Metal-Metal Bonding in Co-ordination Complexes. Part XII. ${ }^{1}$ Crystal Structure of Tetracarbonyl(triphenyIstibine)iron

By Robert F. Bryan,* Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901, U.S.A. William C. Schmidt, jun., Department of Biochemistry, University of Virginia, Charlottesville, Virginia 22901, U.S.A.

The title compound crystallizes in the triclinic space group $P \overline{1}$, with $Z=2$ in a unit cell with $a=10.557(1)$. $b=10 \cdot 043(1), c=11 \cdot 230(1) \AA, \alpha=114 \cdot 22(1), \beta=91 \cdot 95(1), \gamma=92 \cdot 25(1)^{\circ}$. The structure was solved by the heavy-atom method, from 3217 independent reflections measured by counter diffractometry. Refinement by least-squares methods gave $R 0.024$.

To a good approximation the molecule has C_{3} symmetry with the $\mathrm{Ph}_{3} \mathrm{Sb}$ ligand occupying an axial position in the trigonal-bipyramidal co-ordination sphere of the iron atom: $\mathrm{Sb}-\mathrm{Fe} 2 \cdot 472(1) \mathrm{A}$. Mean $\mathrm{Fe}-\mathrm{C}(\mathrm{eq})$ is $1.787(5)$, $\mathrm{Fe}-\mathrm{C}(\mathrm{ax}) 1 \cdot 765(5) \mathrm{A}$, indicating a slight trans-effect. The equatorial angles at Fe are $117 \cdot 7,118 \cdot 7$, and $123.4(2)^{\circ}$ and the mean $\mathrm{Sb}-\mathrm{Fe}-\mathrm{C}(\mathrm{eq})$ angle is $88.3(1)^{\circ}$. Antimony is tetrahedrally co-ordinated, mean $\mathrm{Sb-C}$ $2 \cdot 125(3) \AA$. Mean $\mathrm{Fe}-\mathrm{Sb}-\mathrm{C}$ and $\mathrm{C}-\mathrm{Sb}-\mathrm{C}$ angles are $116 \cdot 4(1)$ and $101 \cdot 8(2)^{\circ}$. indicating an enhanced s character in the $\mathrm{Sb}-\mathrm{Fe}$ relative to the $\mathrm{Sb}-\mathrm{C}$ bonds.

As a continuation of our studies of mixed-metal bonding ${ }^{2}$ we have determined the structure of $\mathrm{Ph}_{3} \mathrm{SbFe}(\mathrm{CO})_{4}$ in order to obtain an accurate measure of the $\mathrm{Sb}-\mathrm{Fe}$ bond distance, and by examination of the pattern of valence angles at the antimony atom to evaluate the character of the metal-metal bond.

EXPERIMENTAL

Crystals of the compound are air-stable yellow prisms.
Crystal Data. $-\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{FeO}_{4} \mathrm{Sb}, M=521$, Triclinic, $a=$
${ }^{1}$ Part XI, R. Restivo and R. F. Bryan, J. Chem. Soc. (A), 1971, 3364.
$10 \cdot 557(1), b=10 \cdot 043(1), c=11 \cdot 230(1) \AA, \alpha=114 \cdot 22(1)$, $\beta=91.95(1), \quad \gamma=92 \cdot 25(1)^{\circ}, \quad U=1083 \AA^{3}, \quad D_{\mathrm{m}}=1 \cdot 60$ (pycnometer, ZnI_{2}), $Z=2, D_{\mathrm{c}}=1.596(5), F(000)=512$. Space group $P \overline{1}$, no molecular symmetry implied. Mo- K_{α} radiation, $\lambda=0.71069 \AA ; \mu\left(\mathrm{Mo}-K_{\alpha}\right) 20 \mathrm{~cm}^{-1}$.

Unit-cell parameters were obtained by a least-squares fit to the observed diffractometer values of ± 20 for 24 strong general reflections.
${ }_{2}$ P. T. Greene and R. F. Bryan, J. Chem. Soc. (A), 1970, 2262 ; G. A. Melson, P. F. Stokely, and R. F. Bryan, ibid., p. 2247; P. T. Greene and R. F. Bryan, ibid., p. 1696; R. F. Bryan, ibid., 1968, 696; 1967, 172, 192; H. P. Weber and R. F. Brvan, Acta Cryst., 1967, 22, 822.

