Mössbauer Spectra of Six-co-ordinate Organotin(IV) Compounds with Oxygen Donors: Structure, Bonding, and Correlation with Antimony(v) e²aQ Values

By G. Michael Bancroft,* V. G. Kumar Das, and (in part) K. David Butler, Department of Chemistry, University of Western Ontario, London, Ontario N6A 3KT, Canada

Mössbauer spectra are reported for twenty-six six-co-ordinate Sn^{IV} compounds of the type $[R_2SnL_4][X]_2$, (I), $R_2SnL_2Cl_2$, (II), and R_3SnL_2Cl , (III) (R = Me or Ph; L = oxygen donor; X = Ph₄B⁻, ClO₄⁻, or PF₆⁻). The quadrupole splittings show that compounds (I) and (III) have trans R groups, while (III) are trans-isomers. From the derived partial quadrupole splittings, the donor properties of the ligands L increase in the order PhaPO < $(Me_2N)_3PO < Me_2SO < \frac{1}{2}Ph_2(O)PCH_2P(O)Ph_2 < \frac{1}{2}Ph_2(O)PCH_2CH_2P(O)Ph_2 < HCO \cdot NMe_2 < Ph_2(O)AsCH_2-As(O)Ph_2 < Ph_3AsO < \frac{1}{2}bipydo (bipydo = 2.2'-bipyridyl NN'-dioxide). Extension of a previous correlation between Sb^v and Sn^{IV} e²qQ values for SbCl₅L and corresponding cis-Cl_5NL_2 compounds again indicates that$ an excellent correlation is obtained with a correlation coefficient r of 0.995 for ten compounds. This correlation further supports assumptions made in the ratio method for obtaining accurate quadrupole parameters.

Although ¹¹⁹Sn Mössbauer spectra of a large number of six-co-ordinate Sn^{IV} compounds containing neutral ligands, $R_2SnX_2L_2$ and X_4SnL_2 (R = Ph, Me, etc.; X = Cl, Br, or I; L = neutral ligand) have been recorded,¹⁻³ the quadrupole splittings (q.s.) have not been particularly useful for elucidating bonding variations of the neutral donors or for predicting other six-co-ordinate structures. Quadrupole splitting values of X₄SnL₂ species are often too small to be easily measured, and variations in q.s. for $R_2SnX_2L_2$ compounds are small. Thus partial quadrupole splitting values (p.q.s.) for oxygen-donor ligands $(L = Me_2SO, C_5H_5NO, Bu_3PO, Ph_3PO, or Ph_3AsO)$ derived from the latter compounds (ref. 1, Table 26) have a total range of only 0.06 mm s⁻¹. In this study, we have recorded spectra for a large number of newly prepared compounds ⁴⁻⁶ of the types $[R_2SnL_4]^{2+}$ (I: R = Ph or Me; $L = Ph_3PO$, Ph_3AsO , Me_2SO , etc.) and R_2Sn - Cl_2L_2 , (II). The q.s. of compounds (I) have about twice the sensitivity to L as those of (II), and the significant differences in q.s. can be readily interpreted in terms of the bonding properties of the ligands. P.q.s. derived from the trans-(I) compounds are useful in assigning other six-co-ordinate structures.

The recent report of several ¹²¹Sb q.s. for SbCl₅L compounds ⁷ makes it again possible to correlate values for SnIV and SbIV using methods previously discussed.8,9 The good correlation thus obtained further supports the assumption made earlier ⁹ that bonding in Sb^v and Sn^{Iv} compounds is very similar, and that the $Q(^{119}Sn)$ value derived earlier is reasonable.

EXPERIMENTAL

The compounds were prepared as reported previously.⁴⁻⁶ Mössbauer spectra were obtained at 80 K using a 5 mCi $BaSnO_3$ source at room temperature, and an Austin Science

¹ G. M. Bancroft and R. H. Platt, Adv. Inorg. Radiochem., 1972, **15**, 59.

