Structural Studies in Main-group Chemistry. Part VII. ${ }^{1}$ Crystal Structure of \mathbf{N}-Benzoyl- \mathbf{N}-phenyl- \mathbf{O}-(triphenylstannyl)hydroxylamine

By Philip G. Harrison ${ }^{\bullet}$ and Trevor J. King, Department of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD

Abstract

The crystal structure of the title compound has been determined from X-ray diffractometer data by Patterson and Fourier methods. Crystals are monoclinic, space group $P 2_{1} / c$ with $a=12 \cdot 278$ (3). $b=17 \cdot 621$ (2), $c=15 \cdot 411$ (2) $\AA, \beta=128.37(2)^{\circ}, Z=4$. Strong intramolecular carbonyl-tin co-ordination renders the tin atom five-co-ordinate with trigonal-bipyramidal geometry. The equatorial positions are occupied by two phenyl groups [mean $\mathrm{Sn}-\mathrm{C}(\mathrm{Ph}) 2.136 \AA$] and the hydroxylamino-oxygen ($\mathrm{Sn}-\mathrm{O} 2.091 \AA$). The $\mathrm{Sn}-\mathrm{C}(\mathrm{Ph})$ axial distance ($2.176 \AA$) is significantly longer than the two equatorial bonds. In the hydroxylamine residue, the $\mathrm{C}-\mathrm{N}$ bond distance indicates significant multiple-bond character, whilst the carbonyl bond distance is the same as in zwitterionic compounds. Rationalisations of observed spectroscopic data are made in the light of the derived structure. The sign of the electric-field gradient at the tin nucleus is deduced to be negative.

Triorganotin derivatives of potentially bidentate ligands $\mathrm{R}_{3} \mathrm{SnXY}$ may a priori assume the three configurations (I)--(III). Essentially tetrahedrally coordinated tin is expected for weak or no interaction between the second donor site Y and the metal atom (I), whilst strong inter- or intra-molecular co-ordination would produce the five-co-ordinate configurations (II) and (III). Among the sparse structural data for tin-oxygen-bonded compounds there are examples of types

(III)
(I) and (II), but there was no crystallographic confirmation of the existence of the intramolecularly co-ordinated type (III). Most triorganotin acetates are considered to possess the same structure as tribenzyltin acetate, in which fairly strong intermolecular carbonyltin co-ordination results in chain-like structure of type (II). ${ }^{2}$ Tricyclohexyltin acetate on the other hand is monomeric in the crystal, and the intramolecular carbonyl-tin distance is such as to suggest negligible bonding interaction. ${ }^{3}$ Previously we reported the preparation of and spectroscopic data for a number of triorganotin derivatives of N-benzoylhydroxylamines. The data suggested that these compounds possess monomeric structures of type (III), rather than the acetate structures (I) and (II). Here we report the structure of one of these compounds, N-benzoyl- N -phenyl-O-(triphenylstannyl)hydroxylamine.

+ See Notice to Authors No. 7 in J.C.S. Dalton, 1973, Index issue.
${ }^{1}$ Part VI, P. G. Harrison, T. J. King, and J. A. Richards, J.C.S. Dalton, 1974, 1723.

EXPERIMENTAL

Crystal Data. $-\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{Sn}, M=561 \cdot 9$, Monoclinic, $a=$ $12 \cdot 278(3), b=17.621(2), c=15 \cdot 411(2) \AA, \beta=128.37(2)^{\circ}$, $Z=4, F(000)=1136 . \quad$ Space group $P 2_{1} / c$ from systematic absences: $h 0 l$ for l odd, and $0 k 0$ for k odd. Mo- K_{α} radiation, $\lambda=0.71069 \AA . \quad \mu\left(\mathrm{Mo}-K_{\alpha}\right)=10.41 \mathrm{~cm}^{-1}$.

Rod-like crystals, stable to air and to X-rays, were obtained by recrystallisation from benzene, and a crystal of dimensions $0.3 \times 0.3 \times 0.4 \mathrm{~mm}$ was mounted on a glass fibre. The space group was deduced from oscillation and zero- and first-layer Weissenberg photographs. The intensities of 3549 independent non-zero reflections were measured by use of a Hilger and Watts four-circle automatic diffractometer. Reflections with intensities $I<$ $3 \sigma(I)$ were considered non-observed, and were not used further. Accurate unit-cell dimensions were obtained by least-squares refinement of data for $c a .20$ reflections. Lorentz and polarisation corrections were applied, but none were made for absorption effects.

Determination and Refinement of the Structure.-The positional parameters of the tin atom in the asymmetric unit obtained from a Patterson synthesis were then used to phase the initial structure-factor calculation. A Fourier synthesis then enabled the positions of all but two phenylgroup carbon atoms of the non-hydrogen light atoms to be deduced. Block-diagonal least-squares refinement including all atoms was carried out using programmes written by Ahmed. With anisotropic thermal parameters for all atoms, convergence was reached with $R 0.0490$. A differ-ence-Fourier synthesis at this stage revealed the positions of all hydrogen atoms. These were then included in the structure-factor calculation to give $R 0.0455$ after two cycles.

