Comparison of Stereochemistry in Racemic and Optically Resolved Forms of a Five-co-ordinate Compound. Crystal and Molecular Structures of Dibromotris-(2-phenylisophosphindoline) palladium(II)-Acetone (Orange) and Dibromotris-(2-phenylisophosphindoline)palladium(II) (Red)

By Kui M. Chui and H. Marcus Powell,* Chemical Crystallography Laboratory, South Parks Road, Oxford OX1 30S

Abstract

The form of the molecule $\mathrm{PdL}_{3} \mathrm{Br}_{2}(\mathrm{~L}=2$-phenylisophosphindoline) has been determined by crystal structure analysis of the optically resolved red form (B), and of an orange racemate (A), a 1:1 solvate with acetone. In both structures the molecule has a modified tetragonal pyramidal arrangement of palladium bonds with one bromine atom at the apex. In both the angle α, between the apical bond and the basal bond, is considerably greater than 90° for the basal bromine and the phosphorus atom trans to it. To one of the other phosphorus atoms α is noticeably less than 90° and to the remaining phosphorus atom it is slightly greater than 90°. The form is derived from the tetragonal pyramidal where all α are several degrees greater than 90° by a decrease in α for P (I) and P (III) while α for $\mathrm{P}(\mathrm{II})$ and $\mathrm{Br}(1)$ is free to increase. This distortion arises from overcrowding of the basal atoms.

In nearly all respects the molecule (B) differs insignificantly from the same enantiomorph in (A), but the apical bond length to bromine is 2.92 in (B) and $3.02 \AA$ in (A). The large difference can only be attributed to difference of molecular environment. The angle α for the basal bromine is smaller for (A) and this may be a consequence of the bond-lengthening.

Crystals of (A) are monoclinic, space group $P 2_{1} / b, a=11 \cdot 36(2), b=22 \cdot 52(4), c=16 \cdot 67(3) \AA$, $\gamma=95 \cdot 51(2)^{\circ}$, $Z=4$. Crystals of (B) are orthorhombic, space group $P 2_{1} 2_{1} 2_{1}, a=11 \cdot 63(2), b=16 \cdot 36(3), c=20.48(3) A$, $Z=4$. The structures were solved from diffractometer data [(A), Patterson and Fourier, 4989 observed reflections: (B), direct methods, 2822 observed reflections] and refined by least squares to $R 0.064$ (A) and 0.065 (B).

Molecular environment has often been mentioned as a possible influence on metal stereochemistry but is not easy to investigate directly. The existence of a suitable compound in racemic and optically resolved forms

(I)
$R=M e$ or $E t$
provides an opportunity to do so. Originally the title compounds were considered for structure examination in order to determine whether there was a ligand-ligand interaction of the type found, without known exception, in molecular structures $\mathrm{ML}_{3} \mathrm{X}_{2}(\mathrm{M}=\mathrm{Ni}, \mathrm{Pd}, \mathrm{Pt}$; $\mathrm{X}=\mathrm{CN}, \mathrm{Br}, \mathrm{Cl} ; \mathrm{L}=\mathrm{I}) . .^{1,2}$ The purpose was to replace L by another aromatic ligand since the interaction postulated is between the aromatic parts. The alternative ligand is 2-phenylisophosphindoline (II).

The compound was prepared by Mann and coworkers ${ }^{3}$ who examined the red unsolvated form by X-ray diffraction. Atomic positions were given for the six heavy atoms only. However, in analogous palladium and platinum compounds ${ }^{2}$ with $L=(I), X=B r$, a tetrahedral distortion of the four basal bonds was explained by a steric argument which should apply to the present compound and require the bond angle $\mathrm{Br}(2)-\mathrm{Pd}-\mathrm{P}(\mathrm{II})$ to be several degrees greater than that found. A repetition of the recrystallisation from acetone gave simultaneously two products, a red form (B) and an orange form (A). Form (A) had space group
${ }^{1}$ H. M. Powell, D. J. Watkin, and J. B. Wilford, J. Chem. Soc. $(A), 1971,1803$.
$P 2_{1} / b$, and (B) had unit-cell dimensions very close to those previously reported and space group $P 2_{1} 2_{1} 2_{1}$. The red form (B) must be optically resolved and it seemed probable that the orange form (A) was the racemate. The unit-cell volume is 6% larger for (A) and, combined with the measured density, is consistent with a molecular weight equal to that of the complex plus a molecule of acetone. Detailed crystal-structure determination by diffractometer methods was made for

Figure 1 The molecules in an asymmetric unit of the structure of the orange form (A) projected on the plane of the three phosphorus atoms
both compounds to the same degree of accuracy so that a stereochemical comparison could be made.

Figures 1 and 2 show the asymmetric units for the
${ }^{2}$ K. M. Chui and H. M. Powell, J.C.S. Dalton, 1974, 1879.
${ }^{3}$ J. W. Collier, F. G. Mann, D. G. Watson, and H. R. Watson, J. Chem. Soc., 1964, 1803.
two crystals. In both cases the molecule of the metal complex has the same atomic composition and is based on a tetragonal pyramidal arrangement of the palladium bonds with $\operatorname{Br}(2)$ at the apex. This apical bond is distinguishable because it is noticeably longer than the other $\mathrm{Pd}-\mathrm{Br}(1)$ bond. The three $\mathrm{Pd}-\mathrm{P}$ bonds are in the base. The atom trans to $\mathrm{Br}(\mathrm{l})$ is $\mathrm{P}(\mathrm{II})$ and the ligands are numbered $\mathrm{L}(\mathrm{I}), \mathrm{L}(\mathrm{II}), \mathrm{L}(\mathrm{III})$ by use of the distinction that angle $\mathrm{L}(\mathrm{I})-\mathrm{Pd}-\mathrm{L}(\mathrm{II})<\mathrm{L}(\mathrm{I})-\mathrm{Pd}-\mathrm{L}(\mathrm{III})$.

