Crystal and Molecular Structure of Tetramethylammonium Carbido-hexadecacarbonylhexaferrate(2-), $\left[\mathrm{Me}_{4} \mathrm{~N}_{2}\left[\mathrm{Fe}_{6}(\mathrm{CO})_{16} \mathrm{C}\right]\right.$, a Hexanuclear Iron Cluster Complex with an Encapsulated Six-co-ordinate Carbon Atom

By Melvyn Rowen Churchill,* Department of Chemistry, University of Illinois at Chicago Circle, Chicago, Illinois 60680, U.S.A.
John Wormald, Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138, U.S.A.

Abstract

The title compound crystallizes in the centrosymmetric orthorhombic space group Pnma. with $a=10.098(15)$. $b=18.788(20), c=36.712(36) \AA$, and $Z=8$. The structure was solved by packing considerations and was refined to $R 11.9 \%$ for the 1584 independent nonzero reflections. The asymmetric unit consists of two half-anions of $\left[\mathrm{Fe}_{6}(\mathrm{CO})_{16} \mathrm{C}\right]^{2-}$ (the remaining halves being generated by crystallographic mirror planes) and two $\left[\mathrm{Me}_{4} \mathrm{~N}\right]+$ cations. The $\left[\mathrm{Fe}_{6}(\mathrm{CO})_{16} \mathrm{C}^{2-}\right.$ anion has 13 terminal carbonyl ligands [two per iron atom, except for $\mathrm{Fe}(4)$ which bears three], and 3 ' semi-bridging ' carbonyls. Nonbridged Fe-Fe bonds range from $2 \cdot 646(10)$ to $2 \cdot 743$ (10) \AA, bridged $\mathrm{Fe}-\mathrm{Fe}$ bonds from $2.553(10)$ to $2.632(10) \AA$. The encapsulated carbido-carbon atom is octahedrally co-ordinated to six iron atoms, with individual $\mathrm{Fe}-\mathrm{C}$ distances from 1.805 (38) to 1.968 (38) A .

The reduction of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ in tetrahydrofuran with such mononuclear carbonyl anions as $\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]^{-}$, followed by acidification, gives rise ${ }^{1,2}$ to the hexanuclear hydridocarbonyl complex $\mathrm{H}_{2} \mathrm{Ru}_{6}(\mathrm{CO})_{18}$ [equation (1)]. The

reaction of $\mathrm{Fe}(\mathrm{CO})_{5}$ with $\left[\mathrm{Mn}(\mathrm{CO})_{5}\right]^{-}$, however, proceeds by a different course, yielding ${ }^{3}$ the species $\left[\mathrm{Fe}_{6}(\mathrm{CO})_{11^{-}}\right.$ C] ${ }^{2-}$ [equation (2)]. Recent work has shown ${ }^{4}$ that

acidification of $\left[\mathrm{Fe}_{6}(\mathrm{CO})_{16} \mathrm{C}\right]^{2-}$ yields the known pentanuclear cluster complex ${ }^{5} \mathrm{Fe}_{5}(\mathrm{CO})_{15} \mathrm{C}$ rather than the expected hydrido-species, $\mathrm{H}_{2} \mathrm{Fe}_{6}(\mathrm{CO})_{16} \mathrm{C}$.

We now report the results of a single-crystal X-ray diffraction study of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]_{2}\left[\mathrm{Fe}_{6}(\mathrm{CO})_{16} \mathrm{C}\right]$. A preliminary account of this work has appeared previously. ${ }^{3}$

EXPERIMENTAL

Crystal Data.- $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{Fe}_{6} \mathrm{~N}_{2} \mathrm{O}_{16}, \quad M=943.556$, Orthorhombic, $a=10.098(15), \quad b=18.788(20), \quad c=36.712(36)$ $\AA, U=6965 \cdot 0 \AA^{3}, D_{\mathrm{m}}=1 \cdot 82(2)$ (by flotation), $Z=8$, $D_{\mathrm{c}}=1.799$. Space group Pnma ($D_{2 h}^{16}$, No. 62). Mo- K_{α} radiation, $\lambda=0.7107 \AA, \mu\left(\right.$ Mo- $\left.K_{\alpha}\right)=24.38 \mathrm{~cm}^{-1}$.

Collection and Processing of Data.-Two crystals were used in the course of data collection. Crystal (A) $(0.20 \times$
$0.60 \times 0.06 \mathrm{~mm}$ relative to $\vec{a}, \vec{b}, \vec{c} ;$ volume 7.2×10^{-6}
${ }^{1}$ M. R. Churchill, J. Wormald, J. Knight, and M. J. Mays, Chem. Comm., 1970, 458.
${ }^{2}$ M. R. Churchill and J. Wormald, J. Amer. Chem. Soc., 1971, 93, 5670.
${ }^{3}$ M. R. Churchill, J. Wormald, J. Knight, and M. J. Mays, J. Amer. Chem. Soc., 1971, 93, 3073.
$\left.\mathrm{cm}^{3}\right)$ was mounted along a, while crystal $(B)(0.26 \times 0.86 \times$ 0.12 mm relative to $\vec{a}, \vec{b}, \vec{c}$; volume $22.4 \times 10^{-6} \mathrm{~cm}^{3}$) was mounted on its b axis.