Intensity Measurements.-These were made, by diffractometry, from a crystal of dimensions $0.5 \times 0.5 \times 0.25 \mathrm{~mm}$ using techniques previously described in detail. ${ }^{3}$ Monochromatic Mo- K_{α} radiation was used to survey some 6100 reciprocal lattice points in the range $2 \theta \leqslant 60^{\circ}$, and scattered intensity significantly above background was measured at 5198 locations. To yield an adequate ratio of observations to parameters, but also to provide a manageable set of observations, the 3217 reflections with $\left|F_{0}\right|>10 \cdot 5$ on an absolute scale were used in the actual structure determination and refinement. Absorption corrections were applied to the intensity measurements and the stability of the experimental conditions allowed use of a single scale factor.

Structure Determination and Refinement.-The structure was solved in a routine manner by application of the heavyatom method ($R 0.18$).

Refinement of the atomic parameters was carried out by use of the block-diagonal least-squares approximation. With isotropic thermal parameters assumed, convergence was reached with $R 0.067$, and with anisotropic thermal parameters at $R 0 \cdot 037$. Fourteen of the 15 hydrogen atoms in the molecule were clearly visible in a three-dimensional difference electron-density map calculated at this stage. All hydrogen atoms were included in the refinement with fixed parameters, assuming $\mathrm{C}-\mathrm{H} 1.08 \AA$, and with the isotropic thermal parameter of the carbon atom to which each is attached. At convergence R was $0.024, R^{\prime} 0.032$, for the 3217 reflections used. The ratio of observations to parameters was $13: 1$, and the maximum shift in any parameter in the last cycle of refinement was $<0 \cdot 15 \sigma .^{4}$ The maximum residual electron density was $0.4 \mathrm{e}^{-3}$ at a structurally non-significant site.

Atomic scattering factors for the neutral atoms were taken from ref. 5, with corrections for both real and imaginary components of the anomalous dispersion for antimony and iron taken from ref. 6. The weighting scheme used included allowance for effects of both statistical and non-statistical types. ${ }^{7}$ All calculations were carried out on an XDS Sigma 2 computer, also used to control the diffractometer, with programs written in this laboratory.

Observed and calculated structure amplitudes are listed in Supplementary Publication No. SUP 21117 (10 pp., 1 microfiche).*

RESULTS AND DISCUSSION

Atomic parameters are in Table 1, and bond lengths and angles in Table 2. Figure 1 shows a view of the molecular structure, and Figure 2 a projection of the structure viewed down the $\mathrm{Sb}-\mathrm{Fe}$ bond axis. Selected intra- and inter-molecular contacts are listed in Table 3.

The molecule has effective, but not exact, C_{3} symmetry. The iron atom has trigonal-bipyramidal coordination with the triphenylstibine ligand in an axial position. The structure thus matches that found for $\left(\mathrm{Me}_{3} \mathrm{Sb}\right) \mathrm{Fe}(\mathrm{CO})_{4}$ and $\left(\mathrm{Me}_{3} \mathrm{As}\right) \mathrm{Fe}(\mathrm{CO})_{4}$ where the threefold symmetry is crystallographically exact. ${ }^{8}$ The $\mathrm{Sb}-\mathrm{Fe}$ bond distance $[2 \cdot 472(1) \AA]$ is comparable to that $[2 \cdot 49(2) \AA]$ reported for the trimethyl analogue and is

