2398

Carbon-13 Nuclear Magnetic Resonance Spectra and Mechanism of Bridge–Terminal Carbonyl Exchange in Di-μ-carbonyl-bis[carbonyl(ηcyclopentadienyl)iron](*Fe–Fe*) [{ $(\eta - C_5H_5)Fe(CO)_2$ }]; *cd*-Di- μ -carbonyl-*f*carbonyl-ae-di(n-cyclopentadienyl)-b-(triethyl -phosphite)di-iron(Fe-Fe) $[(\eta - C_5 H_5)_2 Fe_2(CO)_3 P(OEt)_3]$, † and some Related Complexes

By Daniel C. Harris, Edward Rosenberg, and John D. Roberts,* The Gates and Crellin Laboratories of Chemistry, California Institute of Technology, Pasadena, California 91109, U.S.A.

A mechanism involving carbonyl-bridge breaking, rotation about the Fe-Fe bond, and bridge reformation is shown to account qualitatively for changes in the carbonyl region of the 13 C n.m.r. spectrum of the complex [(cp)(OC)- $Fe(\mu-CO)_2Fe(cp){P(OEt)_3}$ and quantitatively for $[(cp)(OC)Fe(\mu-CO)_2Fe(CO)(cp)]$ (cp = η -cyclopentadienyl). The activation energy for this process, 49:0 ± 4 kJ mol⁻¹ (11:7 ± 1 kcal mol⁻¹), is close to that reported for *cis*-trans-isomerization of the cp groups, in accord with this mechanism. Variable-temperature ¹³C n.m.r. spectra of

the complexes $[(cp)(OC)Ru(\mu-CO)_2Ru(CO)(cp)]$ and $[(cp)(OC)Fe(\mu-CO)_2Nu(cp)]$ are also reported.

THE variable-temperature ¹³C n.m.r. spectrum of the complex $[(cp)(OC)Fe(\mu-CO)_{2}Fe(cp)L]$ (I; L = CO, cp = η -cyclopentadienyl) has been interpreted in terms of both bridge-terminal and *cis-trans*-carbonyl exchange.¹ Mechanisms have been recently published by Adams and Cotton,^{2,3} which account for the fact that bridgeterminal exchange in the trans-isomer of complex (I) is much more facile than that in the cis-isomer. Carbonylbridge opening, followed by bridge closure, with no rotation of the non-bridged intermediate [equation (1)] accounts for bridge-terminal exchange in the transisomer. The cis-isomer, however, cannot undergo bridge-terminal exchange without simultaneous rotation about the metal-metal bond [equation (2)].

Before the Adams and Cotton papers appeared, we

initiated an investigation of carbonyl exchange in the complex $[(cp)(OC)\dot{F}e(\mu-CO)_{2}\dot{F}e(cp)L]$ [I; $L = P(OEt)_{3}$] for which equation (1) is not applicable, because the phosphite ligand cannot reside in a bridging position. It was expected, therefore, that the *trans*-isomer would not exhibit bridge-terminal averaging independent of cis-trans-isomerization. We also sought to delineate the kinetics of exchange from the change in linewidths of carbonyl absorptions of complex (I; L = CO) as a function of temperature. Finally, we undertook brief investigations of the complexes [(cp)(OC)Ru(µ-CO)2Ru-

(CO)(cp)], (II), and [(cp)(OC)Fe(μ -CO)₂Ni(cp)], (III). The results obtained are in full agreement with those of Adams and Cotton² with different ligands.

[†] Throughout the paper, only the name of the cis-isomer is given in full.

¹ O. A. Gansow, A. R. Burke, and W. D. Vernon, J. Amer. Chem. Soc., 1972, 94, 2550.

² R. D. Adams and F. A. Cotton, Inorg. Chim. Acta, 1973, 7,

 ¹⁵ K. D. Adams and F. A. Cotton, *Inorg. Chim. Acta*, 1975, 7, 153; *J. Amer. Chem. Soc.*, 1973, 95, 6589.
³ The same mechanisms were developed independently in this laboratory, cf. D. C. Harris, Ph.D. Thesis, California Institute of Technology, 1973, pp. 404-408.