Intensity data were collected with a 0.01°-incrementing Supper-Pace Buerger automated diffractometer using equi-inclination Weissenberg geometry and a stationarybackground, ω-scan, stationary-background counting sequence, as described previously. ${ }^{6}$ The angle scanned here was chosen as $\omega(h k l)=[1 \cdot 4+0 \cdot 7 / L(h k l)]^{\circ}$.

Intensity data to $\sin \theta 0.36$ were collected; of 3151 reflections in levels $0-6 k l$ collected from crystal (A), 2108 were $<3 \sigma$ above background and were rejected; of 3849 reflections in levels $h 0-18 l$ collected from crystal $(B), 2318$ were rejected. Data were corrected for Lorentz and polarization effects and absorption corrections were applied (using the Gaussian quadrature numerical integration method of Burnham ${ }^{7}$). Resulting transmission factors were in the ranges $0.348-0.872$ [crystal (A)] and $0.529-0.750$ [crystal (B)].

Data were merged to a common scale by a least-squares process, ${ }^{8}$ the R-factor for scaling being 6.74% (based on F^{2}). The final data set consisted of 1584 independent non-zero reflections.

The compound is unstable in air ($c a .10 \%$ decomposition in $2-3$ days as a solid) and crystals were sealed into Lindemann capillaries under nitrogen. The crystals were far from ideal for X-ray diffraction, being thin fragile plates with rather high mosaicity. Crystals decomposed slowly in the Mo X-ray beam; this process was accelerated by exposing the crystals to $\mathrm{Cu}-K_{\alpha}$ radiation. (Note

4 R. P. Stewart, U. Anders, and W. A. G. Graham, J. Organometallic Chem., 1971, 32, C49
${ }_{5}$ E. H. Braye, L. F. Dahl, W. Hübel, and D. L. Wampler, J. Amer. Chem. Soc., 1962, 84, 4633 .
${ }^{6}$ M. R. Churchill and J. P. Fennessey, Inovg. Chem., 1968, 7, 1123.
${ }_{7}$ C. W. Burnham, Amer. Mineral., 1966, 51, 159.
${ }^{8}$ A. D. Rae, Acta Cryst., 1965, 19, 683.
that no decomposition correction per se was applied; this error is taken up in scaling together the separate Weissenberg levels, vide supva.) The worst problem, however, was the very small proportion of reflections which gave a statistically significant intensity.

Solution and Refinement of the Structure.-Data were placed on an approximately absolute scale by means of a Wilson plot. ${ }^{9}$ This, and all subsequent calculations were carried out on an IBM 360/65 computer at Harvard University using the CRYM system of crystallographic routines

Table 1
Atomic co-ordinates and thermal parameters
(a) Positional and isotropic thermal parameters