The stereochemistry of the palladium atom for both structures is summarised in Table 1. For (B) the previous values are in approximate agreement with the

Figure 2 The molecule in an asymmetric unit of the structure of the red form (B), projected on the plane of the three phosphorus atoms
refined distances and angles except for those involving $\mathrm{P}(\mathrm{II})$. This atom is now placed considerably below

Table 1
Bond lengths (\AA) and angles (${ }^{\circ}$) at the palladium atom, with estimated standard deviations in parentheses. Values from ref. 3^{*} for the red form (B) are shown in square brackets

(a) Bond lengths	(B)		(A)
$\mathrm{Pd}-\mathrm{P}(\mathrm{I})$	2.311(5)	[2.28, $\mathrm{P}(3)$]	2.307(3)
$\mathrm{Pd}-\mathrm{P}$ (II)	$2 \cdot 286$ (6)	[2.19]	2.273(3)
$\mathrm{Pd}-\mathrm{P}$ (III)	$2 \cdot 326$ (5)	[2.30, $\mathrm{P}(1)]$	$2 \cdot 318(3)$
$\mathrm{Pd}-\mathrm{Br}(1)$	2.544(3)	[2.52]	2.528(2)
$\mathrm{Pd}-\mathrm{Br}(2)$ (apical)	2.923(3)	[2.93]	3.017(2)
(b) Bond angles			
$\mathrm{P}(\mathrm{I})-\mathrm{Pd}-\mathrm{P}(\mathrm{II})$	95-57(19)	[97, $\mathrm{P}(3)$]	93.00(11)
$\mathrm{P}(\mathrm{I})-\mathrm{Pd}-\mathrm{P}(\mathrm{III})$	171-34(18)		174.51(12)
P (II)-Pd-P(III)	92.96(19)	[90, P(1)]	92.47(11)
$\mathrm{Br}(\mathrm{I})-\mathrm{Pd}-\mathrm{P}(\mathrm{I})$	85.98(14)	$[88, \mathrm{P}(3)]$	87-27(9)
$\mathrm{Br}(1)-\mathrm{Pd}-\mathrm{P}(\mathrm{II})$	155.92(16)		162-19(9)
$\mathrm{Br}(\mathbf{1})-\mathrm{Pd}-\mathrm{P}(\mathrm{III})$	86.84(13)	[87, P(1)]	$87.64(9)$
$\mathrm{Br}(2)-\mathrm{Pd}-\mathrm{P}(\mathrm{I})$	86.37(14)	[84, $\mathrm{P}(3)]$	87.58 (9)
$\mathrm{Br}(2)-\mathrm{Pd}-\mathrm{P}(\mathrm{II})$	99.33(15)	[92]	98.57(9)
$\mathrm{Br}(2)-\mathrm{Pd}-\mathrm{P}(\mathrm{III})$	90.79(13)	[91, P(1)]	91.21 (8)
$\mathrm{Br}(1)-\mathrm{Pd}-\mathrm{Br}(2)$	104.75(8)	[105]	99-23(5)
* The key to ref. 3 is $\mathrm{P}(3)=\mathrm{P}(\mathrm{I}), \mathrm{P}(\mathrm{l})=\mathrm{P}(\mathrm{III})$, and $\mathrm{P}(2)$ $=\mathrm{P}(\mathrm{II})$.			

the basal plane of the tetragonal pyramid, angle $\operatorname{Br}(2)-\mathrm{Pd}-\mathrm{P}(\mathrm{II})$ being 99° (previously reported 92°).

The $\operatorname{Br}(1)$ atom trans to it is also well below the basal plane, the angle α between its bond and the apical bond being 105°. $\mathrm{P}(\mathrm{I})$ Has $\propto 86^{\circ}$ and $\mathrm{P}(\mathrm{III}) \propto 90.8^{\circ}$. Nonbonded $\mathrm{P} \cdots \mathrm{P}$ and $\mathrm{P} \cdots \mathrm{Br}$ distances required by these angles are given in Table 2. They are in close agreement

Table 2

Non-bonded P . . P and P . . Br distances (\AA), with values from ref. 3 in brackets

Compound	$\mathrm{P}(\mathrm{I}) \cdots \mathrm{P}$ (II)	$\mathrm{P}(\mathrm{IIII}) \cdots \mathrm{P}(\mathrm{II})$
(B)	$3 \cdot 404(3 \cdot 35)$	$3 \cdot 344(3 \cdot 17)$
(A)	$3 \cdot 322$	$3 \cdot 315$
	$\mathrm{P}(\mathrm{I}) \cdots \mathrm{Br}(\mathrm{l})$	$\mathrm{P}(\mathrm{III}) \cdots \mathrm{Br}(1)$
	$3 \cdot 424(3 \cdot 34)$	$3 \cdot 351(3 \cdot 32)$
(B)	$3 \cdot 372$	$3 \cdot 358$
(A)		

with the corresponding distances in $\mathrm{PdL}_{3} \mathrm{Br}_{2}[\mathrm{~L}=(\mathrm{I})]$. As shown in ref. 2 the basic cause for distortion of the tetragonal pyramid is that the bond lengths and minimum non-bonded distances require two adjacent $\mathrm{Pd}-\mathrm{P}$ bonds to be inclined at an angle greater than 90°. A value of 97° was calculated and empirically the lower limit was found to be 93°. The distorted form found when $\mathrm{L}=(\mathrm{II})$ is derived from the tetragonal pyramidal where all α are several degrees greater than 90° by a decrease in α for $\mathrm{P}(\mathrm{I})$ and $\mathrm{P}(\mathrm{III})$ while α for $\mathrm{P}(\mathrm{II})$ and $\operatorname{Br}(1)$ is free to increase. In this case only one of the two diminished α values is reduced below 90°. In (A) the molecule has a similar form of distortion with $\operatorname{Br}(1)$ and $\mathrm{P}(\mathrm{II})$ well below the basal plane, $\mathrm{P}(\mathrm{I})$ above it, and P (III) nearly in it. In both the red and orange forms a trans-effect similar to that in the compounds of ref. 2 is shown by a Pd-P(II) bond shorter by ca. $0.03 \AA$ than the other $\mathrm{Pd}-\mathrm{P}$ bonds.

Comparison of Resolved and Racemic Forms.-Apart from two special cases, the bond lengths and angles show only small differences between the corresponding values for the red and orange forms. One case is the striking difference in the lengths of the apical bonds: 2.92 for (B) and $3.02 \AA$ for (A). The difference $(0.1 \AA)$ is $10 \times 3 \sigma$, and much larger than the probable error. A comparable difference $(0 \cdot 11 \AA)$ found between apical bond lengths in the two compounds $\mathrm{PtL}_{3} \mathrm{Br}_{2}, \mathrm{PhBr}[\mathrm{L}=(\mathrm{I})$, $\mathrm{R}=\mathrm{Me}$ or Et$]^{2}$ might be attributed to a combination of internal differences of the molecules and intermolecular effects but, in the present case, the complex molecules have the same chemical constitution. One of the structures contains acetone, but the shortest distance between an atom of the acetone molecule and an atom in the apical bond is $6 \AA$. This is between a carbon atom of a methyl group and $\operatorname{Br}(2)$. There is therefore no direct chemical effect such as might arise through co-ordination of the acetone. The ligand L(I) close to the acetone molecule is almost indistinguishable in dimensions and disposition from the corresponding ligand in the unsolvated form so that there is no evidence of an indirect chemical effect which might influence the apical bond length. The observed variation therefore
can only be attributed to differences of molecular environment in the two crystals. This includes any environmental effect of the acetone. That there are substantial differences of environment is clear. For example, the relative orientations of the apical bonds (in neighbouring molecules) must be different in the two cases; in the racemate, every molecule is related by a centre of symmetry to another molecule and two apical bonds so related must be antiparallel, though it is not the case that all molecules are related to each other in this way. There are two sets related by a glide plane operation. In the $P 2_{1} 2_{1} 2_{1}$ structure there is no centre of symmetry and the apical bonds do not form antiparallel pairs, but pairs related by the 2_{1} operations. If the bond makes zero angle with the screw axis the two related apical bonds are parallel and if the angle is 90° the related bonds will be antiparallel. The angles between the bond and the three screw axes are $155^{\circ} 40^{\prime}$, $84^{\circ} 53^{\prime}$, and $113^{\circ} 42^{\prime}$. The other case of appreciable difference concerns the angles $\operatorname{Br}(2)-\mathrm{Pd}-\mathrm{Br}(\mathrm{l})$ which differ by 6° whereas other pairs of related valency angles differ by less than 2°. Significantly the atom $\operatorname{Br}(2)$ is involved and the effect could be explained by a smaller $\mathrm{Br}(2) \cdots \operatorname{Br}(1)$ repulsion arising for a longer apical bond.