* See Notice to Authors No. 7 in J.C.S. Dalton, 1973, Index issue.
${ }^{3}$ G. A. Melson, P. T. Greene, and R. F. Bryan, Inorg. Chem., 1970, 9, 1116.
${ }^{4}$ L. I. Hodgson and J. S. Rollett, Acta Cryst., 1963, 16, 329.
${ }^{5}$ H. P. Hanson, F. Herman, J. D. Lea, and S. Skillman, Acta Cryst., 1964, 17, 1040.
between that $(2.54 \AA)$ for $\left\{\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right]_{3} \mathrm{SbCl}^{+}\right.$ (ref. 9) and for $\left\{\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right]_{2} \mathrm{SbCl}_{2}\right\}^{+}(2 \cdot 44 \AA) .{ }^{10}$
The co-ordination of the antimony atom is tetrahedral, but with distortions of a type found for $\mathrm{Sn}-\mathrm{Fe}$ complexes. ${ }^{2}$ The three $\mathrm{Fe}-\mathrm{Sb}-\mathrm{C}$ angles agree closely, mean 116.4°; correspondingly, the $\mathrm{C}-\mathrm{Sb}-\mathrm{C}$ angles do not

Figure 1 View of the molecular structure showing the numbering scheme adopted. Hydrogen atoms are numbered according to the carbon atom to which they are attached

Figure 2 Projection of the molecular structure viewed down the $\mathrm{Sb}-\mathrm{Fe}$ axis and showing the torsion angles $\left({ }^{\circ}\right)$ between the $\mathrm{Sb}-\mathrm{C}$ and $\mathrm{Fe}-\mathrm{C}$ bonds
differ significantly from the mean value of $101 \cdot 8^{\circ}$. The same effect is noted in the trimethyl analogue ${ }^{8}$ with $\mathrm{Fe}-\mathrm{Sb}-\mathrm{C} 113(3)$ and $\mathrm{C}-\mathrm{Sb}-\mathrm{C} 106(1)^{\circ}$. Related patterns of valence angles are also present in the two cations of refs. 9 and 10. We interpret these values as indicating that the $\mathrm{Sb}-\mathrm{Fe}$ bond has enhanced s character relative to the $\mathrm{Sb}-\mathrm{C}$ bonds which are of predominantly p character, and characterize the $\mathrm{Sb}-\mathrm{Fe}$ bond as a twoelectron σ bond.

The extensive discussion in the literature on the relative importance of directional σ bond effects $v s$. $d_{\pi}-d_{\pi}$ bonding in $\mathrm{Sn}-\mathrm{Fe}$ systems has been summarized by

6 'International Tables for X-Ray Crystallography,' vol. 3, Kynoch Press, Birmingham, 1968.

7 D. F. Grant, R. C. G. Killean, and J. L. Lawrence, Acta Cryst., 1969, B25, 374.
${ }_{8}$ J.-J. Legendre, C. Girard, and M. Huber, Bull. Soc. chim. France, 1971, 1998.
${ }^{\circ}$ T.-Toan and L. F. Dahl, J. Amer. Chem. Soc., 1971, 93, 2654.
${ }^{10}$ F. W. B. Einstein and R. D. G. Jones, Inorg. Chem., 1973, 12, 1690.

Table 1
Positional parameters (fractional co-ordinates $\times 10^{4}$, for hydrogen $\times 10^{3}$), and anisotropic thermal parameters* $\left(\times 10^{4}\right)$, with estimated standard deviations in parentheses