Atom	x	y	z	B / \AA^{2}
(i) Anion (A)				
$\mathrm{Fe}(1)$	0.26911(60)	0.14922(27)	$0 \cdot 13163(16)$	
$\mathrm{Fe}(2)$	$0 \cdot 27183(87)$	1/4	$0.07877(25)$	
$\mathrm{Fe}(3)$	$0 \cdot 45745(88)$	1/4	$0 \cdot 12825(28)$	
$\mathrm{Fe}(4)$	$0 \cdot 27249(92)$	1/4	$0 \cdot 18306(24)$	
$\mathrm{Fe}(5)$	$0 \cdot 08728(92)$	1/4	$0 \cdot 13063(30)$	
$\mathrm{O}(1)$	$0.0038(31)$	$0 \cdot 0964(17)$	0.1267(9)	8.5(9)
$\mathrm{O}(2)$	$0 \cdot 3789(31)$	$0.0564(18)$	$0 \cdot 0767(10)$	7•6(9)
$\mathrm{O}(3)$	$0 \cdot 3537(33)$	0.0461 (19)	$0 \cdot 1851$ (11)	8.2(9)
$\mathrm{O}(4)$	$0 \cdot 1945(34)$	$0 \cdot 1491$ (18)	$0.0258(11)$	9.8(10)
$\mathrm{O}(5)$	$0.5452(50)$	1/4	$0.0509(14)$	6.8(12)
O (6)	$0 \cdot 6384(36)$	0.1342(20)	$0 \cdot 1367(11)$	$8 \cdot 7$ (10)
$\mathrm{O}(7)$	$0.5133(86)$	1/4	$0.2117(23)$	19.6(29)
$\mathrm{O}(8)$	0.1530(45)	0.1442(25)	$0 \cdot 2301$ (14)	11.8(14)
$\mathrm{O}(9)$	$-0 \cdot 1255(64)$	1/4	$0 \cdot 1881(20)$	14.1(21)
$\mathrm{O}(10)$	$-0.0946(41)$	1/4	$0 \cdot 0761(12)$	$6 \cdot 8(10)$
$\mathrm{C}(1)$	0.0951 (43)	0.1346(22)	$0 \cdot 1291(12)$	$4 \cdot 8(10)$
C(2)	$0 \cdot 3188(47)$	$0 \cdot 0934(25)$	$0 \cdot 0946$ (15)	6.3(12)
C(3)	$0 \cdot 3129(48)$	$0.0921(26)$	$0 \cdot 1645(15)$	6.3(12)
C(4)	$0 \cdot 2228(42)$	0.1881(21)	$0 \cdot 0506(13)$	6.8(11)
C(5)	$0 \cdot 4603$ (74)	1/4	$0 \cdot 0648(20)$	5.3(18)
C(6)	$0.5703(41)$	0.1827(23)	$0 \cdot 1328(12)$	4.5(10)
C(7)	$0 \cdot 4142(108)$	1/4	$0 \cdot 1976$ (31)	15.8(32)
C(8)	$0 \cdot 2117(49)$	0.1795(26)	$0 \cdot 2105(15)$	6.4(12)
C(9)	$-0.0478(85)$	1/4	$0 \cdot 1702(25)$	9•7(23)
C(10)	-0.0035(57)	1/4	$0.0909(17)$	$5 \cdot 0(13)$
$\mathrm{C}(11)$	0.2690(42)	1/4	0-1323(12)	0.9(9)
(ii) Anion (B)				
$\mathrm{Fe}(1)$	0.22882(60)	$0 \cdot 14944$ (27)	0.62676(17)	
$\mathrm{Fe}(2)$	$0 \cdot 38182(82)$	1/4	0.59595 (25)	
$\mathrm{Fe}(3)$	$0 \cdot 13491$ (87)	1/4	$0.58088(25)$	
$\mathrm{Fe}(4)$	$0 \cdot 06947$ (89)	1/4	0.65308(25)	
$\mathrm{Fe}(\mathbf{5})$	$0 \cdot 32554(91)$	1/4	$0 \cdot 66860(26)$	
$\mathrm{O}(1)$	$0 \cdot 3560$ (33)	$0.0918(18)$	$0 \cdot 6926(11)$	7•7(9)
O(2)	$0.3713(34)$	$0.0477(21)$	$0 \cdot 5812(11)$	8.0(15)
$\mathrm{O}(3)$	-0.0021(31)	$0 \cdot 0601(16)$	$0 \cdot 6278(9)$	6.5(12)
$\mathrm{O}(4)$	0.5832(38)	0-1477(21)	$0.5759(12)$	11.9(11)
$\mathrm{O}(5)$	$0.3143(57)$	1/4	$0.5172(19)$	12.5(17)
$\mathrm{O}(6)$	$-0.0012(36)$	$0 \cdot 1381$ (19)	$0.5444(11)$	11.0(11)
$\mathrm{O}(7)$	$-0.1721(49)$	1/4	$0 \cdot 6104(14)$	9•3(13)
$\mathrm{O}(8)$	-0.0073(35)	$0 \cdot 1454(19)$	$0 \cdot 7061(11)$	$8 \cdot 7(10)$
$\mathrm{O}(9)$	$0 \cdot 2796(48)$	1/4	$0.7488(17)$	8.2(13)
$\mathrm{O}(10)$	$0 \cdot 6040$ (41)	1/4	$0 \cdot 6744(12)$	$5 \cdot 0(10)$
$\mathrm{C}(1)$	$0.3149(56)$	0.1320(31)	$0 \cdot 6884(18)$	$8 \cdot 1$ (16)
C(2)	$0 \cdot 3102(52)$	$0.0903(28)$	$0.5968(16)$	$7 \cdot 7(10)$
$\mathrm{C}(3)$	$0.0960(48)$	$0.0937(25)$	$0.6278(14)$	$8 \cdot 8(10)$
C(4)	$0 \cdot 4926$ (55)	0-1866(26)	$0.5854(16)$	9.3(15)
C(5)	0.2975 (69)	1/4	$0.5495(23)$	$7 \cdot 8(19)$
C(6)	$0.0614(47)$	$0 \cdot 1849(24)$	$0.5589(14)$	7.5(12)
C(7)	-0.0644(58)	1/4	$0 \cdot 6307(17)$	$5 \cdot 4(14)$
$\mathrm{C}(8)$	$0.0264(48)$	0.1825(26)	$0.6823(15)$	6.4(12)
$\mathrm{C}(9)$	$0 \cdot 2961$ (73)	$1 / 4$	$0.7131(24)$	$7 \cdot 6$ (19)
$\mathrm{C}(10)$	$0 \cdot 4877(51)$	1/4	$0 \cdot 6689(15)$	1.9(11)
$\mathrm{C}(11)$	$0 \cdot 2250(45)$	1/4	$0 \cdot 6279(13)$	1.3(9)
(iii) The cations				
$\mathrm{N}(1)$	$0 \cdot 8013(37)$	-0.0146(20)	$0.2055(11)$	$6.5(10)$
C (1N)	$0.6603(51)$	$0.0163(27)$	$0.2121(15)$	$7 \cdot 4(14)$
$\mathrm{C}(2 \mathrm{~N})$	0.9042 (71)	$0.0599(37)$	0.2085(20)	$12.7(22)$
$\mathrm{C}(3 \mathrm{~N})$	$0 \cdot 8124(65)$	$-0.0466(35)$	0.1642(21)	10.9(19)
$\mathrm{C}(4 \mathrm{~N})$	$0 \cdot 8325(51)$	-0.0808(25)	0.2313(15)	7-2(14)
$\mathrm{N}(2)$	$0.7421(38)$	-0.0432(22)	0.5390(12)	8.4(11)

Table 1 (Continued)
(b) Anisotropic thermal parameters * $\left(\times 10^{4}\right)$ for the iron atoms

(written under the direction of Dr. R. E. Marsh at the California Institute of Technology.)