Disposition of the Ligands.-A reference axial system is defined as follows: the apical bond is taken as the Z axis, and two other axes are taken at right angles to each other in the plane perpendicular to the Z axis and containing the palladium atom. The X axis is the intersection of this plane and the plane containing the apical bond and $\operatorname{Br}(1)$.

The directions of all the metal bonds may be expressed in terms of the angle θ between the bond and the Z axis and the angle ϕ between the $Z X$ plane and the plane containing the Z axis and the bond. These angles are recorded in the Table 3 which also gives bond lengths (r).

The disposition of the ligands is considered in relation to a reference model. In this, each ligand is imagined to have the plane of symmetry of the phosphindoline ring system coincident with the plane containing the Z axis and the $\mathrm{Pd}-\mathrm{P}$ bond; the plane of the phenyl ring is imagined to lie in this symmetry plane with the phos-phorus-phenyl bond pointing upwards. Any other

Table 3

(a) Red compound (B)					
	$\mathrm{P}(\mathrm{I})$	P (II)	P(III)	$\mathrm{Br}(1)$	$\mathrm{Br}(2)$
v / \AA	$2 \cdot 311$	$2 \cdot 286$	$2 \cdot 326$	$2 \cdot 544$	2.923
θ	$86^{\circ} 22^{\prime}$	$99^{\circ} 20^{\prime}$	$90^{\circ} 47^{\prime}$	$104^{\circ} 45^{\prime}$	0°
ϕ	$84^{\circ} 54^{\prime}$	$180^{\circ} 1^{\prime}$	$273^{\circ} 4^{\prime}$	0°	0°
(b) Orange compound (A)					
r / \AA	$2 \cdot 307$	$2 \cdot 273$	$2 \cdot 318$	$2 \cdot 528$	3.017
θ	$87^{\circ} 35^{\prime}$	$98^{\circ} 34^{\prime}$	$91^{\circ} 13^{\prime}$	$99^{\circ} 14^{\prime}$	0°
ϕ	$86^{\circ} 49^{\prime}$	$180^{\circ} 0^{\prime}$	$272^{\circ} 12^{\prime}$	0°	0°

form of the molecule may be derived by a rotation of the whole ligand about its $\mathrm{P}-\mathrm{Pd}$ bond through a specific rotation angle $\left(R_{1}\right)$ followed by a rotation of the phenyl ring about its bond to the phosphorus atom through a
specific rotation angle $\left(R_{2}\right)$. The rotation angle $\left(R_{1}\right)$ is defined as positive when it appears clockwise to an observer looking from the phosphorus to the palladium atom, and R_{2} is defined as positive for a rotation which appears clockwise to an observer looking from the phenyl ring to the phosphorus atom. The angle R_{2} is sufficiently defined by a value in the range $0-180^{\circ}$. Table 4 shows values of R_{1} and R_{2}.

Table 4

Rotation angles						
Com-			L		L(I	III)
pound	R_{1}	R_{2}	R_{1}	R_{2}	R_{1}	R_{2}
(B)	$171^{\circ} 24^{\prime}$	$18^{\circ} 29^{\prime}$	$155^{\circ} 20^{\prime}$	$81^{\circ} 5^{\prime}$	$185^{\circ} 37^{\prime}$	$159^{\circ} 20^{\prime}$
(A)	$170^{\circ} 9^{\prime}$	$44^{\circ} \mathbf{4 3}$	$129^{\circ} 38^{\prime}$	$58^{\circ} 8^{\prime}$	$183^{\circ} 42^{\prime}$	$149^{\circ} 1^{\prime}$

The values of the rotation angles $\left(R_{1}\right)$ of $L(I)$ and L (III) in the two structures are almost identical. There are only small differences (10° and 26°) in the rotation angles $\left(R_{2}\right)$ of the two ligands. $\mathrm{L}(\mathrm{I})$ and $\mathrm{L}(\mathrm{III})$ are approximately symmetrical to each other about the best plane through the $\mathrm{Pd}, \mathrm{Br}(1), \mathrm{Br}(2)$, and $\mathrm{P}(\mathrm{II})$ atoms; this is possible because the difference in angles $\mathrm{L}(\mathrm{I})-\mathrm{Pd}-\mathrm{L}(\mathrm{II})$ and $\mathrm{L}(\mathrm{III})-\mathrm{Pd}-\mathrm{L}(\mathrm{II})$ due to ligandligand interaction is small. For ligand $L(I I)$ there is greater difference ($c a .26^{\circ}$) in rotation angles $\left(R_{1}\right)$ of the two forms. In rotation angles $\left(R_{2}\right)$, there is also 23° difference, but it is of the same order of magnitude as those for $L(I)$ and L (III). In both forms the phenyl rings of L (II) and L (III) are parallel and overlapping, but the overlapping areas differ in the two cases.

The rotation angle $\left(R_{1}\right)$ of L (II) of form (A) would have to be increased by ca. 25° clockwise to give an overlap similar to that in form (B). In addition to the change in the rotation angle $\left(R_{1}\right)$, the phenyl ring of the same ligand would have to turn ca. 24° clockwise to retain the parallelism of ligand L (II) and L (III).

It is unlikely that the difference in rotation angles $\left(R_{1}\right)$ between the red and orange forms is caused by the acetone molecule. For $\mathrm{L}(\mathrm{I})$ and $\mathrm{L}(\mathrm{III})$ the angles in the two forms differ by less than 2°. The main difference in R_{1} is for L(II) which is the most remote from the acetone. In the orange compound, the shortest distance from solvent molecule to a carbon atom of the complex molecule is the $\mathrm{O} \cdots \mathrm{C}(105)$ distance of $3 \cdot 53 \AA$. This comparatively large value rules out any possible interaction other than the normal Van der Waals'. The role of the solvent is space-filling.