Atom	x / a	y / b	z / c	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Sb	7874.5(3)	8636.8(3)	$1891 \cdot 8(3)$	73.8(2)	95.9(2)	82.0(2)	$0 \cdot 8(2)$) $5 \cdot 4(2)$	43•2(2)
Fe	$6420 \cdot 4(5)$	$7676 \cdot 9(6)$	$3071 \cdot 2(5)$	$81 \cdot 3(5)$	$115 \cdot 3(7)$	$85 \cdot 1(5)$	$-3 \cdot 8(5)$) $9 \cdot 0(4)$	46.8(5)
$\mathrm{O}(1)$	4664(4)	6501 (5)	4380(4)	199(6)	253(7)	190(5)	$-39(5)$	60(4)	107(5)
$\mathrm{O}(2)$	4833(4)	10130(4)	3412(4)	134(4)	188(6)	226(6)	69(4)	$31(4)$	74(5)
$\mathrm{O}(3)$	6209(4)	4871(4)	769(4)	178(5)	138(4)	153(4)	$-14(4)$	16(4)	11 (4)
$\bigcirc(4)$	8464(4)	8152(5)	$5052(4)$	166(5)	346(9)	142(4)	$-39(5)$	-53(4)	134(5)
C(1)	5346(5)	6968(5)	3866(5)	127(5)	163(7)	123(5)	-22(5)	15(4)	$65(5)$
$\mathrm{C}(2)$	5448(4)	9170(5)	3273(5)	97(4)	155(6)	126(5)	8(4)	20(4)	58(5)
C(3)	6290(4)	5975(5)	1662(4)	102(4)	135(6)	122(5)	$-10(4)$	11(4)	57(4)
$\mathrm{C}(4)$	7672(4)	7979(5)	4275(4)	$119(5)$	185(7)	101(4)	$-13(5)$	6(4)	76(5)
$\mathrm{C}(11)$	9789(4)	8047(4)	1855(4)	96(4)	106(4)	90(4)	$5(3)$	$1(3)$	37(3)
C(12)	10059(5)	6678(5)	1735(7)	$134(6)$	129(6)	274(10)	$24(5)$	$19(6)$	98(7)
C(13)	11324(6)	6306(7)	1690(8)	164(8)	173(8)	305(13)	66(7)	20(8)	96(9)
$\mathrm{C}(14)$	12270(5)	7285(7)	1798(6)	$102(5)$	248(10)	180(8)	$42(6)$	$1(5)$	41(7)
C(15)	12005(5)	8653(7)	1906(7)	84(5)	224(10)	272(11)	-3(5)	$-22(6)$	100(8)
C(16)	10766(4)	9035(5)	1945(6)	93(4)	140(6)	214(8)	$-1(4)$	-4(5)	$74(6)$
$\mathrm{C}(21)$	7395(4)	7993(4)	-126(4)	101(4)	117(5)	90(4)	$-15(3)$	$-10(3)$	54(4)
$\mathrm{C}(22)$	6129(5)	7805(7)	-563(5)	$111(5)$	291(11)	140(6)	$-33(6)$	$-19(4)$	116(7)
$\mathrm{C}(23)$	5823(6)	7355(8)	$-1894(6)$	155(7)	348(14)	173(8)	-66(8)	$-74(6)$	$151(9)$
$\mathrm{C}(24)$	6740(7)	7092(7)	-2763 (5)	246(10)	$230(10)$	112(6)	-74(8)	-38(6)	93 (6)
$\mathrm{C}(25)$	7988(6)	7286(6)	-2332(5)	203(8)	174(7)	96(5)	$-9(6)$	15(5)	60(5)
$\mathrm{C}(26)$	8317(5)	7730(5)	- 1016(4)	141 (5)	134(6)	90(4)	-3(4)	3(4)	$51(4)$
C(31)	8110(4)	10951(4)	2583(4)	$89(4)$	91(4)	134(5)	$-1(3)$	8 (3)	46(4)
$\mathrm{C}(32)$	8129(5)	11603(5)	$1713(6)$	138(6)	128(6)	186(7)	22(4)	17(5)	97(5)
$\mathrm{C}(33)$	8278(6)	13120(6)	2200(8)	193(8)	135(7)	303(12)	21 (6)	28(8)	132(8)
$\mathrm{C}(34)$	8425(7)	13946(6)	3528(8)	198(9)	96(6)	334(14)	19(6)	$50(9)$	50 (7)
$\mathrm{C}(35)$	8416(7)	$13289(6)$	4385(7)	235(10)	117(7)	222(10)	1 (6)	$30(8)$	14(6)
$\mathrm{C}(36)$	8254(6)	11781 (5)	3918(5)	178(7)	125(6)	132(6)	$-13(5)$	15(5)	29(5)
	Atom	x / a	y / b	z / c	Atom	x / a	y / b	z / c	
	$\mathrm{H}(12)$	928	587	165	$\mathrm{H}(25)$	873	708	-303	
	$\mathrm{H}(13)$	1154	521	159	$\mathrm{H}(26)$	931	788	-66	
	$\mathrm{H}(14)$	1326	698	176	$\mathrm{H}(32)$	801	1094	65	
	$\mathrm{H}(15)$	1276	946	200	$\mathrm{H}(33)$	829	1364	150	
	$\mathrm{H}(16)$	1054	1013	206	$\mathrm{H}(34)$	854	1514	390	
	$\mathrm{H}(22)$	538	800	12	$\mathrm{H}(35)$	851	1395	546	
	$\mathrm{H}(23)$	481	721	-222	$\mathrm{H}(36)$	824	1126	461	
	$\mathrm{H}(24)$	648	675	-379					