The use of Sayre's equation (for the 262 reflections with $E \geqslant \mathbf{1} \cdot 2$) led to an electron-density map suggesting a pair of octahedra sharing a vertex at ($1 / 4,1 / 4,1 / 8$) and interrelated by reflection across $y=1 / 4$; this ' pseudosolution' was rejected. A 'sharpened' Patterson map showed peaks about the origin consistent with an octahedron in which the C_{4} axes lay along (100), (010), and (001); the same pattern recurred about $0,1 / 2,1 / 4$ (corresponding to the vectors $1 / 2+2 x, 1 / 2,2 z)$. There were more complex patterns, apparently of general peaks, about ($1 / 2,0,1 / 4$) and ($1 / 2,1 / 2,1 / 4$). The Patterson map thus led to the location of an octahedron of iron atoms, centered on $x=1 / 4$ and $z=1 / 8$, but with y undetermined.

The structure was finally solved by a consideration of intermolecular packing and symmetry. The unit cell contained eight hexanuclear anions and sixteen $\mathrm{Me}_{4} \mathrm{~N}^{+}$ cations, and had approximate dimensions $10 \times 19 \times 37 \AA$. Since a Howells-Phillips-Rogers plot ${ }^{10}$ was equivocal both space groups $P n_{1} a$ and $P n m a$ were considered. Three possibilities presented themselves.
(1) Using space group $P n 2_{1} a$, one Fe_{6} cluster could arbitrarily be centred at $y=0$. Symmetry would place the four related molecules at ($1 / 4,0,1 / 8$), ($1 / 4,1 / 2,5 / 8$), $(3 / 4,1 / 2,7 / 8)$, and $(3 / 4,0,3 / 8)$. (The choice of $x=1 / 4$ and $z=1 / 8$ is dictated by the necessity of keeping the centres of the anions as far apart as possible; it is also consistent with the results from the Patterson map.) Maintaining a $9 \AA$ separation in the y-direction, a second cluster can be introduced into the asymmetric unit at ($1 / 4,1 / 2,1 / 8$) with symmetry relations to ($1 / 4,0,5 / 8$), ($3 / 4,0,7 / 8$), and ($3 / 4,1 / 2,3 / 8$).
(2) Using the same primary disposition in the centrosymmetric space group Pnma, the mirror plane at $y=1 / 4$ automatically generates the second set from the first, and the asymmetric unit contains only one Fe_{6} cluster.
${ }^{2}$ A. J. C. Wilson, Nature, 1942, 150, 152.
${ }^{10}$ E. R. Howells, D. C. Phillips, and D. Rogers, Acta Cryst., 1950, 3, 210.
(3) Again using space group Pnma, the Fe_{6} clusters are bisected at their equatorial belts by the mirror planes at $y=1 / 4$ and $3 / 4$. In this case, the asymmetric unit would consist of two half-octahedra.

Possibility (2) could be excluded immediately, since the mirror plane reproduced not only the stereochemistry but also the orientation of the cluster. Combined with the symmetry planes parallel to $(x y)$ and $(y z)$ in the cluster itself, this generated such planes at $x=1 / 2$ and $z=1 / 4$ and $3 / 4$, producing systematic weaknesses, not validated by the experimental data. This provided the vital clue, that the degeneracy must be broken by changing the orientation of the second cluster. The Patterson map had rather suggested the same orientation for both, since there was not a complete second set of peaks about the origin.

The (B) cluster was introduced at ($1 / 4,1 / 4,5 / 8$), but with its C_{4} axes directed along 101, y, and 101 . The asymmetric unit thus consisted of cluster (A): $\mathrm{Fe}(1), \mathrm{Fe}(2)^{*}$, $\mathrm{Fe}(3)^{*}, \mathrm{Fe}(4)^{*}$, and $\mathrm{Fe}(5)^{*}$; cluster (B$): \mathrm{Fe}(\mathbf{1}), \mathrm{Fe}(2)^{*}$, $\mathrm{Fe}(3)^{*}, \mathrm{Fe}(4)^{*}$, and $\mathrm{Fe}(5)^{*}$, where all atoms marked with an asterisk lay in the special position $4 c$ (symmetry C_{s} or m) of space group Pnma; these were given fixed population factors of $1 / 2$. With $B 3 \cdot 24 \AA^{2}$ for each iron atom, as suggested by the Wilson plot, a structure-factor calculation gave $R 51 \cdot 0 \%$, with no reflections systematically calculating as $F_{\mathrm{c}} 0$. Two cycles of least-squares refinement of the iron atom co-ordinates merely rotated the (B) cluster about its vertical axis by some 13° and improved R to 40.4%. An observed Fourier map revealed the positions of all the lighter atoms of the $\left[\mathrm{Fe}_{6}(\mathrm{CO})_{16} \mathrm{C}\right]^{2-}$ anions.