Angle of Inclination.-An angle of inclination for these two structures is defined as the angle between the normals to the phenyl rings of L (II) and L (III). It is, as in ref. 1, a measure of the degree of parallelism of the two interacting aromatic systems. The red and orange compounds have nearly equal values ($18^{\circ} 40^{\prime}$ and $17^{\circ} 0^{\prime}$).

Ligand-Ligand Effect.-In $\mathrm{ML}_{3} \mathrm{X}_{2}[\mathrm{~L}=(\mathrm{I})]$, ligandligand interaction shows itself in parallelism plane-toplane of two of the ligands and in angle A always less than B as defined in Table 5. In both the new structures with the alternative ligand, the phenyl groups of L(II)
and L(III), defined in the same way, are parallel plane to plane. The difference $\mathrm{A}-\mathrm{B}$ is negative as required for attractive interaction between $\mathrm{L}(\mathrm{II})$ and $\mathrm{L}(\mathrm{III})$. The

TABLE 5

	Stereo-	$\mathrm{L} / \mathrm{II})-\mathrm{Pd}-$	$\mathrm{L}\left(\mathrm{II} /^{\circ}-\mathrm{Pd}-\right.$	
Compound	chemistry	$\mathrm{L}(\mathrm{III})$	$\mathrm{L}(\mathrm{I})$	$\mathrm{A}-\mathrm{B} /^{\circ}$
(B)	c	$\mathbf{9 2 . 9 6}$	$\mathbf{9 5 \cdot 5 7}$	$-\mathbf{2 . 6 1}$
(A)	c	$\mathbf{9 2 . 4 7}$	93.00	-0.53

effect is however, very small and of doubtful significance since it refers to one compound only.

Form of the Ligand.-In the orange compound the parameters of all carbon atoms were refined. The three crystallographically distinguishable ligands L show almost no variation in form. Mean values for the dimensions of the ring systems are given in Figure 3.

Figure 3 Mean bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ of
2 -phenylisophosphindoline ligand of the orange compound (A)

The isophosphindoline ring system always has, within the standard deviation, a non-crystallographic plane of symmetry. The bond from phosphorus to the phenyl group lies in this plane. The plane of the phenyl ring is neither parallel nor perpendicular to the symmetry plane of the phosphindoline ring system so the ligand as a whole has no symmetry. The bond lengths in the phosphindoline six-membered ring are all very nearly equal, and the angles observed do not differ significantly from 120°. The bond lengths in the five-membered ring are those of single bonds. Angle $\mathrm{C}-\mathrm{P}-\mathrm{C}$ is $94 \cdot 7^{\circ}$, and subject to restraints of the ring system.

EXPERIMENTAL

Crystal Preparation.-The brick-red powder form of the compound was dissolved in hot acetone. Orange and ruby red crystals were obtained simultaneously by evaporation of the solvent. The orange crystals (A) contain one acetone molecule for each complex molecule. The red crystals (B) are unsolvated.

Data Collection-Weissenberg photographs were used to determine the space groups and cell dimensions which were refined on the diffractometer. An orange crystal of (A) was mounted about the non-unique a axis for data collection on the Hilger and Watts four-circle diffractometer. Intensities in the $h k l$ and $h \bar{k} l$ quadrants with θ ranging from $0-65^{\circ}$ were collected with $\mathrm{Cu}-K_{\alpha}$ radiation for 4989 independent reflections with intensity $I>3 \sigma(I)$. Balanced
filters were used in the 0 range of $0-35^{\circ}$. The monitoring standard reflections were $6,8,0,4,4, \overline{4}$, and $\overline{2}, \overline{1} \overline{8}, 0$. Correction for absorption was made by use of the intensity curves of scattering vectors $4,0,0$ and $10,0,0$.

A red crystal of (B) was mounted about the a axis for data collection on the same diffractometer. Reflections $h k l$ and $\bar{k} k l$ were collected up to $\theta 63^{\circ}$ with $\mathrm{Cu}-K_{\alpha}$ radiation. Balanced filters were used in the θ range $0-35^{\circ}$. Reflections $0,0,12,4,8,0$, and $4,2,4$ were used as monitors. The intensity curve of the scattering vector $\overline{4}, 0,0$ was used

Table 6
Atomic co-ordinates for the orange form (A), with estimated standard deviations in parentheses