Final atomic co-ordinates for non-hydrogen atoms are in Table 1, anisotropic temperature factor parameters, in Table 2, and co-ordinates and isotropic thermal parameters for hydrogen atoms in Table 3.
The magnetically perturbed spectrum was obtained at the P.C.M.U. (Harwell) using a $\mathrm{BaSn}^{119 m} \mathrm{O}_{3}$ source and an applied magnetic field of 6 Tesla. Final observed and calculated structure factors are in Supplementary Publication No. SUP 21107 (15 pp., 1 microfiche). \dagger

DISCUSSION

The structure and numbering scheme of the atoms is shown in Figure 1. The geometry at tin is that of a

[^0]Table 1
Fractional atomic co-ordinates, with standard deviations in parentheses

Atom	x / a	y / b	z/c
$\mathrm{Sn}(1)$	$0 \cdot 24118(4)$	$0 \cdot 17471$ (3)	$0 \cdot 20224(3)$
N(1)	$-0.0323(5)$	$0 \cdot 1251(3)$	-0.0009(4)
$\mathrm{O}(1)$	$0.0608(4)$	$0 \cdot 1086(3)$	$0 \cdot 1110(3)$
$\mathrm{O}(2)$	$0 \cdot 1390$ (4)	$0 \cdot 1859(3)$	$0.0169(3)$
C(1)	$0.0156(6)$	$0 \cdot 1613(3)$	-0.0446(4)
$\mathrm{C}(2)$	-0.0695(6)	$0 \cdot 1731$ (4)	$-0.1668(4)$
$\mathrm{C}(3)$	0.1329(9)	$0 \cdot 3396$ (4)	$0 \cdot 1175$ (7)
C(4)	$-0.2207(7)$	$0 \cdot 1257(5)$	$-0.3531(5)$
C(5)	-0.2054(7)	$0 \cdot 1930$ (5)	$-0.3895(5)$
C(6)	-0.1216(8)	$0 \cdot 2512(5)$	-0.3169(6)
C(7)	$-0.0526(7)$	$0 \cdot 2402$ (4)	$-0.2044(5)$
C(8)	-0.1734(6)	$0 \cdot 1107(4)$	-0.0469(4)
$\mathrm{C}(9)$	$-0.2070(7)$	$0.0397(4)$	$-0.0289(6)$
$\mathrm{C}(10)$	$-0.3423(8)$	$0.0258(5)$	-0.0694(6)
C(11)	-0.4423(7)	$0.0816(5)$	$-0.1259(6)$
$\mathrm{C}(12)$	-0.4075 (7)	$0 \cdot 1507(5)$	-0.1421(6)
C(13)	-0.2723(7)	$0 \cdot 1662(4)$	$-0.1033(5)$
$\mathrm{C}(14)$	$0 \cdot 2814$ (6)	$0 \cdot 1261(3)$	$0 \cdot 3495$ (5)
C(15)	$0 \cdot 1850$ (7)	0.0856(4)	$0 \cdot 3478$ (6)
$\mathrm{C}(16)$	$0 \cdot 2136(9)$	$0.0630(5)$	$0 \cdot 4472$ (6)
C(17)	0.3377 (8)	$0.0812(4)$	$0 \cdot 5486(5)$
C(18)	-0.0526 (7)	0.2402(4)	$-0.2044(5)$
$\mathrm{C}(19)$	$0 \cdot 4082$ (7)	$0 \cdot 1444$ (5)	$0 \cdot 4527(5)$
C(20)	0.4247 (6)	$0 \cdot 1537(3)$	$0 \cdot 2181(5)$
$\mathrm{C}(21)$	0.5295 (7)	$0 \cdot 1062(4)$	$0 \cdot 3015$ (6)
$\mathrm{C}(22)$	$0 \cdot 6499(9)$	$0 \cdot 0957$ (5)	$0 \cdot 3154(8)$
$\mathrm{C}(23)$	$0 \cdot 6701(8)$	$0 \cdot 1304(5)$	$0 \cdot 2461(8)$
$\mathrm{C}(24)$	$0.5664(8)$	$0 \cdot 1763(5)$	$0 \cdot 1622(7)$
$\mathrm{C}(25)$	$0.4462(7)$	$0 \cdot 1884(4)$	$0 \cdot 1486$ (6)
$\mathrm{C}(26)$	$0 \cdot 1938(6)$	$0 \cdot 2902(4)$	$0 \cdot 2071(5)$
$\mathrm{C}(27)$	$0 \cdot 1239(9)$	$0 \cdot 3396(4)$	$0 \cdot 1175(7)$
$\mathrm{C}(28)$	$0 \cdot 1001(11)$	$0 \cdot 4148(5)$	$0 \cdot 1260$ (9)
$\mathrm{C}(29)$	$0 \cdot 1290$ (9)	$0 \cdot 4405(5)$	0.2207(9)
$\mathrm{C}(30)$	$0 \cdot 1900(9)$	$0 \cdot 3928(5)$	$0 \cdot 3102(7)$
$\mathrm{C}(31)$	0.2219(7)	$0 \cdot 3189(5)$	$0 \cdot 3033(6)$