² P. G. Harrison, B. C. Lane, and J. J. Zuckerman, Inorg. Chem., 1972, 11, 1537

³ D. Cunningham, M. J. Fraser, and J. D. Donaldson, J.C.S. Dalton, 1972, 1647.

⁴ V. G. Kumar Das and W. Kitching, J. Organometallic Chem., 1967, **10**, 59.

⁵ V. G. Kumar Das, W. Kitching, and C. J. Moore, J. Organometallic Chem., 1970, 22, 399.

⁶ V. G. Kumar Das, Inorg. Nuclear Chem. Letters, 1973, 9, 155. ⁷ J. M. Friedt, G. K. Shenoy, and M. Burgard, J. Chem. Phys., 1973, **59**, 4468

Associates spectrometer. Absorptions were generally ca. 5%, and the linewidths (Tables 1 and 2) were very similar. Calibration was carried out using the ⁵⁷Fe spectrum of a 99.99% Fe foil, and centre shifts are quoted with respect to the centre of a room-temperature BaSnO₃-BaSnO₃ spectrum using the scan-centre method.¹⁰ The spectra were computed using methods described previously.10,11 The reproducibility of the results is within ± 0.03 mm s^{-1} for both the centre shift and quadrupole splitting.

RESULTS AND DISCUSSION

Structure and Bonding.-The q.s. in Tables 1 and 2 are all characteristic of six-co-ordinate Sn^{IV} compounds with trans R groups,¹ as was suggested by i.r. and n.m.r. evidence.4-6 The q.s. cannot distinguish between the two possible trans R isomers for compounds (II). These two isomers differ in expected quadrupole splitting only by a small η term¹ which makes a difference in quadrupole splitting of no more than 0.05 mm s^{-1} (footnote to Table 4).

The q.s. for $[Me_2Sn(bipydo)_2][X]_2$ (bipydo = 2,2'-bipyridyl NN'-dioxide; $X = Ph_4B$, PF_6 , or ClO_4) showed a slight variation (0.22 mm s^{-1}) . Two additional pieces of evidence showed that the q.s. for the Ph₄B compounds are not significantly affected by the counter ion. First, a plot of quadrupole splitting for $[R_3SnL_2]^+$ compounds against those for (I)¹² gave a good correlation. Second, predicted and observed q.s. (Table 4) were generally in satisfactory agreement using partial quadrupole splitting values (Table 3) derived from compounds (I; R = Me). We used the following partial quadrupole splitting values 13 to obtain the values in Table 3: -1.03 (Me), -0.95 (Ph), 0.00 (Cl), and +0.07mm s⁻¹ (NCS); the usual assumption of 90° bond angles was also made. It is noticeable that the predicted quadrupole splitting values for the Ph compounds are

⁸ G. M. Bancroft, Chem. Phys. Letters, 1971, 10, 449.

⁹ G. M. Bancroft, K. D. Butler, and E. T. Libbey, J.C.S.

 Dallon, 1972, 2643.
 ¹⁰ G. M. Bancroft, 'Mössbauer Spectroscopy: An Introduction for Inorganic Chemists and Geochemists,' McGraw-Hill, Maidenhead, 1973.

¹¹ A. J. Stone, Appendix to G. M. Bancroft, A. G. Maddock, W. K. Ong, R. H. Prince, and A. J. Stone, J. Chem. Soc. (A), 1967, 1966.

12 G. M. Bancroft, M. G. Clark, V. G. Kumar Das, and T. K. Sham, J.C.S. Chem. Comm., 1974, 236.
 ¹³ M. G. Clark, A. G. Maddock, and R. H. Platt, J.C.S. Dalton,

1972, 281.