	x / a	y / b	z / c
Pd	-0.1066(1)	$0 \cdot 3207(0)$	$0 \cdot 5399(1)$
${ }^{\operatorname{Br}}(2)$	$0 \cdot 1185(1)$	0.4014(1)	$0.5635(1)$
$\mathrm{Br}(1)$	-0.0882(1)	$0 \cdot 2505(1)$	$0.6567(1)$
$\mathrm{P}(\mathrm{I})$	-0.0029(3)	$0 \cdot 2589(1)$	$0 \cdot 4662(2)$
P(III)	-0.2089(3)	$0 \cdot 3789(1)$	$0.6250(2)$
P(II)	$-0 \cdot 1749(3)$	0.3645(1)	$0 \cdot 4286(2)$
C(101)	$-0.0899(11)$	$0 \cdot 1999(5)$	$0 \cdot 4194(8)$
C(102)	-0.0749(13)	0-1840(6)	$0 \cdot 3378$ (9)
C(103)	-0.1619(14)	0.1417(7)	0.3036(9)
C(104)	-0.2542(16)	0.1147(7)	$0 \cdot 3495$ (11)
C(105)	$-0.2692(16)$	0.1321(8)	$0 \cdot 4270$ (10)
C(106)	$-0.1865(12)$	$0 \cdot 1735(6)$	$0 \cdot 4633$ (8)
C(107)	$0.1125(12)$	0.2244(6)	0.5232(8)
C(108)	$0 \cdot 2161(11)$	$0 \cdot 2175(6)$	$0 \cdot 4619(8)$
C(109)	$0 \cdot 3074(12)$	0.1813(7)	$0 \cdot 4736(8)$
C(110)	$0 \cdot 3876(14)$	$0 \cdot 1797(8)$	$0.4162(11)$
C(111)	$0 \cdot 3850(12)$	$0 \cdot 2130(8)$	$0 \cdot 3450(9)$
C(112)	$0 \cdot 2974(12)$	0.2488(7)	$0 \cdot 3316$ (9)
C(113)	$0 \cdot 2114(12)$	$0 \cdot 2506(6)$	0.3936(7)
C(114)	0.1076(12)	$0 \cdot 2909(6)$	$0 \cdot 3900$ (8)
C(301)	-0.3646(11)	$0 \cdot 3556(5)$	$0 \cdot 6376$ (7)
C(302)	$-0.4006(13)$	$0 \cdot 2949(6)$	0.6283 (8)
$\mathrm{C}(303)$	$-0.5290(14)$	0.2766(8)	$0 \cdot 6370(10)$
C(304)	$-0.6059(14)$	$0 \cdot 3177(8)$	$0 \cdot 6549(11)$
$\mathrm{C}(305)$	$-0.5681(14)$	$0 \cdot 3761$ (8)	$0 \cdot 6613(10)$
$\mathrm{C}(306)$	$-0.4503(13)$	$0 \cdot 3963$ (7)	$0 \cdot 6549(8)$
C(307)	-0.1975(12)	$0 \cdot 4613(6)$	$0 \cdot 6081$ (8)
C(308)	-0.1945(12)	$0 \cdot 4869(5)$	0.6921(8)
C(309)	-0.2025(12)	$0.5477(6)$	$0 \cdot 7049$ (10)
$\mathrm{C}(310)$	$-0.1950(18)$	0.5693 (8)	$0 \cdot 7841$ (13)
C(311)	-0.1791(16)	$0.5295(9)$	$0 \cdot 8461$ (12)
C(312)	$-0.1661(15)$	$0 \cdot 4681$ (7)	$0 \cdot 8337(9)$
$\mathrm{C}(313)$	-0.1734(11)	$0 \cdot 4479(5)$	$0 \cdot 7541$ (8)
C(314)	-0.1497(11)	$0 \cdot 3853(5)$	$0 \cdot 7277(8)$
C(201)	$-0.3224(11)$	$0 \cdot 3829(5)$	$0 \cdot 4349(7)$
$\mathrm{C}(202)$	-0.4132(12)	$0 \cdot 3381$ (7)	$0 \cdot 4457(8)$
$\mathrm{C}(203)$	$-0.5357(13)$	$0 \cdot 3503(9)$	$0 \cdot 4536(10)$
$\mathrm{C}(204)$	$-0.5619(15)$	$0 \cdot 4084(9)$	$0 \cdot 4427(10)$
$\mathrm{C}(205)$	$-0.4781(15)$	0.4545 (8)	$0 \cdot 4277(10)$
$\mathrm{C}(206)$	-0.3558(14)	$0 \cdot 4421$ (7)	$0 \cdot 4245(9)$
C(207)	-0.1778(13)	$0 \cdot 3257(5)$	$0 \cdot 3317(8)$
$\mathrm{C}(208)$	-0.1640(11)	$0 \cdot 3768(5)$	0.2702(7)
$\mathrm{C}(209)$	-0.1879(15)	$0 \cdot 3722(6)$	$0 \cdot 1909(9)$
$\mathrm{C}(210)$	$-0.1714(16)$	$0 \cdot 4230(7)$	$0 \cdot 1433(9)$
$\mathrm{C}(211)$	$-0.1361(15)$	$0 \cdot 4776$ (7)	$0 \cdot 1739(9)$
$\mathrm{C}(212)$	$-0.1082(13)$	0.4830 (6)	$0 \cdot 2555(9)$
$\mathrm{C}(213)$	-0.1204(11)	$0 \cdot 4312$ (5)	$0 \cdot 3046$ (7)
$\mathrm{C}(214)$	$-0.0897(11)$	0.4311 (5)	0.3926(7)
$\mathrm{O}(1)$	$0 \cdot 4826(13)$	$0 \cdot 3803(7)$	$0 \cdot 0818(10)$
C(1)	$0 \cdot 4914(15)$	$0.4186(8)$	$0 \cdot 1438(11)$
$\mathrm{C}(2)$	$0.5179(17)$	$0 \cdot 4805(8)$	$0 \cdot 1763(13)$
$\mathrm{C}(3)$	$0 \cdot 4899(15)$	$0 \cdot 3835(9)$	$0 \cdot 2302(11)$

for the absorption correction. The two sets of data in the $h k l$ and $\bar{h} \bar{k} l$ quadrants were merged to give 2822 independent reflections of $I>2 \sigma(I)$.

Determination of Structures.-The structure of (A) was determined by Patterson and electron-density synthesis methods. Solution of the sharpened Patterson map gave
the positions of the six heavy atoms and hence a first set of phases. Electron-density maps were then computed to

Table 7
Anisotropic temperature factors $\left(U_{i j} \times 10^{3}\right)^{*}$ for the orange form (A), with estimated standard deviations in parentheses