Figure 1 Structure and atomic numbering scheme showing bond angles $\left({ }^{\circ}\right)$ at the tin atom
trigonal bipyramid distorted by the chelation of the benzoylhydroxylamine residue. The equatorial positions are occupied by two phenyl groups and the hydroxylamino-oxygen. Intramolecular co-ordination of the carbonyl group oxygen atom to the tin via an
axial site produces a five-membered $\mathrm{Sn} \cdot \mathrm{O} \cdot \mathrm{N} \cdot \mathrm{C}: \mathrm{O}$ heterocyclic ring. The other axial site is occupied by the third
phenyl group. The equatorial bond angles range from 111 to 125.5° (total 353.5°), the tin atom lying below the plane of the three bonded atoms. There appears to be

Table 2
Anisotropic thermal parameters $\left(\times 10^{4}\right)$,* with standard deviations in parentheses

Atom	B_{11}	B_{22}	B_{33}	B_{23}	B_{13}	B_{12}
$\mathrm{Sn}(1) \dagger$	1011(4)	404(1)	605(2)	$11(4)$	826(5)	-143(6)
N(1)	105(6)	46(2)	48(3)	12(4)	67(7)	-6(6)
$\mathrm{O}(1)$	122(5)	$51(2)$	$55(3)$	13(4)	$71(6)$	$-27(5)$
$\mathrm{O}(2)$	122(5)	66(2)	$60(3)$	-5(5)	89(7)	$-37(6)$
$\mathrm{C}(\mathbf{1})$	95(6)	34(3)	$50(3)$	$-16(5)$	$56(8)$	-2(6)
C(2)	$95(6)$	$57(3)$	57(4)	4(6)	$90(8)$	17(8)
$\mathrm{C}(3)$	123(8)	57(3)	63 (4)	$-24(6)$	104(10)	$-6(8)$
C(4)	134(9)	67(4)	61 (5)	-6(7)	91(11)	$9(9)$
C(5)	131(9)	91 (5)	57(4)	10(7)	96(11)	$50(10)$
C(6)	167(11)	78(5)	86(6)	40(8)	175(14)	32(11)
$\mathrm{C}(7)$	157(9)	38(3)	71 (4)	17(6)	129(11)	$32(8)$
C(8)	117(7)	$41(3)$	52(4)	(5)	89(9)	$-3(7)$
$\mathrm{C}(9)$	141.(9)	41(3)	89(5)	18(6)	113(12)	5 (8)
$\mathrm{C}(10)$	146(10)	54(4)	108(6)	14(8)	126(13)	$-36(10)$
C(11)	129(9)	73(4)	86(6)	7(8)	$113(12)$	$-20(10)$
$\mathrm{C}(12)$	130(9)	65(4)	100(6)	$27(8)$	137(13)	36(9)
C(13)	157(9)	38(3)	71 (4)	17(6)	129(10)	$32(8)$
C(14)	121 (7)	37(2)	58(4)	22(5)	101(9)	17(7)
C(15)	135(8)	45(3)	67(5)	$-3(6)$	98(11)	-35(8)
C(16)	203 (12)	68(4)	89 (6)	6(8)	166(15)	-8(11)
$\mathrm{C}(17)$	177(10)	$53(3)$	70 (5)	$3(7)$	142(12)	$-15(9)$
C(18)	133(9)	64(4)	55(4)	7(7)	70(11)	23(9)
C(19)	120(8)	67(4)	64(4)	$-0(6)$	85(10)	$-19(9)$
$\mathrm{C}(20)$	114(7)	33(3)	84(5)	-8(5)	119(10)	$-9(6)$
C(21)	130(8)	47(3)	105(6)	20(7)	149(12)	9(8)
$\mathrm{C}(22)$	162(11)	57(4)	141 (9)	44(9)	162(17)	32(11)
$\mathrm{C}(23)$	144(10)	$59(4)$	166(9)	4(10)	208(17)	15(10)
$\mathrm{C}(24)$	160 (10)	57(3)	153(8)	34(10)	227(16)	18(11)
$\mathrm{C}(25)$	143(8)	43(3)	$91(5)$	9 (6)	144(12)	$-3(8)$
$\mathrm{C}(26)$	100(7)	42(3)	$86(5)$	19(6)	128(10)	$2(7)$
C (27)	255(14)	48(4)	127(8)	$41(8)$	261 (19)	62(11)
$\mathrm{C}(28)$	$283(17)$	58(4)	194(11)	81(11)	$344(25)$	101(13)
C(29)	216(14)	52(4)	209(11)	$-6(10)$	327(23)	26(11)
$\mathrm{C}(20)$	199 (12)	52(4)	147(8)	$-56(9)$	$231(18)$	-29(11)
$\mathrm{C}(31)$	152(9)	52(3)	88(5)	$-14(7)$	136(12)	$-16(9)$

* In the form: $\exp \left[-\left(B_{11} h^{2}+B_{28} k^{2}+B_{33} l^{2}+B_{28} k l+\right.\right.$ $\left.\left.B_{13} h l+B_{12} h k\right)\right] . \quad \dagger$ Values for $\mathrm{Sn} \times 10^{5}$.