R	L	х	$\begin{array}{c} { m Centre} \\ { m shift} \pm 0.03 \end{array}$	Quadrupole splitting ± 0.03	$\Gamma_1 \pm 0.05$	$\Gamma_2 \pm 0.05$
Me	1/2 bipydo	$Ph_{4}B$	$1.\overline{26}$	4.00	1.07	1.07
Me	¹ / ₂ bipydo	PF_{6}	1.17	3.78	1.11	1.05
Me	1/2 bipydo	ClO	1.23	3.97	1.08	1.14
Me	Ph ₃ AsO	Ph_4B	1.27	4.03	0.99	0.99
Me	$\frac{1}{2}Ph_2(O)AsCH_2As(O)Ph_2$	$Ph_{4}B$	1.19	4.08	1.20	1.21
Me	HCO·NMe ₂	$Ph_{4}B$	1.27	4.26	1.02	1.14
Me	$\frac{1}{2}$ Ph ₂ (O)PCH ₂ CH ₂ P(O)Ph ₂	$Ph_{4}B$	1.29	4.38	1.16	1.05
Me	¹ / ₂ Ph ₂ (O)PCH ₂ P(O)Ph ₂	$Ph_4^{\bullet}B$	1.27	4.50	1.00	1.02
Me	Me ₂ ŠO	Ph₄B	1.39	4.52	0.98	1.04
Me	(Me ₂ N) ₃ PO	Ph₄B	1.27	4.58	1.14	1.20
Me	Ph ₃ PO	$Ph_{4}B$	1.35	4.75	1.10	$1 \cdot 10$
\mathbf{Ph}	$\frac{1}{2} Ph_2(O) PCH_2 P(O) Ph_2$	$Ph_{4}B$	1.30	3.78	1.08	1.11
$\mathbf{P}\mathbf{h}$	Me₂ŠÓ	Ph_4B	1.24	4.30	1.09	1.08
		1.1	0.0/ D'	37/ 11 11		

TABLE 1 Mössbauer parameters (mm s⁻¹) at 80 K for the compounds $[R_2SnL_4][X]_2$, (I)

bipydo = 2,2'-Bipyridyl NN'-dioxide.

TABLE 2 Mössbauer parameters (mm s⁻¹) at 80 K for the compounds R₂SnCl₂L₂, (II), and R₃SnClL, (III)

					• • • •
T	Ŧ	Centre	Quadrupole		
R	L	shift ± 0.03	splitting ± 0.03	$\Gamma_1 \pm 0.05$	$\Gamma_2 \pm 0.05$
(a) (II)					
Me	C ₅ H ₅ NO	$1 \cdot 42$ a			
Me	βbipydo	1.39	4.08	1.09	1.13
Me	NCS, įbipydo	1.32	4.07	1.11	1.10
Me	Ph ₃ AsO	1.31	4.14	1.31	1.13
\mathbf{Bu}	Ph ₃ AsO	1·49 b	4·04 ^b		
Me	$\frac{1}{2}Ph_2(O)AsCH_2As(O)Ph_2$	1.30	4.06	1.21	1.20
Me	$\frac{1}{2}$ Ph ₂ (O)PCH ₂ CH ₂ P(O)Ph ₂	1.27	4.19	1.05	1.05
Me	$\frac{1}{2}$ Ph ₂ (O)PCH ₂ P(O)Ph ₂	1.44	4.32	1.28	1.30
Me	Me ₂ SO	1.40 a,c	4·13 a.c		
\mathbf{Me}	$(Me_2N)_3PO$	1.32	4.28	1.27	1.16
Me	Ph ₃ PO	1.37	4.30	1.15	1.02
\mathbf{Bu}	Ph ₃ PO	1·62 ه	4·11 b		
\mathbf{Ph}	1/2 bipydo	1.28	3.49	1.29	1.23
\mathbf{Ph}	$\frac{1}{2}$ Ph ₂ (O)PCH ₂ CH ₂ P(O)Ph ₂	1.26	3.65	1.05	1.01
\mathbf{Ph}	$\frac{1}{2}$ Ph ₂ (O)PCH ₂ P(O)Ph ₂	1.27	3.78	1.17	1.18
Ph	Me ₂ SO	1.23 €	3.54 °		
(b) (]	III)				
Me	$Ph_2(O)PCH_2P(O)Ph_2$	1.35	3.58	0.99	1.05
\mathbf{Ph}	$Ph_{2}(O)PCH_{2}P(O)Ph_{2}$	1.29	3.25	1.19	1.09
C Davia	a I Smith and D I Smith	I Owganomatallia	Chain 1070 09 19	5 AT D M.11	na Canad I Ch