	U_{11}	U_{22}	U_{33}	$2 U_{23}$	$2 U_{31}$	$2 U_{12}$
Pd	42(0)	36(0)	34(0)	2(1)	3(1)	18(1)
$\mathrm{Br}(2)$	51(1)	$54(1)$	58(1)	15(1)	17(1)	2(1)
$\mathrm{Br}(\mathrm{I})$	68(1)	47(1)	36(1)	$-10(1)$	-8(1)	35(1)
P (I)	43(2)	38(2)	38(2)	0(2)	-2(3)	19(3)
P (III)	41(2)	35(1)	38(2)	7(2)	0 (2)	14(2)
P (II)	41(2)	33(1)	37(1)	-3(2)	-8(2)	10(2)
$\mathrm{C}(101)$	46(7)	42(6)	47(7)	-11(11)	-6(11)	21(11)
$\mathrm{C}(102)$	65(9)	40(7)	63 (9)	-1(12)	$-27(14)$	13(12)
$\mathrm{C}(103)$	58(9)	67(9)	$65(9)$	$-23(15)$	$-2(15)$	15(15)
C(104)	79(11)	60(9)	$81(11)$	-24(16)	-5(18)	-7(16)
C(105)	77(11)	81(11)	56(9)	$-11(16)$	$-6(16)$	-24(17)
$\mathrm{C}(106)$	$50(8)$	56(8)	$55(8)$	2(13)	3(13)	$-15(12)$
C(107)	50(8)	59(8)	44(7)	$-10(12)$	-3(12)	38(12)
$\mathrm{C}(108)$	44(7)	45(7)	$53(7)$	-14(11)	6(11)	$5(11)$
$\mathrm{C}(109)$	48(8)	74(9)	59(8)	-13(14)	7(13)	55(14)
$\mathrm{C}(110)$	$51(9)$	92(12)	77(11)	-4(18)	13(16)	39(16)
$\mathrm{C}(111)$	36(8)	98(11)	63(9)	$-29(16)$	-0(13)	$2(15)$
$\mathrm{C}(112)$	38(8)	83(10)	68(9)	$-57(16)$	13(13)	- $13(14)$
$\mathrm{C}(113)$	45(7)	57(8)	40(7)	-0(11)	$-20(11)$	-5(12)
C(114)	$51(8)$	45(7)	45 (7)	-4(11)	11(11)	12(11)
$\mathrm{C}(201)$	42(7)	48(7)	38(6)	-4(10)	$-3(10)$	2(11)
$\mathrm{C}(202)$	71(9)	58(8)	48(8)	-24(13)	8(13)	$-1(13)$
$\mathrm{C}(203)$	55(9)	91(11)	70 (10)	-25(17)	-0(15)	-46(16)
C (204)	49(9)	98(13)	89(12)	-2(19)	1(17)	$-12(18)$
$\mathrm{C}(205)$	60(10)	83(11)	72(10)	-24(17)	$-30(16)$	$4(16)$
$\mathrm{C}(206)$	64(9)	67(9)	49(8)	8(13)	28(13)	41(15)
$\mathrm{C}(207)$	$65(8)$	39(7)	47(7)	$5(11)$	0(12)	$5(12)$
$\mathrm{C}(208)$	52(7)	$39(6)$	$53(7)$	17(11)	8(12)	-2(11)
$\mathrm{C}(209)$	49(8)	48(8)	$85(10)$	-38(14)	$2(14)$	19(12)
$\mathrm{C}(210)$	109(15)	58(10)	104(14)	-79(20)	-33(23)	24(19)
$\mathrm{C}(211)$	69(11)	97(13)	96(13)	$-102(21)$	14(19)	$-23(19)$
$\mathrm{C}(212)$	82(11)	78(10)	47(8)	38(15)	$-20(14)$	2(16)
$\mathrm{C}(213)$	45(7)	42(7)	66(8)	16(12)	-8(12)	6(11)
$\mathrm{C}(214)$	50(7)	40 (6)	49(7)	2(11)	1(12)	10(11)
C(301)	44(7)	44(6)	34(6)	$-7(10)$	$-7(10)$	5(10)
C(302)	$51(8)$	$70(9)$	$45(7)$	$-10(12)$	$-14(12)$	23(13)
$\mathrm{C}(303)$	$39(8)$	110(13)	68(10)	$-23(18)$	$-38(14)$	-5(16)
$\mathrm{C}(304)$	$62(10)$	109(14)	62(10)	$-16(18)$	$-25(16)$	$71(19)$
$\mathrm{C}(305)$	62(10)	96(12)	$71(10)$	$-25(18)$	-4(16)	70(18)
$\mathrm{C}(306)$	64(9)	68(9)	56(8)	11(14)	14(14)	50(15)
$\mathrm{C}(307)$	71(9)	$35(6)$	50(7)	2(11)	-20 (13)	20(12)
$\mathrm{C}(308)$	45(7)	43(6)	48(7)	11(11)	6(11)	16(10)
$\mathrm{C}(309)$	89(11)	53(8)	51 (8)	11(13)	11(15)	52(15)
$\mathrm{C}(310)$	105(12)	72(10)	43(8)	11(15)	$-6(16)$	17(17)
$\mathrm{C}(311)$	85(10)	61(9)	46(8)	20 (13)	7(14)	-1(15)
$\mathrm{C}(312)$	58(9)	58(8)	63(9)	24(14)	$-5(14)$	$-12(13)$
$\mathrm{C}(313)$	50(7)	44 (7)	45 (7)	5 (11)	$-16(11)$	$21(11)$
$\mathrm{C}(314)$	43(7)	45(7)	47(7)	5(11)	1(11)	12(10)
$\mathrm{O}(1)$	159(11)	191(11)	195(12)	72(18)	$-43(18)$	35(18)
C(1)	89(11)	126(11)	143(13)	$-37(19)$	-7(19)	57(17)
$\mathrm{C}(2)$	133(13)	136(13)	217(15)	$-27(22)$	19(23)	-6(21)
C(3)	117(12)	$179(13)$	113(12)	14(20)	52(19)	26(20)

show the remaining details of the complex molecule (excluding hydrogen atoms). A 'Ploto' map ${ }^{4}$ showed a possible space for an acetone molecule which was then located from a difference-Fourier map of this region phased on all the other atoms of the structure.

The structure of (B) was determined by the non-centrosymmetric direct method combined with electron-density Fourier synthesis. The process of phase determination was
${ }^{4}$ D. J. Watkin, Acta Cryst., 1972, A28, 33.
5 O. J. R. Hodder, 1970, Trial and Error Tangent Formula Programme, Chemical Crystallography Department, Oxford.
carried out by the trial-and-error tangent formula programme. ${ }^{5}$ The origin was fixed by $\phi(2,0,5)=\pi / 2$, $\phi(0,1,11)=\pi / 2$, and $\phi(1,0,1)=\pi / 2$. The enantiomorph was determined by $\phi(0,3,12)=\pi / 2$. Eight trials of tangentformula refinement of phases were carried out by assigning $\pi / 4$ or $3 \pi / 4$ to reflection $0,10,6$ and $-\pi / 4, \pi / 4,-3 \pi / 4$ or $3 \pi / 4$ to $3,2,17$. The acceptability of each trial solution was judged by an overall R_{T} index, defined by $R_{\mathrm{T}}=100 \times$ $\left[\Sigma\left(\left|E_{\mathrm{o}}\right|-\left|E_{\mathrm{c}}\right|\right) / \Sigma\left|E_{\mathrm{o}}\right|\right]$. The trial with $\phi(0,10,6)=\pi / 4$ and

Table 8

Atomic co-ordinates for the red form (B), with estimated standard deviations in parentheses. Values from ref. 3 are in square brackets (see text)