Each cluster has ten independent carbonyl groups, of which four are in the $4 c$ special position and six are sym-metry-duplicated by the mirror plane. The carbidocarbon atom was immediately discernible at the centre of the cluster. The tetramethylammonium cations each occupied general positions, thus producing the required sixteen in the unit cell. The carbon atoms of one could not be located.

Full-matrix least-squares refinement of atomic coordinates, isotropic thermal parameters, and the overall scale factor reduced R to 12.9% in four cycles. The y co-ordinates of atoms in the special position were not, of course, refined.

Finally, the iron atoms were given anisotropic thermal parameters in Pnma, the reflection data being too sparse to justify anisotropic refinement of the lighter atoms. Convergence was achieved in two cycles at $R 11.9 \%$. The anisotropic thermal parameters of atoms in the special position were constrained by $\beta_{12}=\beta_{23}=0$. There was no evidence of excessive amplitude in the y direction. These iron atoms are therefore required to lie in the special position and the centrosymmetric space group is established. Final suggested shifts were $<0 \cdot 1 \quad \sigma$. Final positional and thermal parameters are collected in Table 1.**

Hamilton R factor ratio tests justify the anisotropic refinement of the iron atoms at the 90% confidence level. The scattering curve for iron was corrected for anomalous dispersion throughout $\left(\Delta f^{\prime}=-0.4 \mathrm{e}, \Delta f^{\prime \prime}=+1.0 \mathrm{e}\right)$. A final difference-Fourier showed no features $>1 \cdot 1 e^{\AA-3}$. Despite repeated efforts, the carbon atoms of the second cation were not located, nor were the methyl hydrogen

* Observed and calculated structure factor amplitudes are listed in Supplementary Publication No. SUP 21108 (4 pp.). For details see Notice to Authors No. 7 in J.C.S. Dalton, 1973, Index issue (items less than 10 pp . are supplied as full size copies).
atoms of the first. The data are obviously not as good as might be desired but the principal features of the compound are nevertheless established.

RESULTS AND DISCUSSION

The complex crystallizes in space group Pnma, which has eight equipoints. The asymmetric unit contains two independent tetramethylammonium cations and two half-clusters of iron atoms with their carbonyl ligands, crystallographically independent of each other.

Figure I Partial unit cell contents viewed down b. Dashed circles indicate approximate radii of disordered $\left[\mathrm{Me}_{4} \mathrm{~N}\right]+$ ions

The half-clusters border on the mirror plane at $y=1 / 4$ of the space group, in such a way that this symmetry operation generates the remaining half of each of two octahedral clusters, with their equatorial belts in the plane. The unit cell and that part of its contents lying between $y=0$ and $1 / 2$ are shown in Figure 1.

The clusters are differently oriented with respect to the a and c axes. The first cluster (A) is centred on $(0 \cdot 27,1 / 4,0 \cdot 13)$ and the second (B) on ($0 \cdot 23,1 / 4,0 \cdot 63$). The carbon atoms of one of the tetramethylammonium ions were disordered and could not be located.

The two clusters are closely similar; their dimensions are given together in Tables 2 and 3 and mean values are quoted in all discussions. The poor quality of the reflection data has made atomic co-ordinates and hence geometrical data subject to large σ. A clear picture of
the stereochemistry nevertheless emerges and is represented in Figure 2 which gives a general view of an $\left[\mathrm{Fe}_{6}(\mathrm{CO})_{16} \mathrm{C}\right]^{2-}$ anion. The mirror plane includes $\mathrm{Fe}(2)-$ (5) and $\mathrm{C}(11)$, as well as the carbonyl groups $\mathrm{CO}(5)$,

Table 2
Bond lengths (\AA)
(a) In the anions

Atoms	Anion (A)	Anion (B)	Mean *
(i) Iron-iron bonds			
$\mathrm{Fe}(1)-\mathrm{Fe}(2)$	2.706(9)	2.688(9)	2.697 ± 0.009
$\mathrm{Fe}(1)-\mathrm{Fe}(3)$	2.682(9)	$2 \cdot 695(9)$	2.688 ± 0.009
$\mathrm{Fe}(1)-\mathrm{Fe}(4)$	$2 \cdot 669(9)$	$2 \cdot 654(9)$	$2 \cdot 661 \pm 0.009$
$\mathrm{Fe}(1)-\mathrm{Fe}(5)$	$2 \cdot 632(10)$	$2 \cdot 621$ (9)	2.626 ± 0.009
$\mathrm{Fe}(2)-\mathrm{Fe}(3)$	$2 \cdot 609(10)$	$2.553(10)$	2.581 ± 0.028
$\mathrm{Fe}(3)-\mathrm{Fe}(4)$	$2 \cdot 743(10)$	$2 \cdot 729(10)$	2.736 ± 0.010
$\mathrm{Fe}(4)-\mathrm{Fe}(5)$	$2.682(11)$	2.646(10)	2.664 ± 0.018
$\mathrm{Fe}(5)-\mathrm{Fe}(2)$	2.662(11)	2.725(10)	2.693 ± 0.032