* In the form: $-\left(h^{2} \beta_{11}+k^{2} \beta_{22}+l^{2} \beta_{33}+2 h k \beta_{12}+2 h l \beta_{13}+2 k l \beta_{23}\right)$.

Toan and Dahl ${ }^{9}$ who conclude from a comparison of $\mathrm{Sn}-\mathrm{Fe}$ and $\mathrm{Sb}-\mathrm{Fe}$ bond distances in electronically equivalent systems that the latter effect is of minor importance. We have earlier argued ${ }^{2}$ in favour of the

Table 2
Principal interatomic distances and angles *
(a) Bond lengths (\AA)

$\mathrm{Sb}-\mathrm{Fe}$	2.472(1)	$\mathrm{Fe}-\mathrm{C}(3)$	1-787(4)
$\mathrm{Sb}-\mathrm{C}(11)$	2-125(3)	$\mathrm{Fe}-\mathrm{C}(4)$	1.782(4)
$\mathrm{Sb}-\mathrm{C}(21)$	2.122(3)	$\mathrm{C}(1)-\mathrm{O}(1)$	$1 \cdot 138(6)$
$\mathrm{Sb}-\mathrm{C}(31)$	2-128(3)	$\mathrm{C}(2)-\mathrm{O}(2)$	$1.144(5)$
$\mathrm{Fe}-\mathrm{C}(1)$	1.765(4)	$\mathrm{C}(3)-\mathrm{O}(3)$	$1 \cdot 147(5)$
$\mathrm{Fe}-\mathrm{C}(2)$	1-792(4)	$\mathrm{C}(4)-\mathrm{O}(4)$	$1 \cdot 143$ (6)
(b) Bond angles (${ }^{\circ}$)			
$\mathrm{Fe}-\mathrm{Sb}-\mathrm{C}(11)$	116.4(1)	$\mathrm{C}(11)-\mathrm{Sb}-\mathrm{C}(21)$	101.7(2)
$\mathrm{Fe}-\mathrm{Sb}-\mathrm{C}(21)$	116.0(1)	$\mathrm{C}(11)-\mathrm{Sb}-\mathrm{C}(31)$	101.6(2)
$\mathrm{Fe}-\mathrm{Sb}-\mathrm{C}(3 \mathrm{l})$	116.8(1)	$\mathrm{C}(21)-\mathrm{Sb}-\mathrm{C}(31)$	102.0(2)
$\mathrm{Sb}-\mathrm{Fe}-\mathrm{C}(1)$	178.1(4)	$\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(2)$	$91.9(2)$
$\mathrm{Sb}-\mathrm{Fe}-\mathrm{C}(2)$	87.6(2)	$\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(3)$	$90 \cdot 3(2)$
$\mathrm{Sb}-\mathrm{Fe}-\mathrm{C}(3)$	88.5(2)	$\mathrm{C}(1)-\mathrm{Fe}-\mathrm{C}(4)$	93.0(2)
$\mathrm{Sb}-\mathrm{Fe}-\mathrm{C}(4)$	88.9(2)	$\mathrm{C}(2)-\mathrm{Fe}-\mathrm{C}(3)$	123.4(2)
$\mathrm{Fe}-\mathrm{C}(1)-\mathrm{O}(1)$	179(1)	$\mathrm{C}(2)-\mathrm{Fe}-\mathrm{C}(4)$	117.7(2)
$\mathrm{Fe}-\mathrm{C}(2)-\mathrm{O}(2)$	179(1)	$\mathrm{C}(3)-\mathrm{Fe}-\mathrm{C}(4)$	118.7(2)
$\mathrm{Fe}-\mathrm{C}(3)-\mathrm{O}(3)$	178.9(7)		
$\mathrm{Fe}-\mathrm{C}(4)-\mathrm{O}(4)$	178.7(7)		