Table 3
Positions and thermal parameters for hydrogen atoms

Atom *	x / a	y / b	z / c	B / \AA^{2}
$\mathrm{H}(3)$	-0.1655	0.0625	-0.2100	$5 \cdot 1$
$\mathrm{H}(4)$	-0.2861	$0 \cdot 0804$	-0.4127	$5 \cdot 7$
$\mathrm{H}(5)$	-0.2602	$0 \cdot 2001$	-0.4780	$5 \cdot 7$
$\mathrm{H}(6)$	-0.1119	$0 \cdot 3050$	-0.3480	$6 \cdot 1$
$\mathrm{H}(7)$	0.0156	$0 \cdot 2846$	-0.1446	$5 \cdot 2$
$\mathrm{H}(9)$	-0.1268	-0.0043	0.0155	$5 \cdot 5$
$\mathrm{H}(10)$	-0.3697	-0.0297	-0.0545	$6 \cdot 6$
$\mathrm{H}(11)$	-0.5497	0.0704	-0.1584	$6 \cdot 2$
$\mathrm{H}(12)$	-0.4862	$0 \cdot 1947$	-0.1862	$6 \cdot 0$
$\mathrm{H}(13)$	-0.2459	$0 \cdot 2220$	-0.1173	$4 \cdot 9$
$\mathrm{H}(15)$	0.0857	0.0711	$0 \cdot 2693$	$5 \cdot 1$
$\mathrm{H}(16)$	$0 \cdot 1364$	0.0298	$0 \cdot 4444$	6.4
$\mathrm{H}(17)$	$0 \cdot 3397$	0.0790	-0.0145	$5 \cdot 4$
$\mathrm{H}(18)$	0.5324	$0 \cdot 1333$	$0 \cdot 6228$	$5 \cdot 6$
$\mathrm{H}(19)$	$0 \cdot 4862$	$0 \cdot 1781$	$0 \cdot 4565$	$5 \cdot 4$
$\mathrm{H}(21)$	0.5143	0.0769	$0 \cdot 3563$	$5 \cdot 6$
$\mathrm{H}(22)$	0.7324	0.0587	$0 \cdot 3817$	$7 \cdot 4$
$\mathrm{H}(23)$	0.7667	$0 \cdot 1222$	$0 \cdot 2577$	$7 \cdot 1$
$\mathrm{H}(24)$	0.5799	$0 \cdot 2032$	$0 \cdot 1059$	$6 \cdot 6$
$\mathrm{H}(25)$	$0 \cdot 3665$	$0 \cdot 2256$	$0 \cdot 0819$	$5 \cdot 3$
$\mathrm{H}(27)$	$0 \cdot 1116$	$0 \cdot 3200$	0.0408	$7 \cdot 1$
$\mathrm{H}(28)$	0.0493	$0 \cdot 4525$	0.05400	$8 \cdot 5$
$\mathrm{H}(29)$	$0 \cdot 1036$	$0 \cdot 4990$	$0 \cdot 2264$	$7 \cdot 6$
$\mathrm{H}(30)$	0.2129	$0 \cdot 4142$	$0 \cdot 3868$	$7 \cdot 0$
$\mathrm{H}(31)$	$0 \cdot 2704$	$0 \cdot 2812$	$0 \cdot 3755$	$5 \cdot 7$

* Numbered according to the carbon atom to which they are attached.
no reason for the large difference between the two $\mathrm{O}-\mathrm{Sn}-\mathrm{C}(\mathrm{eq})$ bond angles (111, $\mathbf{1 2 5} \cdot 5^{\circ}$) except perhaps crystal packing forces. The angles between axial and equatorial sites range from 71.3 to $105 \cdot 7^{\circ}$, and that between the two axial positions $157 \cdot 2^{\circ}$.

The tin-carbon bond distances all fall within the range measured for other phenyltin compounds, ${ }^{5}$ but the phenyl group in the axial position is at a significantly greater distance $[2 \cdot 176(9) \AA]$ from the tin than are the two equatorial groups [mean $2 \cdot 136(8) \AA$]. Both the covalent and co-ordinate tin-oxygen bond distances are among the shortest of each type yet recorded. ${ }^{5}$ The co-ordinate distance $[2 \cdot 308(4) \AA]$ is slightly less than that in the complex $\left(\mathrm{Ph}_{3} \mathrm{P}: \mathrm{CH} \cdot \mathrm{COMe}\right) \mathrm{Me}_{3} \mathrm{SnCl}(2 \cdot 332 \AA)^{6}$ but much lower than the intermolecular $\mathrm{Sn} \cdots \mathrm{O}: \mathrm{C}$ distance in tribenzyltin acetate $(2 \cdot 65 \AA)^{2}$ and the intramolecular (presumed to be a non-bonding interaction) $\mathrm{Sn} \cdots \mathrm{O}: \mathrm{C}$ distance in tricyclohexyltin acetate $(2.95 \AA) .^{3}$ The observed bond angles at tin and tinligand distances are thus in accord with the expectations of simple $s p^{3} d$ hybridisation for tin.