(ii) $\mathrm{Fe}-\mathrm{C}$ Bonds in semi-bridging CO groups

$\mathrm{Fe}(1)-\mathrm{C}(1)$	$1.780(43)$	$1 \cdot 791(60)$	$1 \cdot 785 \pm 0.051$
$\mathrm{Fe}(5)-\mathrm{C}(1)$	$2 \cdot 163(43)$	$2 \cdot 213(60)$	$2 \cdot 188 \pm 0.051$
$\mathrm{Fe}(2)-\mathrm{C}(5)$	$1.969(60)$	$1.905(63)$	1.937 ± 0.061
$\mathrm{Fe}(3)-\mathrm{C}(5)$	$2 \cdot 326(61)$	$2.005(63)$	$2 \cdot 165 \pm 0.161$

(iii) $\mathrm{Fe}-\mathrm{C}$ Bonds in terminal CO groups

$\mathrm{Fe}(1)-\mathrm{C}(2)$	$1.786(50)$	$1.767(55)$
$\mathrm{Fe}(1)-\mathrm{C}(3)$	$1.670(50)$	$1.695(48)$
$\mathrm{Fe}(2)-\mathrm{C}(4)$	$1.630(43)$	$1.676(54)$
$\mathrm{Fe}(3)-\mathrm{C}(6)$	$1.706(44)$	$1.640(48)$
$\mathrm{Fe}(4)-\mathrm{C}(7)$	$1.527(91)$	$1.581(49)$
$\mathrm{Fe}(4)-\mathrm{C}(8)$	$1.769(51)$	$1.714(51)$
$\mathrm{Fe}(5)-\mathrm{C}(9)$	$1.992(72)$	$1.657(66)$
$\mathrm{Fe}(5)-\mathrm{C}(10)$	$1.721(49)$	$1.636(43)$
	Mean	1.698 ± 0.101

(iv) $\mathrm{C}-\mathrm{O}$ Bonds in bridging groups

$\mathrm{C}(1)-\mathrm{O}(1)$	$1 \cdot 170(53)$	$1.235(69)$	1.202 ± 0.061
$\mathrm{C}(5)-\mathrm{O}(5)$	$0.997(72)$	$1.195(81)$	1.097 ± 0.099

(v) C-O Bonds in terminal groups

$\mathrm{C}(2)-\mathrm{O}(2)$	1-131(61)	$1 \cdot 158(66)$
$\mathrm{C}(3)-\mathrm{O}(3)$	$1 \cdot 218(61)$	$1 \cdot 173(57)$
$\mathrm{C}(4)-\mathrm{O}(4)$	1.201(56)	$1 \cdot 219(67)$
$\mathrm{C}(6)-\mathrm{O}(6)$	$1 \cdot 149(57)$	$1 \cdot 205(60)$
$\mathrm{C}(7)-\mathrm{O}(7)$	1-125(114)	$1 \cdot 317(64)$
C(8)-O(8)	$1 \cdot 142(69)$	$1 \cdot 165(63)$
$\mathrm{C}(9)-\mathrm{O}(9)$	1.021(91)	1-320(79)
$\mathrm{C}(10)-\mathrm{O}(111)$	$1.068(59)$	1-191(54)
	Mean	1.175 ± 0.080

(vi) $\mathrm{Fe}-\mathrm{C}$ distances to the carbido-carbon atom

$\mathrm{Fe}(1)-\mathrm{C}(11)$	$1.888(35)$	$1.884(38)$	1.886 ± 0.037
$\mathrm{Fe}(2)-\mathrm{C}(11)$	$1.963(36)$	$1.968(38)$	1.965 ± 0.037
$\mathrm{Fe}(3)-\mathrm{C}(11)$	$1.907(36)$	$1.949(38)$	1.928 ± 0.037
$\mathrm{Fe}(4)-\mathrm{C}(11)$	$1.862(36)$	$1.821(38)$	1.841 ± 0.037
$\mathrm{Fe}(5)-\mathrm{C}(11)$	$1.834(36)$	$1.805(38)$	1.820 ± 0.037

(b) In the cations

Atoms

$\mathrm{N}(1)-\mathrm{C}(1 \mathrm{~N})$	$1.554(65)$
$\mathrm{N}(1)-\mathrm{C}(2 \mathrm{~N})$	$1.744(81)$
$\mathrm{N}(1)-\mathrm{C}(3 \mathrm{~N})$	$1.632(78)$
$\mathrm{N}(1)-\mathrm{C}(4 \mathrm{~N})$	$1.590(64)$
	Mean 1.630

* The σ associated with a mean value is given in the form + X.XXX \AA and is the larger of (i) the mean of the individual σ values of the two (or more) independent values or (ii) the internal σ calculated by the expression σ (mean $)=\left[\Sigma\left(\chi_{i}-\bar{\chi}\right)^{2}\right]$ $N]^{1 / 2}$, where χ_{i} is the i th value and $\bar{\chi}$ is the mean of N equivalent values.
$\mathrm{CO}(7), \mathrm{CO}(9)$, and $\mathrm{CO}(10)$. Atoms related by the mirror plane to those in the original asymmetric unit are marked with a prime.