EXPERIMENTAL

The complex $[(cp)(OC)Fe(\mu-CO)_2Fe(cp)L]$ (I; L = CO) was obtained from a commercial source and crystallized from ethanol. The method of Haines and DuPreez ⁴ was used to prepare the complexes [I; L = P(OMe)₃ and P(OEt)₃]. The complex $[(cp)(OC)Ru(\mu-CO)_2Ru(CO)(cp)]$, (II), was prepared by a procedure similar to Manning's ^{5,6}

and sublimed twice, while $[(cp)(OC)\dot{F}e(\mu-CO)_2\dot{N}i(cp)]$, (III), was obtained by the method of Tilney-Bassett,⁷ chromatographed on neutral alumina with 4:1 light petroleum (b.p. 30—60 °C)-benzene, and crystallized from 6:1 light petroleum-benzene.

¹³CO Enrichment.—Complexes [I; L = CO or $P(OEt)_3$], (II), and (III), were stirred in benzene solutions under 90% ¹³C-enriched carbon monoxide for 1 day at 45—50 °C. Enrichments were 14, 33, 48, and 36% respectively. The percent enrichment was determined from heights of the m/e 28 (¹²CO) and 29 (¹³CO) peaks in the 70 eV mass spectrum. All complexes other than (I; L = CO) reacted with CO to produce products in addition to enriched starting material. Thus, complex [I; $L = P(OEt)_3$]

⁴ R. J. Haines and A. L. DuPreez, *Inorg. Chem.*, 1969, 8, 1459.
⁵ A. R. Manning and P. A. McArdle, *J. Chem. Soc.* (A), 1970, 2128.

produced a mixture of 21% (I; L = CO) and 79% [II; $L = P(OEt)_3$]. This mixture was converted to pure [I; $L = P(OEt)_3$] by stirring it with excess of triethyl phosphite [the mole ratio of triethyl phosphite to (I; L = CO) was 5: 1] in benzene at 60 °C *in vacuo* with periodic removal of the evolved CO by freeze-thaw degassing on a vacuum line. The purity was readily checked by ¹H n.m.r. spectroscopy (Table 1). Complex (II) was freed from unidentified ruthenium carbonyls produced by enrichment by crystallization from toluene. The carbonylation byproducts of complex (III) included (I; L = CO) and a green volatile solid, presumably (cp)₂Ni. No attempt was made to remove complex (I; L = CO) from (III) after enrichment.

N.M.R. Spectra.—Fourier-transform ¹³C n.m.r. spectra were recorded on our modified Bruker-Varian DFS-60 spectrometer operating at 15.09 MHz with deuterium lock and proton-noise decoupling. Chemical shifts are all in p.p.m. downfield of internal tetramethylsilane (tms). Temperatures were measured with a thermocouple or thermometer and were generally constant to ± 2 °C. I.r.

⁶ An apparently superior synthesis has recently been published: A. P. Humphries and S. A. R. Knox, J.C.S. Chem. Comm., 1973, 326.

⁷ J. F. Tilney-Bassett, J. Chem. Soc., 1963, 4784.

spectra were obtained with a Perkin-Elmer 225 spectrometer. All reactions were carried out in atmospheres of nitrogen or argon. All solids, except (III), could be handled in the air without apparent harm, but were stored under a nitrogen atmosphere in a refrigerator. Solvents for the n.m.r. spectra were dried over Linde 4A molecular sieves and distilled *in vacuo* into the n.m.r. tubes. Solvents for other purposes were deoxygenated by bubbling a stream of nitrogen through them. Unless otherwise stated, all n.m.r. samples contained 0.08-0.10M-Cr(acac)₃ (acac = 2,4-pentanedionate) (crystallized from benzene-hexane, m.p. 212-213 °C) as relaxation reagent and were sealed under a N₂ atmosphere.

¹H Chemical shifts of all groups in complexes (I) were at significantly higher fields in benzene and toluene than in non-aromatic solvents (see Table 1). The ¹³C shifts for triethyl phosphite are given in Table 2. Complex [I; $L = P(OMe)_3$] exhibited bridge and terminal carbonyl carbon absorptions of the predominant isomer at 282.0

TABLE 1 ¹H Chemical shifts (p.p.m.) and coupling data (J/Hz) for complexes (I)

^a For P(OEt)₃ in benzene, δ (CH₃) 1·12 and δ (CH₂) 3·81 p.p.m. $[J(^{1}H - ^{1}H) 7, J(^{3}P - CH_2) 7 Hz]$.