^a A. G. Davies, L. Smith, and P. J. Smith, J. Organometallic Chem., 1970, 23, 135. ^b F. P. Mullins, Canad. J. Chem., 1971, 49, 2719. R. C. Poller, J. N. R. Ruddick, B. Taylor, and D. L. B. Toley, J. Organometallic Chem., 1970, 24, 341.

appreciably larger than the observed values. In addition, it is interesting that the quadrupole splitting for compounds (II; R = Me) plotted against those for (I)

TABLE 3Partial quadrupole splitting values (mm s ⁻¹) for oxygen-donor ligands				
Ligand	P.q.s.			
Ph ₃ PO	+0.16			
$(M\tilde{e}_2N)_3PO$	+0.15			
Me ₂ SO	-+- 0 ·10			
$\frac{1}{2}Ph_2(O)PCH_2P(O)Ph_2$	+0.10			
$\frac{1}{2}$ Ph ₂ (O)PCH ₂ CH ₂ P(O)Ph ₂	+0.02			
HCO'NMe ₂	+0.04			
$\frac{1}{2}$ Ph ₂ (O)AsCH ₂ As(O)Ph ₂	-0.01			
Ph ₃ AsO	-0.05			
½bipydo	-0.03			

(O)Ph₂, or bipydo] gave a reasonable linear correlation with gradient 0.33 (r = 0.83). Considering the very small range of q.s. (0.22 mm s⁻¹ for the Me₂SnCl₂L₂ species), this is in reasonable agreement with the expected gradient of 0.5.

The p.q.s. for the neutral ligands are now useful for predicting signs and magnitudes of q.s., assigning structures and predicting bonding properties of ligands.¹ The predicted q.s. for the cis-Cl₄SnL₂ compounds (Table 4, $L = Me_2SO$ and Ph_3PO) are positive, as has been found experimentally for Cl₄Sn(NCMe)₂,^{3,14} and confirm that the L groups are generally poorer donors than Cl (ref. 1, p. 146). For compounds such as Me_aSnClL and Ph_aSnClL [Table 4, $L = Ph_2(O)PCH_2$ -P(O)Ph₂], it is now possible to make structural predictions using the partial quadrupole splitting values. Although the low $J(^{119}Sn-CH_3)$ in solution ⁶ indicates that the Me compound contains five-co-ordinate tin in solution, the multiple $\nu(Sn-C)$ stretching bands in the i.r. spectrum strongly suggests six-co-ordination in the solid state.⁶ The predicted q.s. for the trans-isomers are in good agreement with the observed values, while the predicted *cis* quadrupole splitting is close to zero. This evidence strongly indicates that these two compounds have the trans-structure. For compounds such ¹⁴ D. Cunningham, M. J. Frazer, and J. D. Donaldson, J. Chem. Soc. (A), 1971, 2049.

as RSnCl₃L reported earlier [ref. 1, Table 27; Table 4, PhSnCl₃(OPPh₃)₂], the predicted q.s. for the three isomers are still too similar to assign the structure with any confidence. Thus, for PhSnCl₃(OPPh₃)₂, the predicted q.s. vary from +1.77 to +2.29 mm s⁻¹, while the observed value is in between these values at 2.01 mm s⁻¹.