* Estimated standard deviations, in parentheses, include the effects of possible cell-parameter errors and correlations between the parameters of an individual atom. No account has been taken of possible correlations between the parameters of different atoms.
predominance of the σ directional effect on the basis of an apparent freedom of rotation about the $\mathrm{Sn}-\mathrm{Fe}$ bond in complexes of type $\left(\mathrm{X}_{3} \mathrm{Sn}\right) \mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}$ and because

Table 3
Selected shorter intra- and inter-molecular contacts (\AA)
(a) Intramolecular contacts

$\mathrm{C}(11) \cdots \mathrm{H}(26)$	$2 \cdot 79$	$\mathrm{C}(4) \cdots \mathrm{H}(36)$	$3 \cdot 19$
$\mathrm{C}(21) \cdots \mathrm{H}(32)$	$2 \cdot 77$	$\mathrm{Sb} \cdots \mathrm{H}(12)$	$3 \cdot 11$
$\mathrm{C}(31) \cdots \mathrm{H}(16)$	$2 \cdot 74$	$\mathrm{Sb} \cdots \mathrm{H}(16)$	$3 \cdot 11$
$\mathrm{C}(1) \cdots \mathrm{C}(2)$	$2 \cdot 56$	$\mathrm{Sb} \cdots \mathrm{H}(22)$	$3 \cdot 12$
$\mathrm{C}(1) \cdots \mathrm{C}(3)$	$2 \cdot 52$	$\mathrm{Sb} \cdots \mathrm{H}(26)$	$3 \cdot 11$
$\mathrm{C}(1) \cdots \mathrm{C}(4)$	$2 \cdot 57$	$\mathrm{Sb} \cdots \mathrm{H}(32)$	$3 \cdot 16$
$\mathrm{C}(2) \cdots \mathrm{H}(22)$	$3 \cdot 23$	$\mathrm{Sb} \cdots \mathrm{H}(36)$	$3 \cdot 10$
$\mathrm{C}(3) \cdots \mathrm{H}(12)$	$3 \cdot 16$		
(b) Intermolecular contacts			
$\mathrm{C}(4) \cdots \mathrm{H}\left(34^{\text {III }}\right)$	$2 \cdot 90$	$\mathrm{O}(2) \cdots \mathrm{H}\left(15^{\mathrm{IV}}\right)$	$2 \cdot 56$
$\mathrm{C}(25) \cdots \mathrm{H}\left(16^{\mathrm{I}}\right)$	$2 \cdot 87$	$\mathrm{H}(12) \cdots \mathrm{H}\left(33^{\mathrm{III}}\right)$	$2 \cdot 38$
$\mathrm{C}(26) \cdots \mathrm{H}\left(13^{\text {II }}\right)$	$2 \cdot 77$		

Roman numeral superscripts denote the following equivalent positions, relative to the reference molecule at x, y, z :
I 2-x,2-y, $\bar{z} \quad$ III $x, y-1, z$
II $2-x, 1-y, \bar{z} \quad$ IV $x-1, y, z$
of similarities in the pattern of valence angles at tin in $\mathrm{Ph}_{2} \mathrm{Cl}_{2} \mathrm{Sn}$ and $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{CO})_{2}\right]_{2} \mathrm{SnCl}_{2} .{ }^{11} \quad$ Dahl ${ }^{9}$ and
${ }_{11}$ P. T. Greene and R. F. Bryan, J. Chem. Soc. (A), 1971, 2549; J. E. O'Connor and E. R. Corey, Inorg. Chem., 1967, 6, 968.

Struchkov ${ }^{12}$ incline to the view that these valence-angle patterns are at least partially dictated by steric considerations but we have suggested that they are a direct consequence of bonding effects. ${ }^{11}$ Because of the different stereochemistry of the iron atom in this complex, no direct comparison can usefully be made between the present bond distance and those observed in the cations. Further studies are necessary on analogous complexes with different substituents attached to antimony in order to examine the effects of substituent variation on the $\mathrm{Sb}-\mathrm{Fe}$ bond.