Table 3
Bond angles $\left({ }^{\circ}\right)$
(a) In the anions
$\left.\begin{array}{cccc}\text { Atoms } & \begin{array}{c}\text { Angle (A) } \\ \text { (i) }\end{array} & \begin{array}{c}\text { Angle (B) }\end{array} & \text { Mean } \\ \text { Within the } \mathrm{Fe}_{6} \text { clusters, triangular faces }\end{array}\right]$
$88 \cdot 7 \pm 0.3$
$90 \cdot 4+0.3$
$90 \cdot 2 \pm 0.3$
$89 \cdot 1$ 士 $0 \cdot 4$
$89 \cdot 5 \pm 0 \cdot 3$
$91 \cdot 8 \pm 0 \cdot 3$
89.9 ± 0.3
87.7 ± 0.6
91.5 ± 0.3
90.4 ± 0.3
$180 \cdot 0 \pm 1 \cdot 1$
$175.8 \pm 2 \cdot 2$
173.5 ± 1.2

[^0]| Table 3 (Continued) | | | |
| :---: | :---: | :---: | :---: |
| Atoms | Angle (A) | Angle (B) | Mean |
| (v) Interligand angles | | | |
| $\mathrm{C}(1)-\mathrm{Fe}(1)-\mathrm{C}(2)$ | 98.5(2.1) | $100 \cdot 9(2 \cdot 6)$ | $99 \cdot 7 \pm 2 \cdot 3$ |
| $\mathrm{C}(1)-\mathrm{Fe}(1)-\mathrm{C}(3)$ | 101.5(2.2) | $104 \cdot 7(2 \cdot 5)$ | 103.1 亡 $2 \cdot 3$ |
| $\mathrm{C}(2)-\mathrm{Fe}(1)-\mathrm{C}(3)$ | $95 \cdot 8(2 \cdot 4)$ | $89 \cdot 7(2 \cdot 4)$ | $92 \cdot 7$ 土 3•1 |
| $\mathrm{C}(4)-\mathrm{Fe}(2)-\mathrm{C}\left(4^{\prime}\right)$ | $90 \cdot 8(2 \cdot 6)$ | $90 \cdot 3(2 \cdot 5)$ | $90 \cdot 5 \pm 2 \cdot 6$ |
| $\mathrm{C}(4)-\mathrm{Fe}(2)-\mathrm{C}(5)$ | $97 \cdot 4(2 \cdot 4)$ | $95 \cdot 2(2 \cdot 7)$ | $96 \cdot 3 \pm 2 \cdot 6$ |
| $\mathrm{C}(5)-\mathrm{Fe}(3)-\mathrm{C}(6)$ | 95-2(2.1) | $95 \cdot 0(2 \cdot 5)$ | $95 \cdot 1 \pm 2 \cdot 3$ |
| $\mathrm{C}(6)-\mathrm{Fe}(3)-\mathrm{C}\left(6^{\prime}\right)$ | $95 \cdot 3(2 \cdot 1)$ | $96 \cdot 1(2 \cdot 6)$ | $95 \cdot 7 \pm 2 \cdot 3$ |
| $\mathrm{C}(7)-\mathrm{Fe}(4)-\mathrm{C}(8)$ | $97 \cdot 3(3 \cdot 8)$ | $96 \cdot 2(2 \cdot 5)$ | $96 \cdot 7 \pm 3 \cdot 1$ |
| $\mathrm{C}(8)-\mathrm{Fe}(4)-\mathrm{C}\left(8^{\prime}\right)$ | $96.5(2 \cdot 2)$ | $95 \cdot 1(2 \cdot 4)$ | $95 \cdot 8 \pm 2 \cdot 3$ |
| $\mathrm{C}(1)-\mathrm{Fe}(5)-\mathrm{C}(9)$ | $92 \cdot 5(2 \cdot 4)$ | $89 \cdot 7(2 \cdot 8)$ | $91 \cdot 1 \pm 2 \cdot 6$ |
| $\mathrm{C}(1)-\mathrm{Fe}(5)-\mathrm{C}(10)$ | $89 \cdot 9(2 \cdot 0)$ | $92 \cdot 8(2 \cdot 2)$ | $91.4 \pm 2 \cdot 1$ |
| $\mathrm{C}(9)-\mathrm{Fe}(5)-\mathrm{C}(10)$ | 104.7(2.7) | $100 \cdot 0(2 \cdot 8)$ | 102.4 ± 2.8 |
| (vi) Angles in bridging CO groups | | | |
| $\mathrm{Fe}(1)-\mathrm{C}(1)-\mathrm{O}(1)$ | $151 \cdot 0(3 \cdot 7)$ | 152.6(4.9) | $151 \cdot 8 \pm 4 \cdot 3$ |
| $\mathrm{Fe}(5)-\mathrm{C}(1)-\mathrm{O}(1)$ | 125.8(3.3) | $126 \cdot 2(4 \cdot 2)$ | $126 \cdot 0 \pm 3 \cdot 8$ |
| $\mathrm{Fe}(1)-\mathrm{C}(1)-\mathrm{Fe}(5)$ | $83 \cdot 2(2 \cdot 1)$ | $81 \cdot 0(2 \cdot 3)$ | $82.1 \pm 2 \cdot 2$ |