The bond distances within the hydroxylamine residue reveal some contribution of the canonical resonance form (V) to the overall electronic distribution. Structural parameters for the unsubstituted hydroxylamine

are unavailable, but those of the similar N-acetylhydroxylamine hemihydrate, $\mathrm{HO} \cdot \mathrm{NH} \cdot \mathrm{COMe}, \frac{1}{2} \mathrm{H}_{2} \mathrm{O},{ }^{7}$ are compared with $\mathrm{Ph}_{3} \mathrm{Sn}(\mathrm{ONPh} \cdot \mathrm{COPh})$ in Table 8 . In both compounds, the heavy-atom framework is essentially planar; the sums of the angles at the carbonyl carbon and nitrogen atoms being 360°. The $\mathrm{N}-\mathrm{O}$ bond distance in $\mathrm{Ph}_{3} \mathrm{SnONPh} \cdot \mathrm{COPh}$ is slightly shorter $(1.384 \AA)$ than in HONH $\cdot \mathrm{COMe}, \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$, but this difference is most probably due to the lack of substitution at nitrogen and hydrogen bonding present in the latter compound. The respective relative shortening and lengthening of the $\mathrm{C}(: \mathrm{O})-\mathrm{N}$ and $\mathrm{C}=\mathrm{O}$ bonds is more significant. The latter is increased to $1 \cdot 265$ from $1 \cdot 245 \AA$ in $\mathrm{HONH} \cdot \mathrm{COMe}, \frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ and $1.23 \AA$ generally found in esters, aldehydes, and ketones. ${ }^{8}$ This value compares well with the distances in zwitterionic compounds such as DL-serine $(1 \cdot 26 \AA)^{8}$ and $\left(\mathrm{Ph}_{3} \mathrm{P}: \mathrm{CH} \cdot \mathrm{COMe}\right) \mathrm{Me}_{3} \mathrm{SnCl}(1 \cdot 268 \AA) .{ }^{6}$ The endocyclic $\mathrm{C}-\mathrm{N}$ bond distance ($1-304 \AA$) is much lower than the corresponding exocyclic distance $(1 \cdot 430 \AA)$ which is of normal single $\mathrm{N}-\mathrm{C}(\mathrm{Ph})$ bond length, indicating a
${ }^{4}$ P. G. Harrison, Inorg. Chem., 1973, 12, 1545.
${ }^{5}$ B. Y. K. Ho and J. J. Zuckerman, J. Organometallic Chem., 1973, 49, I.
${ }^{6}$ J. Buckle, P. G. Harrison, T. J. King, and J. A. Richards, J.C.S. Chem. Comm., 1972, 1104.
${ }^{7}$ B. H. Bracher and R. W. H. Small, Acta Cryst., 1970, B26, 1705.
greater double-bond character for the endocyclic bond than in HONH $\cdot \mathrm{COMe}, \frac{1}{2} \mathrm{H}_{2} \mathrm{O}(1.333 \AA)^{7}$ or $\mathrm{HCO} \cdot \mathrm{NH}_{2}$ ($1.322 \AA$). ${ }^{8}$ Corresponding $\mathrm{C}=\mathrm{N}$ double-bond distances in hydroximate derivatives fall in the range $1 \cdot 26$ $1.29 \AA \AA^{9,10}$

The determined structure rationalises observed spectroscopic data for $\mathrm{Ph}_{3} \mathrm{Sn}(\mathrm{ONPh} \cdot \mathrm{COPh}) .^{4}$ The monomeric character observed for both solution and vapour is preserved in the crystal [no intermolecular $\mathrm{Sn} \cdots \mathrm{O}$ interaction is present (Table 5)], and the strong intramolecular carbonyl-tin co-ordination is reflected by the very low i.r. carbonyl stretching frequency ($1540 \mathrm{~cm}^{-1}$), some $120 \mathrm{~cm}^{-1}$ lower than in $\mathrm{Me}_{3} \mathrm{Si}(\mathrm{ONPh} \cdot \mathrm{COPh})$ where such co-ordination is absent. The presence of the $\mathrm{Sn} \cdot \mathrm{O} \cdot \mathrm{NPh} \cdot \mathrm{C}: \mathrm{O}$ heterocyclic ring also rationalises the formation in the mass spectra of this and closely related compounds of fragments resulting from ring-contraction processes which take place by loss of $[\mathrm{O}]$ and $[\mathrm{PhN}]$ from the heterocycle.

It is possible to obtain semiquantitative estimates of the tin- $119 m$ Mössbauer quadrupole splitting, Δ, using point-charge calculations together with empirically derived partial quadrupole splitting (PQS) for the ligands attached to tin. ${ }^{11,12}$ Thus, for the five-coordinate configurations (II) and (III), in which the tin

Figure 2 Magnetically perturbed Mössbaner spectrum
atom is bonded to three phenyl groups and two oxygen atoms, assuming idealized geometry and equivalence of