The three $\mathrm{Sb}-\mathrm{C}$ bond lengths agree closely with the mean value of $2 \cdot 125(3) \AA$. This distance is longer, but in view of the low accuracy of the analysis of $\left(\mathrm{Me}_{3} \mathrm{Sb}\right) \mathrm{Fe}(\mathrm{CO})_{4}$ not significantly longer, than the $\mathrm{Sb}-\mathrm{C}$ distance $[2 \cdot 02(5) \AA]$ for the trimethyl complex. No other determinations of tetrahedral $\mathrm{Sb}-\mathrm{C}$ bond distances are known to us, but the tetrahedral radius for antimony of $1.40 \AA$ suggested by these values * seems reasonable.

At the iron atom the equatorial $\mathrm{C}-\mathrm{Fe}-\mathrm{C}$ angles follow a familiar pattern with one angle significantly greater than and two significantly less than $120^{\circ} .{ }^{13}$ No bondlength variation in $\mathrm{Fe}-\mathrm{C}$ is associated with this distortion. In $\left(\mathrm{HPh}_{2} \mathrm{P}\right) \mathrm{Fe}(\mathrm{CO})_{4}$ an identical distortion was attributed ${ }^{14}$ to angular widening caused by repulsion between an ortho-hydrogen and two of the equatorial carbonyl groups. The shortest $\mathrm{C} \cdot \cdots \mathrm{H}$ distance noted there was $2.9 \AA$ while in this structure the shortest comparable distance is $\mathrm{C}(3) \cdots \mathrm{H}(\mathbf{1 2})$ $3 \cdot 16 \AA$. However, short intermolecular contacts in the present structure involve both $\mathrm{C}(4) \cdots \mathrm{H}(34)$ $(2.90 \AA)$ and $\mathrm{O}(2) \cdots \mathrm{H}(15)(2.56 \AA)$ and these probably play a role in dictating the pattern of equatorial angles. Likewise, although explanations involving π bonding ${ }^{15}$ and valence-shell electron-pair repulsions ${ }^{16}$ have been advanced to account for such distortions, the observation that the equatorial angles in $\left(\mathrm{Me}_{3} \mathrm{Sb}\right) \mathrm{Fe}(\mathrm{CO})_{4}$ are crystallographically equivalent suggests that steric effects predominate in the present case.

There is an apparent trans-effect with the axial $\mathrm{Fe}-\mathrm{C}$ bond significantly shorter than the equatorial $\mathrm{Fe}-\mathrm{C}$. The shortening, ca. $0.027 \AA$, is comparable to that reported ${ }^{17}$ in an electron-diffraction study of $\mathrm{Fe}(\mathrm{CO})_{5}$ although no such effect was observed ${ }^{18}$ in an X-ray study of the same compound. Other complexes $\mathrm{LFe}(\mathrm{CO})_{4}$ are known both with ${ }^{19}$ and without ${ }^{20}$ observable trans-effects depending on the nature of the ligand L. Arguments involving the relative importance of ligand-ligand repulsions and d electron-ligand repulsions have been advanced to account for the trans-effect in five-co-ordinate metal complexes. ${ }^{21}$ Frenz and Ibers ${ }^{13}$