TABLE 4

Predicted and observed quadrupole splitting values (mm s⁻¹) for organotin(Iv) compounds with oxygen donors

	Quadrupole splitting		
Compound	Observed	Predicted "	
$[Ph_2Sn{Ph_2(O)PCH_2P(O)Ph_2}_2[Ph_4B]_2]$	3.78	+4.20	
[Ph ₂ Sn(OSMe ₂) ₄][Ph ₄ B] ₂	4.30	+4.20	
Me,SnCl ₂ {Ph ₂ (O)AsCH ₂ As(O)Ph ₂ }	4.06	+4.10	
Me ₂ SnCl ₂ (bipydo)	4.08	+4.06	
Me ₂ Sn(NCS) ₂ (bipydo)	4.07	+4.20	
$Me_2SnCl_2(OAsPh_3)_2$	4.14	+4.08	
$\operatorname{Bu}_2\operatorname{SnCl}_2(\operatorname{OAsPh}_3)_2$	4.04	+4.08	
Me _s SnCl ₂ (OSMe ₂),	4.16	$+4 \cdot 32$	
$Me_2SnCl_2{Ph_2(O)PCH_2CH_2P(O)Ph_2}$	4.19	+4.26	
$Me_2SnCl_2{OP(NMe_2)_3}_2$	4.28	+4.36	
$Me_2SnCl_2(OPPh_3)_2$	4.30	+4.44	
$Me_2SnCl_2{Ph_2(O)PCH_2P(O)Ph_2}$	4.32	+4.32	
Ph ₂ SnCl ₂ (bipydo)	3.49	+3.74	
$Ph_2SnCl_2(OSMe_2)_2$	3.54	+4.00	
$Ph_{2}SnCl_{2}Ph_{2}P(O)CH_{2}CH_{2}P(O)Ph_{2}$	3.65	+3.94	
$Ph_2SnCl_2\{Ph_2P(O)CH_2P(O)Ph_2\}$	3.78	+4.00	
$Me_{3}SnCl{Ph_{2}P(O)CH_{2}P(O)Ph_{2}}$	3.58	trans	
		+3.71 (n 0.90)	
		$(\eta 0.90)$ cis	
		-0.20	
		$(\eta 0)$	
Ph_SnCl{Ph_P(O)CH_P(O)Ph_}	3.25	trans	
$1_{1_3} = 1_{2_1} = 1_{2$	0 20	+3.45	
		$(\eta \ 0.93)$	
		cis	
		-0.20	
		(η Ū)	
cis-SnCl ₄ (OSMc ₂) ₂	<0.5 b	+0.20	
cis-SnCl ₄ (OPPh ₃) ₂	0.56 °	+0.32	
PhSnCl ₃ (OPPh ₃) ₂	2.01 d	+1.77	
3/2		$(n \ 0.28)^{d}$	
		+2.22	
		$(\eta 0)$	
		+2.29	
		$(\eta \ 0.43)$	

^a For the R₂SnCl₂L₂ compounds, the predicted values refer to the *cis*-Cl-*cis*-L isomer for which $\eta = 0$. For all-*trans*-isomer, the predicted quadrupole splitting is very slightly larger. For Me₂SnCl₂(OPPh₃)₂, the predicted quadrupole splitting for the all-*trans*-isomer is $+4\cdot48$ mm s⁻¹, $\eta = 0\cdot22$. ^b Ref 2; J. Philip, M. A. Mullen, and C. Curran, *Inorg. Chem.*, 1968, 7, 1895; P. A. Ycats, J. R. Sams, and F. Aubke, *ibid.*, 1970, 9, 740. ^c Average of values from last two references in *b*. ^d Table 27, ref. 1; the predicted values correspond to isomers b, c, and d respectively in this Table.

Since the partial quadrupole splitting value for a ligand becomes more negative as the donor strength of the ligand increases,^{1,13} the donor strength of these ligands increases in the order $Ph_3PO < (Me_2N)_3PO < Me_2SO \sim \frac{1}{2}Ph_2(O)PCH_2P(O)Ph_2 < \frac{1}{2}Ph_2(O)CH_2CH_2P-(O)Ph_2 < HCO\cdotNMe_2 < Ph_2(O)AsCH_2As(O)Ph_2 < Ph_3-AsO < \frac{1}{2}bipydo$. This order of donor strengths correlates well with the order deduced from $J(^{119}Sn-Me)$ values derived from the compounds (I; R = Me),⁶

* $1b = 10^{-28} m^2$.