[^1]phenyl groups and oxygen atoms, expressions (1) and (2) may be derived for $\Delta_{c i s}$ and $\Delta_{\text {trans }}$ in terms of [Ph] and [O], the respective PQS values for phenyl groups and oxygen atoms. Poller and Ruddick ${ }^{12}$ have derived
\[

$$
\begin{align*}
\Delta_{\text {cis }} & =\left\{3[\mathrm{Ph}]^{2}-6[\mathrm{Ph}][\mathrm{O}]+4[\mathrm{O}]^{2}\right\}^{\frac{1}{2}} \tag{1}\\
\Delta_{\text {trans }} & =-3[\mathrm{Ph}]+4[\mathrm{O}] \tag{2}
\end{align*}
$$
\]

values of -0.19 for $[\mathrm{Ph}], 0.72$ for $\left[\mathrm{O}_{2} \mathrm{CMe}\right]$, and 0.85 for $\left[\mathrm{O}_{2} \mathrm{CCF}_{3}\right]$. Using these values, the calculated quadrupole splittings for the trans-derivatives, $\mathrm{Ph}_{3} \mathrm{SnO}_{2} \mathrm{CMe}$ ($3.45 \mathrm{~mm} \mathrm{~s}^{-1}$) and $\mathrm{Ph}_{3} \mathrm{SnO}_{2} \mathrm{CCF}_{3}\left(3.97 \mathrm{~mm} \mathrm{~s}^{-1}\right)$, are in reasonable accord with observed data ($3 \cdot 34$ and 4.00 $\mathrm{mm} \mathrm{s}{ }^{-1}$, respectively). In the present case, it might be expected that [O] would fall somewhere between these extreme values. On this basis, therefore, the quadrupole splitting for $\mathrm{Ph}_{3} \mathrm{Sn}(\mathrm{ONPh} \cdot \mathrm{COPh})$ would lie in the range $1.73-1.99 \mathrm{~mm} \mathrm{~s}^{-1}$, compared with the experimentally observed value of $1.94 \mathrm{~mm} \mathrm{~s}^{-1.4}$ From the magnetically

Table 4

Bond lengths (\AA) and angles (${ }^{\circ}$), with standard deviations in parentheses

(a) Distances		$\mathrm{C}(14)-\mathrm{Sn}(1)-\mathrm{C}(20)$	105.7(3)
$\mathrm{Sn}(1)-\mathrm{O}(1)$	$2 \cdot 091$ (5)	$\mathrm{C}(14)-\mathrm{Sn}(1)-\mathrm{C}(26$	$103 \cdot 2(3)$
$\mathrm{Sn}(1)-\mathrm{O}(2)$	$2 \cdot 308(4)$	$\mathrm{C}(20)-\mathrm{Sn}(1)-\mathrm{C}(26)$	116.9(3)
$\mathrm{Sn}(1)-\mathrm{C}(20)$	$2 \cdot 142(9)$	$\underset{\mathrm{Sn}}{ }(1)-\mathrm{O}(1)-\mathrm{N}(1)$	$115 \cdot 6(4)$
$\mathrm{Sn}(1)-\mathrm{C}(26)$	$2 \cdot 131$ (7)	$\mathrm{Sn}(1)-\mathrm{O}(2)-\mathrm{C}(1)$	112.1(3)
$\mathrm{Sn}(1)-\mathrm{C}(14)$	2-176(9)	$\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{C}(1)$	117.3(6)
$\mathrm{C}(14)-\mathrm{C}(15)$	1-368(12)	$\mathrm{O}(1)-\mathrm{N}(1)-\mathrm{C}(8)$	$113.0(5)$
$\mathrm{C}(15)-\mathrm{C}(16)$	1.400 (11)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(8)$	$128.8(6)$
$\mathrm{C}(16)-\mathrm{C}(17)$	1.382(11)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	122-1(6)
$\mathrm{C}(17)-\mathrm{C}(18)$	$1 \cdot 351$ (14)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{O}(2)$	119.7(6)
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.388(10)$	$\mathrm{O}(2)-\mathrm{C}(1)-\mathrm{C}(2)$	118.1 (6)
$\mathrm{C}(19)-\mathrm{C}(14)$	1-408(9)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$120.7(6)$
$\mathrm{C}(20)-\mathrm{C}(21)$	1-399(10)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	118.3(6)
$\mathrm{C}(21)-\mathrm{C}(22)$	1-369(16)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)$	$120 \cdot 6(6)$
$\mathrm{C}(22)-\mathrm{C}(23)$	$1 \cdot 380$ (15)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	119.1(7)
$\mathrm{C}(23)-\mathrm{C}(24)$	1-379(13)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	119.6(8)
$\mathrm{C}(24)-\mathrm{C}(25)$	1-372(15)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	118.3(8)
$\mathrm{C}(25)-\mathrm{C}(20)$	1-394(11)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$	120-4(7)
$\mathrm{C}(26)-\mathrm{C}(27)$	1-393(10)	$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	118.4(6)
$\mathrm{C}(27)-\mathrm{C}(28)$	1-414(13)	$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(13)$	$120 \cdot 9(6)$
$\mathrm{C}(28)-\mathrm{C}(29)$	1-349(16)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)$	$120 \cdot 6(7)$
$\mathrm{C}(29)-\mathrm{C}(30)$	1-373(13)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	119.1(7)
$\mathrm{C}(30)-\mathrm{C}(31)$	1-384(12)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$120 \cdot 4(8)$
$\mathrm{C}(31)-\mathrm{C}(26)$	$1 \cdot 390$ (10)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	119.688
$\mathrm{O}(1)-\mathrm{N}(1)$	$1.384(6)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$121 \cdot 2(8)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1 \cdot 304(9)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(8)$	$118.8(7)$
$\mathrm{C}(1)-\mathrm{O}(2)$	1-265(9)	$\mathrm{Sn}(1)-\mathrm{C}(14)-\mathrm{C}(15)$	123.5(5)
$\mathrm{C}(1)-\mathrm{C}(2)$	1-495(9)	$\mathrm{Sn}(1)-\mathrm{C}(14)-\mathrm{C}(19)$	$117.7(5)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1-388(10)$	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)$	$118.5(7)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1 \cdot 398(9)$	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$120 \cdot 1(7)$
$\mathrm{C}(4)-\mathrm{C}(5)$	1-375(12)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$121 \cdot 6(8)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1 \cdot 391$ (12)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$117 \cdot 8(8)$
$\mathrm{C}(6)-\mathrm{C}(7)$	1-392(10)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$122 \cdot 4(8)$
$\mathrm{C}(7)-\mathrm{C}(2)$	$1.389(11)$	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(14)$	119.6 (7)
$\mathrm{N}(1)-\mathrm{C}(8)$	1-430(10)	$\mathrm{Sn}(1)-\mathrm{C}(20)-\mathrm{C}(21)$	$120.7(5)$
$\mathrm{C}(8)-\mathrm{C}(9)$	1-399(10)	$\mathrm{Sn}(1)-\mathrm{C}(20)-\mathrm{C}(25)$	$121 \cdot 6(5)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1 \cdot 386(14)$	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(25)$	117.6(7)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.380 (13)	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$120 \cdot 8(8)$
$\mathrm{C}(11)-\mathrm{C}(12)$	1-364(13)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$121 \cdot 0(9)$
$\mathrm{C}(12)-\mathrm{C}(13)$	1.398(14)	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	118.7(9)
$\mathrm{C}(13)-\mathrm{C}(8)$	1-369(10)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$120.9(9)$
		$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(20)$	$120.9(8)$
(b) Angles		$\mathrm{Sn}(1)-\mathrm{C}(26)-\mathrm{C}(27)$	123.5(6)
$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{O}(2)$	71-3(2)	$\mathrm{Sn}(1)-\mathrm{C}(26)-\mathrm{C}(31)$	$119 \cdot 5(6)$
$\mathrm{O}(2)-\mathrm{Sn}(1)-\mathrm{C}(20)$	$83 \cdot 1(2)$	$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(31)$	$117.0(7)$
$\mathrm{O}(2)-\mathrm{Sn}(1)-\mathrm{C}(26)$	90.7(2)	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	120.1(9)
$\mathrm{O}(2)-\mathrm{Sn}(1)-\mathrm{C}(14)$	157.2(2)	$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	$121 \cdot 1(11)$
$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{C}(20)$	$125.5(2)$	$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	$119 \cdot 6(11)$
$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{C}(26)$	110.9(2)	$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	$120 \cdot 2(9)$
$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{C}(14)$	86.7(2)	$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(26)$	121-9(8)