TABLE 2

Triethyl phosphite ¹³ C n.m.r. data ^a							
	Chemical shift/p.p.m.		$J(^{31}P-^{13}C)/Hz$				
Compound	CH_2	CH ₃	CH_2	CH3			
$P(OEt)_3$	57.9	17.1	11.6	4.8			
$\begin{bmatrix} I \\ ; L = P(OEt)_3 \end{bmatrix}$ in CH ₂ Cl ₂	60.8	16.2	4	6			
$[I; L = P(OEt)_3]$ in toluene	60.5	16	4	6			

^a All spectra were run at 30 ± 2 °C. Chemical shifts are referred to tms as zero. The triethyl phosphite sample consisted of triethyl phosphite (2 cm³), CDCl₃ (1 cm³), and tms (0.2 cm³).

 $(J \approx 19 \text{ Hz})$ and 215.4 p.p.m., respectively. Cyclopentadienyl carbon atoms appeared at 87.3 and 85.8 p.p.m., and the methyl carbons at 51.4 p.p.m. These data are for 1:1 $\text{Cl}_2\text{C}(\text{D})\text{C}(\text{D})\text{Cl}_2$ -toluene solutions, 0.16M in complex [I; $L = P(\text{OMe})_3$].

RESULTS AND DISCUSSION

Complex [I; $L = P(OEt)_3$].—To test the proposed mechanism, both *cis*- and *trans*-isomers should be present

in solution. From the work of Haines and DuPreez,⁴ it is clear that both are present in cyclohexane, but an assignment of which isomer gives rise to which i.r. bands has never been made. In cyclohexane, we found two

strong bands in the terminal metal-carbonyl stretching region at 1964 and 1944 cm⁻¹, logically taken to indicate the presence of both *cis*- and *trans*-isomers in this solution. In toluene, the bands were much broader and overlapped, yielding a maximum at 1955 and a shoulder at 1940 cm⁻¹. In dichloromethane, a second isomer was not evident from the i.r. spectrum, there

being a nearly symmetrical peak at 1.952 cm^{-1} . Finally, the solid (KBr pellet) appeared to contain only one of the two isomers, the small splitting of the bands being a solid-state effect also seen in the individual isomers of complex (I: L = CO).⁸

The low-temperature ¹³C n.m.r. spectrum of complex [I; $L = P(OEt)_3$] in toluene (Figure 1) and dichloro-

which must be under the *cis*-absorptions. This small *trans*-signal coalesced with the *cis*-signals at higher temperature. It is to be noted that phosphorus-carbon coupling was reduced when exchange was rapid amongst the carbonyl positions. The coalescence behaviour is fully consistent with the bond-rotation mechanism [equation (2)]. Bridge and terminal absorptions of the

FIGURE 2 Variable-temperature Fourier-transform ¹³C n.m.r. spectrum of a 0.17M solution of complex [I; $L = P(OEt)_{a}$] (33% enriched in ¹³CO) with 0.09M-Cr(acac)_a in dichloromethane. Each trace represents 2 000 transients

methane (Figure 2) is very revealing. (We confirmed that no further changes took place in the spectrum below the lowest temperatures shown in Figures 1 and 2.) In the terminal-carbonyl region (ca. 215 p.p.m.), both solutions exhibited two isomers. The ratio of the latter was $4.4 (\pm 1)$: 1 in toluene and $5.9 (\pm 1)$: 1 in dichloromethane. As we expect the cis-isomer to be more polar than the trans-isomer, there should be more cis-isomer in dichloromethane than in toluene (or cyclohexane). On this basis, we believe the predominant isomer in all three solvents to be the cis-isomer.^{9,*} In the bridging-carbonyl region, the isomers produced overlapping absorptions near 280 p.p.m. $[\bar{I}(^{31}P^{-13}C)]$ 22 Hz]. In the cp region, the cis-isomer gave two peaks at 87.6 and 86.3 p.p.m. (Figure 3) with no observable ³¹P-¹³C coupling. A smaller peak at 89.5 p.p.m. is probably due to the *trans*-isomer, the other absorption of