[^0]have reviewed the available evidence from diffraction studies on trigonal-bipyramidal complexes with five identical ligands. From their data it seems that the two opposing forces are closely balanced in $\mathrm{Fe}(\mathrm{CO})_{5}$, and the same seems to be true in the present compound.
As was found in the trimethyl analogue, and as is common in other carbonyl complexes, ${ }^{22}$ the carbonyl groups in the equatorial plane are not coplanar with the metal atom. The displacements of these atoms from a plane perpendicular to the $\mathrm{Sb}-\mathrm{Fe}$ bond axis and passing through the iron atom range from 0.03 to $0.12 \AA$, being in each case toward the antimony atom. Again, such displacements have been attributed to repulsions between equatorial and axial ligands ${ }^{8}$ but the observation that one of the two independent $\mathrm{Mn}(\mathrm{CO})_{5}{ }^{-}$anions in the crystal of tris-(1,10-phenanthroline)nickel(II) pentacarbonylmanganate shows such behaviour while the other does not suggests that intermolecular steric effects may be as important in determining the final configuration. ${ }^{13}$ Coplanarity of the equatorial carbonyl groups and the iron atom has also been noted ${ }^{\mathbf{1 4}}$ in the closely related $\left(\mathrm{HPh}_{2} \mathrm{P}\right) \mathrm{Fe}(\mathrm{CO})_{4}$ structure. In the present compound the carbonyl carbon atom $\mathrm{C}(4)$, which is least displaced from the plane, is not involved in the shortest intramolecular $\mathrm{C} \cdots \mathrm{H}$ contact but is involved in the shortest axial-equatorial $\mathrm{C} \cdot \mathrm{C}$ contact.

The molecule adopts a close to staggered configuration about the $\mathrm{Sb}-\mathrm{Fe}$ bond (Figure 2), similar to that found in the trimethyl analogue ${ }^{8}$ and in $\left(\mathrm{HPh}_{2} \mathrm{P}\right) \mathrm{Fe}(\mathrm{CO})_{4}{ }^{14}$ The dihedral angles made by the phenyl rings, one with another, are $84.8,87 \cdot 9$, and $88 \cdot 4^{\circ}$, close to the preferred arrangement in MPh_{3} systems. The combination of these dihedral angles and the particular form of staggered configuration observed seems dictated by the limiting contacts between one set of ortho-hydrogen atoms and the equatorial carbon atoms, the energy lost by not adopting a fully staggered arrangement being compensated by the optimal arrangement of the phenyl rings.

The thermal parameters of the atoms are in the normal range for complexes of this type and follow physically reasonable patterns. The atomic amplitudes of vibration are greater the greater the distance of an atom from the molecular centre of gravity.

Contacts between molecules in the crystal are of normal van der Waals type.

We thank Dr. A. R. Manning for a sample of the compound, and the National Institutes of Health (U.S.A.) for a pre-doctoral fellowship (to W. C. S.).
[4/1131 Received, 11th June, 1974]
${ }^{17}$ B. Beagley, D. W. J. Cruickshank, P. M. Pinder, A. G. Robiette, and G. M. Sheldrick, Acta Cryst., 1969, B25, 737.

18 J . Donohue and A. Caron, Acta Cryst., 1964, 17, 663.
19 A. R. Luxmore and M. R. Truter, Acta Cryst., 1962, 15, 1117; J. A. J. Jarvis, R. H. B. Mais, P. G. Owston, and D. Thompson, J. Chem. Soc. (A), 1968, 622.
${ }^{20}$ D. Bright and O. S. Mills, Chem. Comm., 1966, 211.
${ }^{21}$ G. P. Khare, C. G. Pierpont, and R. Eisenberg, Chem. Comm., 1968, 1692; R. J. Gillespie, J. Chem. Soc., 1963, 4672.
${ }_{22}$ P. T. Greene and R. F. Bryan, J. Chem. Soc. (A), 1971, 1559; see also ref. 2.

[^0]: * The radius of a carbon atom exo to a phenyl ring is assumed to be $0.725 \AA$.
 ${ }^{12}$ B. P. Bir'yukov, K. N. Anisimov, Yu. T. Struchkov, N. E. Kolobova, and V. V. Skripkin, Zhur. strukt. Khim., 1967, 8, 556.
 ${ }_{14}$ B. A. Frenz and J. A. Ibers, Inorg. Chem., 1972, 11, 1109.
 ${ }_{14}$ B. T. Kilbourn, U. A. Raeburn, and D. T. Thompson, J. Chem. Soc. (A), 1969, 1906.
 ${ }^{15}$ C. J. Balhausen and H. B. Gray, Inorg. Chem., 1963, 2, 426.
 ${ }^{16}$ R. J. Gillespie, J. Chem. Soc., 1963, 4679.