perturbed ($H=6 \mathrm{~T}$) Mössbauer spectrum (Figure 2) obtained at 4.2 K , the sign of the electric-field gradient at tin in $\mathrm{Ph}_{3} \mathrm{Sn}(\mathrm{ONPh} \cdot \mathrm{COPh})$ is easily deduced to be negative.

Table 5

> Closest intermolecular $\mathrm{Sn} \cdots \mathrm{O}$ contacts (\AA) $\operatorname{Sn}(1) \cdots \mathrm{O}(1) \quad 6 \cdot 30,9 \cdot 89,9 \cdot 68,8 \cdot 74,8 \cdot 76,8 \cdot 80$ $\operatorname{Sn}(1) \cdots \mathrm{O}(2) \quad 7 \cdot 35,6 \cdot 22,9 \cdot 20$

Table 6

Equations of least-squares planes, and, in square brackets, deviations (\AA) of atoms from these planes
Plane (1): $\mathrm{Sn}(1), \mathrm{O}(1), \mathrm{O}(2), \mathrm{N}(1), \mathrm{C}(1)$

$$
0.5634 x-0.8243 y-0.0297 z+1.9344=0
$$

$\left[\begin{array}{llllll}\operatorname{Sn}(1) & -0.0953(5), & \mathrm{O}(1) & 0.139(5), & \mathrm{O}(2) & 0.102(6), \quad \mathrm{N}(1)\end{array}\right.$ $-0.101(6), \mathrm{C}(1)-0.044(7)]$
Plane (2): C(8) -(12)

$$
0.3885 x-0.3284 y-0.8609 z+0.8060=0
$$

$[\mathrm{C}(8) 0.001(6), \mathrm{C}(9)-0.004(7), \mathrm{C}(10) 0.003(8), \mathrm{C}(11) 0.001(8)$, $\mathrm{C}(12)-0.004(8), \mathrm{C}(13) 0.003(7)]$
Plane (3): C(2)-(4)

$$
-0.9163 x+0.3860 y-0.1070 z-0.7068=0
$$

$[\mathrm{C}(2) 0.006(9), \mathrm{C}(3) 0.001(9), \mathrm{C}(4)-0.007(10), \mathrm{C}(5) 0.006(10)$,
$\mathrm{C}(6) 0.002(11), \mathrm{C}(7)-0.008(9)]$
Dihedral angles $\left({ }^{\circ}\right):(1)-(2) 58.9$
Table 7
Comparison of the tin-ligand bond distances (\AA) in $\mathrm{Ph}_{3} \mathrm{Sn}(\mathrm{ONPh} \cdot \mathrm{COPh})$ with those in related compounds