* I.r. spectra of solutions of complex [I; $L = P(OMe)_3$] were similar to those of [I; $L = P(OEt)_3$], so we believe the *cis*-isomer is dominant here also: (cyclohexane) ⁴ 1 964s, 1 944m, and 1 750s; (chloroform) 2 056m, 2 010m, 1 963s, 1 773m, and 1 731s cm⁻¹. The solid may contain the *trans*-isomer because the KBr pellet spectrum showed bands at 1 983vw, 1 933vs, 1 887w, 1 770m, I 733vs, and I 707sh, m cm⁻¹. The KBr pellet of complex [I; $L = P(OEt)_3$] (2 075w, 2 008w, 1 957vs, 1 950vs, 1 906w, I 766w, 1 739vs, 1 727vs, and I 704w cm⁻¹) did not allow us to assign a configuration for it in the solid state, but the different wavenumbers of the terminal-carbonyl bands of complexes [I; $L = P(OMe)_3$ and $P(OEt)_3$] suggest that they possess different configurations in the solid state.

⁸ R. F. Bryan, P. T. Greene, M. J. Newlands, and D. S. Field, J. Chem. Soc. (A), 1970, 3068.

cis- and *trans*-isomers coalesced simultaneously with no discernible exchange occurring in one isomer before the other.

FIGURE 3 Calculated ¹³C n.m.r. spectra as a function of exchange rates for complex (I; L = CO). Each curve was calculated using the rate constants of Table 3 at the indicated temperature

⁹ The same reasoning led to the first successful assignment of the isomers of complex (I; L = CO); A. R. Manning, J. Chem. Soc. (A), 1968, 1319.

2402

Complex (I; L = CO).—The spectrum of complex (I; L = CO) published by Gansow *et al.* was interpreted as follows.¹ At -85 °C, the *cis*- and *trans*-isomers are both static on the n.m.r. time scale. Each exhibits single absorptions for the bridge- and terminal-carbonyl groups but the signals accidentally overlap so that only one absorption is observed in each region. At -73 °C, the less-abundant trans-isomer exhibits bridge-terminal exchange, producing an averaged signal between the bridge and terminal signals of the cis-isomer. This averaged signal sharpens as the temperature is raised until, at -35 °C, all three signals begin to broaden and coalesce near -12 °C. In the high-temperature limit, only a single sharp absorption is observed in the bridgeterminal averaged position. The process stated to account for coalescence of the cis-isomer carbonyl signals is either bridge-terminal exchange within the isomer or cis-trans-isomerization.

We investigated spectra of complex (I; L = CO) using dichloromethane as solvent and our results are in agreement with those reported ¹ with one exception: namely, the low-temperature absorption due to averaged carbonyl groups of the trans-isomer was not precisely

TABLE 3
Linewidths of carbonyl absorptions of complex (I;
L = CO) and rate constants for exchange

				~
	Line	ewidth/Hz		
t/°C	cis ª	Averaged ^b	k1 c/s-1	k2 °/s-1
- 70	9	12	8	13
-57	10	14	9	15
-51	13	23	16.5	18
-44	18	32	24	26
-34	38	61	47	65
-17	d	d	490 °	490 •
± 17		ca. 130	7 400 °	7 400 °
+32		38	20 500	20 500
-39		24	33 500	33 500
-45		20	$40\ 000$	40 000
+51		15	58 000	$58\ 000$
-58		10	100 000	100 000

^a Average value for bridge and terminal signals. Uncertainty is ± 1 Hz. Only at -34 °C did the two linewidths differ by more than 1.0 Hz (bridge -41, terminal -36 Hz). ^b Below -17 °C this is the width of the single *trans*-absorption. Above -17 °C this is the width of the only signal in the carbon equation. bonyl region. • Assuming intrinsic linewidths in the absence of exchange to be 2.0 Hz, these rate contants reproduce the observed linewidths within ± 0.5 Hz. • Too broad to measure. ^e Rates estimated from an Arrhenius plot of the other data.

midway between static carbonyl signals of the cisisomer. At -73 °C, the averaged *trans*-signal was at $242 \cdot 2$ p.p.m., while bridge and terminal signals of the cis-isomer appeared at 272.9 and 211.0 p.p.m. This leads us to suggest that both bridge-terminal and cis-trans-isomerization occur rapidly at room tem-

* We verified that 0.08M-Cr(acac)₃ does not affect carbonyl linewidths at -62 °C.