Pd	x / a	y / b	z / c
	$0.0948(1)$	0.3067(1)	$0 \cdot 1772(1)$
	[0.096]	[0.307]	[0.179]
$\operatorname{Br}(1)$	0.1205(2)	$0 \cdot 4462(1)$	$0 \cdot 2301(1)$
	[0.113]	[$0 \cdot 445$]	[0.233]
$\operatorname{Br}(2)$	-0.1026(2)	$0 \cdot 3260(1)$	$0 \cdot 0902(1)$
	[-0.099]	[0.322]	[0.091]
$\mathrm{P}(\mathrm{I})$	0.2044(4)	$0.3578(2)$	$0.0924(2)$
	[0.198]	[0.359]	[0.094]
$\mathrm{P}(\mathrm{II})$	0.1365(4)	$0 \cdot 1724(3)$	$0 \cdot 1573(2)$
	[0.118]	[0.177]	[0.155]
P (III)	-0.0263(4)	$0 \cdot 2751$ (3)	0.2640(2)
	[-0.022]	[0-270]	[0.263]
C(101)	0.3573(8)	$0.3541(9)$	$0 \cdot 1097(5)$
C(102)	$0 \cdot 4423(10)$	$0 \cdot 3568(14)$	$0.0617(5)$
C(103)	0.5581 (9)	$0 \cdot 3562(14)$	0.0796(6)
C(104)	0.5891 (9)	$0 \cdot 3399(11)$	$0 \cdot 1441$ (7)
C(105)	$0 \cdot 5038(11)$	$0 \cdot 3332(18)$	$0 \cdot 1918(6)$
$\mathrm{C}(106)$	$0 \cdot 3883(10)$	$0 \cdot 3409(16)$	$0 \cdot 1747(5)$
C(107)	$0 \cdot 1838(17)$	$0 \cdot 3168(10)$	0.0068 (6)
C(108)	$0 \cdot 1717(16)$	$0 \cdot 3897(6)$	$-0.0350(5)$
C(109)	$0 \cdot 1804(22)$	$0 \cdot 3860$ (7)	$-0.1030(5)$
C(110)	$0 \cdot 1773(23)$	$0.4579(9)$	--0.1396(4)
C(111)	$0 \cdot 1714(29)$	0.5335 (7)	--0.1083(5)
C(112)	$0 \cdot 1740(22)$	$0.5374(6)$	$-0.0402(5)$
C(113)	$0 \cdot 1756(18)$	$0 \cdot 4654$ (7)	$-0.0037(4)$
C(114)	$0 \cdot 1757(17)$	$0 \cdot 4664(11)$	$0.0707(8)$
$\mathrm{C}(201)$	$0 \cdot 2067(12)$	$0 \cdot 1212(10)$	$0 \cdot 2250$ (7)
$\mathrm{C}(202)$	$0 \cdot 1462(10)$	$0.0745(9)$	$0 \cdot 2703$ (8)
$\mathrm{C}(203)$	$0 \cdot 2046(18)$	$0 \cdot 0345(11)$	$0 \cdot 3205$ (7)
$\mathrm{C}(204)$	$0 \cdot 3242(17)$	$0 \cdot 0394(14)$	$0 \cdot 3241$ (10)
$\mathrm{C}(205)$	$0 \cdot 3832(12)$	$0 \cdot 0929(18)$	$0 \cdot 2828(13)$
$\mathrm{C}(206)$	$0 \cdot 3259(12)$	$0 \cdot 1280(13)$	$0 \cdot 2297$ (11)
C(207)	$0 \cdot 0151(20)$	$0 \cdot 1088(10)$	$0 \cdot 1365(9)$
$\mathrm{C}(208)$	$0 \cdot 0630(16)$	$0.0446(9)$	0.0916 (8)
$\mathrm{C}(209)$	$0 \cdot 0037(17)$	-0.0249(11)	$0.0711(10)$
$\mathrm{C}(210)$	$0 \cdot 0569(22)$	-0.0805(11)	$0 \cdot 0290$ (13)
$\mathrm{C}(211)$	$0 \cdot 1644(23)$	-0.0624(11)	$0 \cdot 0026(10)$
$\mathrm{C}(212)$	$0 \cdot 2212(18)$	$0.0093(13)$	$0 \cdot 0205(10)$
$\mathrm{C}(213)$	$0 \cdot 1732(17)$	$0.0605(9)$	$0.0677(8)$
$\mathrm{C}(214)$	$0 \cdot 2264(29)$	$0 \cdot 1382(16)$	$0.0876(9)$
C(301)	$0 \cdot 0421(11)$	$0 \cdot 2532(9)$	$0 \cdot 3413(5)$
$\mathrm{C}(302)$	$0 \cdot 1580(11)$	$0 \cdot 2738(12)$	$0 \cdot 3480$ (6)
$\mathrm{C}(303)$	$0 \cdot 2157(11)$	$0 \cdot 2558(15)$	$0 \cdot 4060$ (8)
C(304)	$0 \cdot 1537(16)$	$0 \cdot 2267(18)$	$0 \cdot 4596$ (6)
C(305)	$0.0417(17)$	$0 \cdot 1984(21)$	0.4508 (8)
C(306)	$-0.0142(13)$	$0 \cdot 2115(19)$	$0 \cdot 3914(8)$
C(307)	$-0 \cdot 1268(13)$	$0 \cdot 3598(10)$	$0.2802(7)$
C(308)	-0.2303(11)	$0 \cdot 3164(8)$	$0 \cdot 3075$ (6)
C(309)	$-0.3146(13)$	$0 \cdot 3544(8)$	$0 \cdot 3453(9)$
$\mathrm{C}(310)$	$-0.4050(13)$	$0 \cdot 3083(11)$	$0.3709(9)$
C(311)	$-0.4121(13)$	$0 \cdot 2249(11)$	$0 \cdot 3576$ (10)
$\mathrm{C}(312)$	$-0.3268(13)$	$0 \cdot 1866(8)$	$0 \cdot 3208(9)$
$\mathrm{C}(313)$	$-0.2351(11)$	$0 \cdot 2323(8)$	$0 \cdot 2963$ (7)
C(314)	-0.1451(18)	$0 \cdot 1944(15)$	$0 \cdot 2575$ (10)

$\phi(3,2,17)=-\pi / 4$ which gave the lowest $R_{T}(23 \cdot 05 \%)$ resulted in a solution for the six heavy atoms of the complex molecule. The positions of atoms so found were in turn used to phase the set of F_{c} for a difference-synthesis which

Table 9

Anisotropic temperature factors ($\times 10^{3}$) for the red form (B), with estimated standard deviations in parentheses