Molecule ${ }^{\text {a }}$	$r(\mathrm{Sn}-\mathrm{C})$	$r(\mathrm{Sn}-\mathrm{O})$	Confign. at Sn
(1) ${ }^{6}$	Eq. $2 \cdot 136(8)$, ax. 1•176(9)	Cov. 2.091(5), Co-ord. $2 \cdot 308(4)$	Trig. bipy.
(2) ${ }^{d}$	2-122(22)		Tet.
$(3){ }^{e}$	$\begin{gathered} 2 \cdot 087(14), \\ 2 \cdot 134(14), \\ 2 \cdot 170(15) \end{gathered}$	$2 \cdot 010(9)$	Tet.
(4) ${ }^{f}$	$2 \cdot 15(2)$	2.25(2)	Trig. bipy.
(5) ${ }^{\circ}$	$2 \cdot 15(3), 2 \cdot 18(3)$,	Cov. $2 \cdot 14(2)$	Trig.
	2•18(3)	Co-ord. $2 \cdot 65$ (2)	bipy.
$(6)^{n}$	$2 \cdot 19(3){ }^{\text {c }}$	Cov. 2.12(3)	Dist. tet.
$(7)^{i}$	$2 \cdot 133(9)$	$2 \cdot 332(6)$	Trig. bipy.

${ }^{a}$ (1) $\mathrm{Ph}_{3} \mathrm{Sn}(\mathrm{ONPh} \cdot \mathrm{COPh})$; (2) $\mathrm{Ph}_{3} \mathrm{SnCl}$; (3) $\mathrm{Ph}_{3} \mathrm{SnOC}_{5} \mathrm{Ph}_{4}$ $\left[\mathrm{Mn}(\mathrm{CO})_{3}\right] ;$ (4) $\left(\mathrm{MeCO}_{2}\right)_{2} \mathrm{Sn}_{2} \mathrm{Ph}_{4} ; \quad$ (5) $\left(\mathrm{PhCH}_{2}\right)_{3} \mathrm{SnO}_{2} \mathrm{CMe}^{4}$; (6) $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{SnO}_{2} \mathrm{CMe}$; (7) $\left(\mathrm{Ph}_{3} \mathrm{PCH} \cdot \mathrm{COMe}\right) \mathrm{Me}_{3} \mathrm{SnCl}$. ${ }^{5}$ This work. ${ }^{c}$ Mean value. ${ }^{d}$ N. G. Bokii, G. N. Zakharova, and Yu. T. Struchkov, J. Struht. Chem., 1970, 11, 828. © R. F. Bryan and H. P. Weber, J. Chem. Soc. (A), 1967, 843. ${ }^{f}$ G. Bandoli, D. A. Clemente, and C. Panattoni, Chem. Comm., 1971, 311. ${ }^{\ominus}$ Ref. 2. ${ }^{h}$ Ref. 3. ${ }^{5}$ Ref. 6.

Table 8
Comparison of bond distances (\AA) in $(A) \mathrm{HO} \cdot \mathrm{NH} \cdot \mathrm{COMe}$,-

$\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$ and $(B) \mathrm{Ph}_{3} \mathrm{Sn}(\mathrm{ONPh} \cdot \mathrm{COPh})$		
\quad Bond	(A)	(B)
$\mathrm{N}-\mathrm{O}$	$1.400(5)$	$1.384(6)$
$\mathrm{C}(: \mathrm{O})-\mathrm{N}$	$1.333(6)$	$1.304(9)$
$\mathrm{C}=\mathrm{O}$	$1.245(6)$	$1.265(9)$
$\mathrm{C}-\mathrm{R}$	$1.505(6)$	
$\mathrm{C}-\mathrm{NR}$		$1.495(7) \dagger$
		$1.430(10)$

$$
{ }^{*} \mathrm{R}=\mathrm{Me} . \quad \dagger \mathrm{R}=\mathrm{Ph} .
$$

We thank the S.R.C. for funds to measure the magnetically perturbed Mössbauer spectrum.
[4/401 Received, 28th February, 1974]

[^0]: ${ }_{2}^{2}$ N. W. Alcock and R. E. Timms, J. Chem. Soc. (A), 1968, 1873.
 ${ }_{3}$ N. W. Alcock and R. E. Timms, J. Chem. Soc. (A), 1968, 1876.

[^1]: 8 'Molecular Structures and Dimensions,' vol. Al, eds. O. Kennard, D. G. Watson, F. H. Allen, N. W. Isaacs, W. D. S. Motherwell, R. C. Petersen, and W. G. Town, N. V. A. Oosthoek's Vitgevers Mij, Utrecht, 1972.
 ${ }_{10}$ I. K. Larsen, Acta Chem. Scand., 1971, 25, 2409.
 ${ }_{10}$ M. G. Waite and G. A. Sim, J. Chem. Soc. (B), 1971, 752, 1102.
 ${ }_{12}$ R. V. Parish and R. H. Platt, Inorg. Chim. Acta, 1970, 4, 65.
 12 R. C. Poller and J. N. R. Ruddick, J. Organometallic Chem., 1972, 39, 121.