† Line-shape calculations were made with program DNMR3 written by D. A. Kleier and G. Binsch, Quantum Chemistry Program Exchange, Indiana University, 1969. We are grateful to Drs. F. A. L. Anet and W. Larson for helpful discussion concerning these calculations. \ddagger From -72 to -34 °C, trans: cis = 0.25:1, within experi-

mental error estimated at ± 0.03 .

perature, because, if there were only separate bridgeterminal exchange for the cis- and trans-isomers (without cis-trans-isomerization), one would expect two peaks in the high-temperature limit. Our interpretation of the low-temperature spectrum differs from that of the earlier one¹ only in that we do not believe the lowtemperature limit is reached at -85 °C. The observed spectrum at this temperature corresponds to an intermediate rate of *trans*-isomer bridge-terminal exchange whereby the signal is so broad that nothing is seen.

The cyclopentadienyl absorptions for the cis- and trans-isomers at -73 °C were 88.6 and 89.9 p.p.m., respectively. These coalesced below -44 °C and gave a single sharp peak at 89.0 p.p.m. at +60 °C.

Rates of cis-trans-isomerization and bridge-terminal exchange were determined by fitting measured carbonyl linewidths * to a series of theoretical linewidths corresponding to particular rate constants † (Table 3). Because spectra span only the region where bridgeterminal exchange of the trans-isomer is very rapid, only one averaged chemical shift was considered for this isomer. In equation (3), (A) and (B) correspond

to bridge and terminal carbonyl groups of the cisisomer and (C) corresponds to those of the trans-isomer. Attempts to match linewidths at low temperature, with k_2 equal to zero, were not successful. Allowing k_1 and k_2 to vary, and using the measured ratio of cis- and trans-isomers to determine k_{-1} , ‡ a unique fit was obtained below -17 °C where there are two observed linewidths to fit with two rate constants. The values of k_1 and k_2 (Table 3) seem close enough to being equal to indicate essentially free rotation interconverting all three of the staggered non-bridged species in equation (2). Reproducing one linewidth with two rate constants at high temperature did not yield a unique solution, but the low-temperature fit seemed to justify assuming equal values of k_1 and k_2 . With this assumption, the high-temperature fit was unique also. Simulated spectra using the rate constants of Table 3 are shown in Figure 3. An Arrhenius plot of the experimental rate constants

TABLE 4 ¹³C Chemical shifts ^a for complex (II) tl°C CO Solvent cn

Solvene	40	00	vP.
C ₆ H ₅ Me	+37	$212 \cdot 8$	88·2
C ₆ H ₅ Me	-10	215.5	89.1
C ₆ H ₅ Me	47	$219 \cdot 2$	90 ·3
CH,Čl,	+34	216.9	89.4
CH ₂ Cl ₂	-42	$222 \cdot 6$	90.8
	•,•	.1	1 1

" With tms as zero, positive shifts are downfield.

was linear and yielded an activation energy of 49.0 ± 4 kJ mol⁻¹ (11.7 \pm 1 kcal mol⁻¹), as compared to 16.7 \pm 1.6 kcal mol⁻¹ calculated from cis-trans-isomerization followed by ¹H n.m.r. spectroscopy.¹⁰ Significant deviations from a linear Arrhenius plot occurred only at our lowest temperature, -70 °C, where the calculated rate constants were too large. This could be due to breakdown of the assumption of infinitely rapid bridgeterminal exchange of the trans-isomer and general broadening of all lines in the spectrum, including solvent, at this low temperature.

Other Complexes.-For complex (II) there was a single sharp peak in the carbonyl region and one in the cp region (Table 4). Both had significantly temperaturedependent chemical shifts, consistent with the rapidly averaging set of cis- and trans-bridged and non-bridged isomers believed to be present in solution.^{5,10} The mixed complex (III) gave a single carbonyl n.m.r. absorption at 237.0 p.p.m. at +35 °C, and at 238.1p.p.m. at -62 °C in toluene, indicating rapid bridgeterminal exchange throughout this temperature range. Only one isomer has been detected in solutions of

complex (III),¹¹ but this does not preclude intermediacy of the other isomer in bridge-terminal exchange.

We thank the National Science Foundation and the Public Health Service for support.

[4/034 Received, 8th January, 1974]

 $^{10}\,$ J. G. Bullitt, F. A. Cotton, and T. J. Marks, Inorg. Chem., 1972, 11, 671; the authors state that their value of $E_{\rm a}$ may be too Iarge. ¹¹ P. McArdle and A. R. Manning, J. Chem. Soc. (A), 1971, 717.