¹⁵ C. I. Branden and I. Lindqvist, *Acta Chem. Scand.*, 1963, **17**, 759.

except for Me₂SO. The order is also consistent with the ideas suggested earlier ⁴⁻⁶ for formation of Me₂SnPh₂ in solution from the compounds (I; R = Me, X = Ph₄B) by reaction of the Ph₄B phenyl groups with the [Me₂-SnL₄]²⁺ cation. Thus, only for strong donors such as $L = Ph_3AsO$ could the six-co-ordinate [Me₂SnL₄]²⁺ species be detected in solution. In other cases, the Ph from Ph₄B effectively competed with poorer donors for co-ordination to the Sn.

 $Sn^{IV}-Sb^{V}$ Correlations.—The recent publication of Sb^{V} Mössbauer parameters for $SbCl_5L$ (L = MeCN, Me₃PO, Ph₃PO, Cl₃PO, etc.) compounds ⁷ makes it possible to extend the $Sn^{IV}-Sb^{V}$ correlations published previously using the ratio method.⁹ As shown previously, for isoelectronic, isostructural, Sn^{IV} and Sb^{V} compounds, equation (1) can be written. A plot of $(e^2qQ)_{Sb}$ against

$$(e^2 q Q)_{\rm Sb} = [Q_{\rm Sb} q_{5p(\rm Sb)} / Q_{\rm Sn} q_{5p(\rm Sn)}] (e^2 q Q)_{\rm Sn} \qquad (1)$$

 $(e^2qQ)_{\rm Sn}$ gave a straight line of gradient $+3\cdot40.^9$ From literature values of $Q_{\rm Sb}$, $q_{5p(\rm Sh)}$, and $q_{5p(\rm Sn)}$, $Q_{\rm Sn}$ was found to be $-0\cdot062$ b,* in good agreement with other recent values.

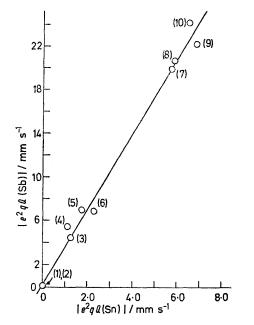
Although the $[SnCl_5L]^-$ analogues of the SbCl_5L compounds are not known, the partial quadrupole splitting treatment predicts that the magnitudes of cis-SnCl₄L₂ and $[SnCl_5L]^- e^2qQ$ values should be the same, but of opposite sign. The opposite sign for such species has been confirmed: e^2qQ for SbCl₅(NCMe) is negative,⁷ while that for cis-SnCl₄(NCMe)₂ is positive.³ Thus it should be possible to use the ratio method to correlate the known SbCl₅L and cis-SnCl₄L₂ (L = POCl₃, MeCN, POPh₃, or Me₂SO) q.s. (Table 5). Crystallographic

TABLE 5

Quadrupole splitting values (mm s⁻¹) for cis-SnCl₄L₂ and SbCl₅L analogues

	0	
Ref.	$e^2 q Q(^{121}Sb)$	Ref.
3,14	$-6.84(\gamma 0.37)$	7
3,14	-6.93 ($\eta 0.03$)	7
*	-5.51 (n 0.37)	7
*	-5.28 ($\eta 0.0$)	7
	3,14 3,14 *	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

* J. Philip, M. A. Mullen, and C. Curran, *Inorg. Chem.*, 1968, 7, 1895; P. A. Yeats, J. R. Sams, and F. Aubke, *ibid.*, 1970, 9, 740.