	U_{11}	U_{22}	U_{33}		$2 U_{31}$	
Pd	69(1)	61(1)	49(0)	-1(1)	13(1)	-1(1)
$\mathrm{Br}(1)$	$95(1)$	$71(1)$	$62(1)$	$-21(2)$	10(2)	$-10(2)$
$\mathrm{Br}(2)$	$72(1)$	96(1)	75(1)	-6(2)	-12(2)	12(2)
(1)	$81(3)$	$63(2)$	49(2)	$2(4)$	7(4)	4(4)
P(II)	$92(3)$	$67(2)$	$60(2)$	11(4)	25(4)	
(III)	$72(3)$	71(2)	56(2)	$2(4)$	$8(4)$	$12(4)$
101)	89(11)	$52(8)$	$57(8)$	-17(14)	6(16)	14
C(102)	83(12)	123(16)	84(12)	75 (24)	(20)	$5($
03)	82(13)	109(16)	$100(13)$	-53(24)	$51(22)$	13
104)	94(12)	79(11)	109(15)	-31(22)	-40(25)	27
105)	109(18)	177(25)	95 (14)	$113(32)$	-16(27)	64
(106)	88(12)	$165(21)$	$55(9)$	1(24)	-10(20)	18
(107)	112(14)	$74(10)$	$40(7)$	33(15)	-2(17)	23
C(108)	84(11)	85(11)	57(9)	9(17)	17(17	1 (20)
C(109)	150(19)	108(15)	$51(9)$	34(20)	-46(23)	(2)
10)	$150(22)$	199(28)	53(10)	$81(30)$	$-27(25)$	-117
$11)$	228(33)	83(13)	56(10)	32 (20)	39(31)	-16(36)
112)	149(19)	91(12)	68(11)	52(20)	23 (24)	
(113)	$115(14)$	98(14)	70(10)	$57(21)$	$37(21)$	
$14)$	110(14)	70(10)	66	75(17)	11(20)	
21)	90(14)		101(15)	4(20)	-84(26)	-12
$\mathrm{C}(202)$	112(14)	$60(9)$	86(12)	50(18)	$5(22)$	-8(18
(2)	259(32)	93(14)	72(10)	-49(22)	-93(34)	-65
	161(28)	93(18)	187(34)	-43(41)	-94(56)	
C(205)	209(41)	144(23)	228(42)	-32(51)	$-188(75)$	9
$\mathrm{C}(206)$	$138(21)$	86(14)	$170(25)$	$32(33)$	$-129(42)$	
87)	199(30)	130(19)		24(25)	$63(33)$	
08)	204(30)	78(12)	67(12)		-17(32)	
$\mathrm{C}(209)$	326 (48)	71(13)	105(16)	-10(26)	$-178(51)$	-20
(210)	287(67)	128(22)	123(22)	-89(38)	$-87(65)$	
11)	322(60)	98(20)	81(14)	-19(27)	$-36(49)$	
C(212)	328(52)	143(21)	59(12)	$-1(28)$	$85(43$	223
	$238(33)$	72(12)	55(11)	33(19)	-17(32)	
	199(30)	130(19)	11)	24(2)	63(33)	
101)	116(13)	61 (9)	$62(9)$	-10(15)	-53(19)	
C(302)	107(14)	97(13)	76(11)	2(21)	-44(22)	26
	$161(23)$	133(21)	$99(15)$	33(30)	$-133(33)$	
C(304)	$151(23)$	213(31)	64(12)	2 233)	$34(28)$	110
$\mathrm{C}(305)$	$172(28)$	$213(37)$	$115(20)$	$111(50)$	$11(42)$	4
06)	107(15)	222(33)	78(12)	123(35)	$55(23)$	84
C(307)	66(9)	79(10)	65 (9)	-61(17)	18(16)	
$\mathrm{C}(308)$	83(11)	111(15)	46(8)	19(18)	8(15)	
$\mathrm{C}(309)$	84(13)	128(17)	82(12)	-43(25	$7(22)$	
10)	84(14)	205(29)	$91(14)$	41 (37	-6(25)	
C(311)	83(14)	180(24)	80(13)	$30(32)$	$54(25)$	50
C(312)	$110(14)$	204(26)	73(11)	-61(31)	-9(22)	-171
13)	72(11)	108(14)	56(9)	$-10(19)$	22(17)	-3
(314)	97(13)	137(17)	95(14)	-43(28)	-6(23)	-8

gave the solution for the rest of the molecule, excluding hydrogen atoms.
Refinement of the Structures.-The structure of (A) was refined anisotropically till $R 0.064$ with root-mean-square (shift-to- σ) reduced to $0 \cdot 025$. The weighting function was $\sqrt{ } w=1 /\left\{1+\left[\left(\left|F_{0}\right|-P_{2}\right) / P_{1}\right]^{2}\right\}^{\frac{1}{2}} \quad$ with $\quad P_{1}=30 \cdot 4$ and $P_{2}=7 \cdot 2$.

In the anisotropic refinement of structure (B), the carbon atoms of all benzene rings were constrained to regular hexagons with $\mathrm{C}-\mathrm{C} 1.396 \AA$. The refinement terminated at $R 0.065$ with root-mean-square (shift-to- σ) <0.02. The weighting function used was the same as for structure (A), with $P_{1} 32 \cdot 7$, and $P_{2} 9 \cdot 6$. Final observed and calculated structure factors are listed in Supplementary Publication No. SUP 21052 (80 pp ., 1 microfiche).*
Atomic positional and thermal parameters are given in Tables 6-9. In Table 8, all the positional parameters from ref. 3 are added below in square brackets. The coordinates of ref. 3 were converted to the values shown by substitution of an atom at x, y, z by its $\frac{1}{2}-x, \bar{y}, \frac{1}{2}+z$ equivalent plus a change of origin to $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$.

Crystal Data.-(i) Orange form, (A). $\quad\left(\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{P}\right)_{3} \mathrm{PdBr}_{2}$,$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}, M=961 \cdot 0$, Monoclinic, $a=11 \cdot 36 \pm 0.02, b=$ $22.52 \pm 0.04, c=16.67 \pm 0.03 \AA, \gamma=95.51 \pm 0.02^{\circ}, U=$ $4245 \AA^{3}, D_{\mathrm{m}}=1.50, Z=4, D_{\mathrm{c}}=1.50 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=$ 1936. Space group $P 2_{1} / b$. Cu- K_{α} radiation, $\lambda=1.5418 \AA$; $\mu\left(\mathrm{Cu}-K_{\alpha}\right)=74.00 \mathrm{~cm}^{-1} ; \quad t_{\mathrm{op}}$ (optimum thickness) $=0.27$ mm . Terminal $R 0.064$; orange crystal $0.14 \times 0.21 \times$ 0.80 mm .
(ii) Red form, (B). $\quad\left(\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{P}\right)_{3} \mathrm{PdBr}_{2}, M=902 \cdot 9$, Orthorhombic, $a=11.63 \pm 0.02, b=16.36 \pm 0.03, c=20.48 \pm$ $0.03 \AA, U=3987 \AA^{3}, D_{\mathrm{m}}=1.54, Z=4, D_{\mathrm{c}}=1.54 \mathrm{~g} \mathrm{~cm}^{-3}$, $F(000)=1808$. Space group $P 2_{1} 2_{1} 2_{1} . \quad \mu\left(\mathrm{Cu}-K_{\alpha}\right)=5639$ $\mathrm{cm}^{-1} ; t_{\mathrm{op}}=0.35 \mathrm{~mm}$. Terminal $R 0.065$; ruby red crystal $0.15 \times 0.27 \times 0.41 \mathrm{~mm}$.

We thank Dr. F. G. Mann, F.R.S., for the compounds used, the S.R.C. for a research grant, and the Oxford University Computing Laboratory for facilities.
[4/292 Received, 14th February, 1974]

* See Notice to Authors No. 7 in J.C.S. Dalton, 1973, Index issue.

