \mathrm{N}(5), \mathrm{C}(51), \mathrm{C}(61), \mathrm{N}(4), \mathrm{H}(400)$, and $\mathrm{C}(40)$ are all substantially coplanar (see Table 3). The $\mathrm{C}-\mathrm{C}$ bonds of the Et and $\mathrm{Bu}^{\mathrm{t}}$ groups are all as expected (within $3 \sigma$ ).

The most unusual feature of the carbene ligand, however, is the very short intramolecular contact between $\mathrm{H}(400)$ [attached to $\mathrm{N}(4)$ ] and $\mathrm{H}(611)$ on the methylene carbon atom of the 'inner' ethyl group. This was predicted from the n.m.r. spectrum ${ }^{1}$ and is confirmed crystallographically from the intramolecular distance of only $1.78 \AA$ between the calculated positions of these two atoms (assuming no angular deformation). Other nearby atoms also show short contact distances with $\mathrm{H}(400)$ [namely: $\mathrm{N}(5) 2 \cdot 34, \mathrm{C}(61) 2 \cdot 24, \mathrm{C}(43)$ $2 \cdot 40$, and $\mathrm{C}(62) 2 \cdot 65]$, and with $\mathrm{H}(611)$ [ $\mathrm{N}(4) 2 \cdot 50$, and C(4) $2 \cdot 67 \AA]$.

Co-ordination Around Palladium.-Because of the formation of a five-membered ring, an accurately square-planar configuration is not possible. The angle within the ring is $81.7(3)^{\circ}$, and the opposite angle is symmetrically placed $\left[86 \cdot 3(4)^{\circ}\right]$. The bonds around Pd are tetrahedrally distorted, the four atoms being alternately $0.03 \AA$ above and below the mean plane (Table 3).

We thank C. H. Game for crystals, the S.R.C. for financial support, and the University of London Computing Centre, where help was given by Valerie Fowler.
[4/520 Received, 18th March, 1974]

[^2]
[^0]:    * For details see Notice to Authors No. 7 in J.C.S. Dalton, 1973, Index issue.
    ${ }^{4}$ A. Modinos, DRSYN, a Fortran program for data analysis.
    5 D. T. Cromer and J. B. Mann, Acta Cryst., 1968, A24, 321.

[^1]:    20 J. F. Liebman, J. Fluorine Chem., 1973, 3, 27.
    ${ }^{1}$ N. A. Bailey, N. W. Walker, and J. A. W. Williams, J. Organometallic Chem., 1972, 37, C49.
    ${ }_{22}$ B. Jovanović, Lj. Manojlović-Muir, and K. W. Muir, $J$. Organometallic Chem., 1971, 33, C75.
    ${ }_{23}$ J. K. Stalick and J. A. Ibers, J. Amer. Chem. Soc., 1970, 92, 5333.

[^2]:    ${ }^{24} \mathrm{~L}$. Malatesta and F. Bonati, ' Isocyanide Complexes of Metals,' Wiley-Interscience, New York, 1969.
    ${ }_{25}$ M. Novotny, D. F. Lewis, and S. J.Lippard, J. Amer. Chem. Soc., 1972, 94, 6961.
    ${ }^{26}$ F. A. Cotton, T. G. Dunne, and J. S. Wood, Inorg. Chem., 1965, 4, 318.
    ${ }^{27}$ J. R. Knox and C. K. Prout, Acta Cryst., 1969, B25, 1952.
    ${ }_{28}$ G. Huttner and W. Gartzke, Chem. Ber., 1972, 105, 2714.