studies ¹⁵⁻¹⁷ confirm that the POCl₃, Me₂SO, and MeCN compounds have the *cis*-structure. In addition, there is substantial crystallographic evidence to indicate that bonding in the Sn and Sb compounds is very similar. Thus, the Sn–Cl bond lengths in SnCl₄(OPCl₃)₂, SnCl₄-(OSMe₂)₂, and SnCl₄(NCMe)₂ range from 2·31 to 2·36,¹⁵ 2·36 to 24·7,¹⁵ and 2·339 to 2·356 Å ¹⁷ respectively, while the SbCl₅L analogues give very similar Sb–Cl bond lengths of 2·32—2·35 (L = POCl₃).¹⁵ 2·26—2·37 (Me₂-SO),¹⁶ and 2·33—2·40 Å (MeCN).¹⁸ Thus the assumption of identical bonding which is inherent in the treatment is not unreasonable.

¹⁶ A. Hansson and O. Brunge, personal communication quoted in I. Lindqvist, 'Inorganic Adduct Molecules of Oxo Compounds,' Academic Press, New York, 1963. ¹⁷ M. Webster and H. E. Blayden, J. Chem. Soc. (A), 1969,

2443.

¹⁸ H. Binas, Z. anorg. Chem., 1967, 352, 271.

2358

Plot of ¹²¹Sb and ¹¹⁹Sn e^2qQ values for the following pairs of complexes: (1), [SbCl₈]⁻-[SnCl₄]²⁻; (2), [SbBr₆]⁻-[SnBr₆]²⁻; (3), SbCl₅-[SnCl₅]⁻; (4), (Ph₃PO)SbCl₅-cis-(Ph₃PO)₂SnCl₄; (5), (MeCN)SbCl₅-cis-(MeCN)₂SnCl₄; (6), (Cl₃PO)SbCl₅-cis-(Cl₃PO)₂SnCl₄; (7), Ph₃SbBr₂-[Ph₃SnBr₂]⁻; (8), Ph₃SbCl₂-[Ph₃SnCl₂]⁻; (9), Me₃SbBr₂-[Me₃SnBr₂]⁻; and (10), Me₃SbCl₂-[Me₃SnCl₂]⁻; [Me₃SnCl₂]⁻; [Me₃SnCl₃]⁻; [Me₃SnCl₃]⁻;

J.C.S. Dalton

The Sn and Sb $|e^2qQ|$ * values were plotted against each other in the same way as previously⁹ for the pairs of compounds (3), (7), and (8)-(10) (Figure). The gradient and intercept of the line in the Figure were +3.38 and +0.34 mm s⁻¹, in excellent agreement with +3.40 and +0.25 mm s⁻¹ respectively given previously for the five points. The correlation coefficient was 0.995, strongly suggesting that the assumptions inherent in the ratio method are reasonable, and that the $Q^{(119Sn)}$ value derived earlier (-0.062 b) is accurate if $Q(^{121}\text{Sb})$ and the q values used are accurate. A very recent report ¹⁹ of four-co-ordinate Sb^{∇} e^2qQ values for compounds of the type $[R_{3-x}SbM_x]^+$ [R = Bu, Me, Ph, Cl, Br, I, or CF_3 ; M = Fe(CO)₂(cp), cp = η -cyclopentadienyl] makes it possible to correlate these e^2qQ values with the neutral Sn^{IV} analogues.²⁰ Although the gradient is close to our value, the intercept is close to +6 mm s⁻¹. Although this may be due to differences in bonding between the Sn and Sb analogues, it is also possible that the very large Sb e^2qQ values are at least partially due to not using the transmission integral in the analyses of the ¹²¹Sb spectra.⁷

[4/998 Received, 21st May, 1974]

* The magnitudes have to be plotted because $SbCl_sL$ and cis-SnCl₄L₂ have e^2qQ values of opposite sign, as discussed earlier.

¹⁹ W. R. Cullen, D. J. Patmore, J. R. Sams, and J. C. Scott, *Inorg. Chem.*, 1974, **13**, 649.

²⁰ J. R. Sams, personal communication.