| $\mathrm{Fe}(2)-\mathrm{C}(5)-\mathrm{O}(5)$ | 164-2(5.7) | $145 \cdot 3(5 \cdot 3)$ | 154.7 ± 9.6 |
| $\mathrm{Fe}(3)-\mathrm{C}(5)-\mathrm{O}(5)$ | $121 \cdot 5(5 \cdot 0)$ | $133 \cdot 2(5 \cdot 1)$ | 127.2 ± 5.7 |
| $\mathrm{Fe}(2)-\mathrm{C}(5)-\mathrm{Fe}(3)$ | $74 \cdot 3(4 \cdot 1)$ | $81 \cdot 5(4 \cdot 3)$ | $77 \cdot 9 \pm 4 \cdot 2$ |
| (vii) Angles in terminal CO groups | | | |
| $\mathrm{Fe}(1)-\mathrm{C}(2)-\mathrm{O}(2)$ | 161-9(4.4) | $171 \cdot 0(4 \cdot 9)$ | |
| $\mathrm{Fe}(1)-\mathrm{C}(3)-\mathrm{O}(3)$ | 171.9(4.4) | 174.2(4.3) | |
| $\mathrm{Fe}(2)-\mathrm{C}(4)-\mathrm{O}(4)$ | $169.9(4 \cdot 0)$ | $171 \cdot 4(4 \cdot 8)$ | |
| $\mathrm{Fe}(3)-\mathrm{C}(6)-\mathrm{O}(6)$ | $174 \cdot 8(4 \cdot 1)$ | $174 \cdot 9(4 \cdot 3)$ | |
| $\mathrm{Fe}(4)-\mathrm{C}(7)-\mathrm{O}(7)$ | 173.2(8.8) | 176.9(4.3) | |
| $\mathrm{Fe}(4)-\mathrm{C}(8)-\mathrm{O}(8)$ | $165 \cdot 8(4 \cdot 8)$ | 169.0(4.6) | |
| $\mathrm{Fe}(5)-\mathrm{C}(9)-\mathrm{O}(9)$ | $173 \cdot 1(6.9)$ | $176 \cdot 9(5 \cdot 5)$ | |
| $\mathrm{Fe}(5)-\mathrm{C}(10)-\mathrm{O}(10)$ | $152 \cdot 8(4 \cdot 5)$ | $170 \cdot 6(4 \cdot 3)$ | |
| Mean $170 \cdot 5 \pm 5 \cdot 9$ | | | |
| (b) In the cations | | | |
| Atoms | Angle | | |
| $\mathrm{C}(1 \mathrm{~N})-\mathrm{N}(1)-\mathrm{C}(2 \mathrm{~N})$ | 103.7(3.7) | | |
| $\mathrm{C}(1 \mathrm{~N})-\mathrm{N}(1)-\mathrm{C}(3 \mathrm{~N})$ | 110.1(3.8) | | |
| $\mathrm{C}(1 \mathrm{~N})-\mathrm{N}(1)-\mathrm{C}(4 \mathrm{~N})$ | 112.3(3.6) | | |
| $\mathrm{C}(2 \mathrm{~N})-\mathrm{N}(1)-\mathrm{C}(3 \mathrm{~N})$ | $108 \cdot 2(4 \cdot 0)$ | | |
| $\mathrm{C}(2 \mathrm{~N})-\mathrm{N}(1)-\mathrm{C}(4 \mathrm{~N})$ | $117 \cdot 9(3 \cdot 8)$ | | |
| $\mathrm{C}(3 \mathrm{~N})-\mathrm{N}(1)-\mathrm{C}(4 \mathrm{~N})$ | $104 \cdot 6(3 \cdot 7)$ | | |
| | Mean 109.5 | $4 \cdot 8$ | |

Figure 2 A general view of the $\left[\mathrm{Fe}_{6}(\mathrm{CO})_{16} \mathrm{C}\right]^{2-}$ anion. Carbon atoms in the carbonyl groups are numbered as their attached oxygen atoms. The central carbido-carbonyl atom is labelled C(11)

There are several interesting features in the dianion. The octahedral iron framework is very nearly regular.

[^1]Close to its geometrical centre lies a carbido-carbon atom, bonded to all six metal atoms. One iron atom, $\mathrm{Fe}(4)$, carries three terminal CO ligands, while all the others carry two. There are also three semi-bridging carbonyl groups (the term ' semi-bridging' will be discussed later), spanning $\mathrm{Fe}(1)-\mathrm{Fe}(5), \mathrm{Fe}(5)-\mathrm{Fe}\left(\mathbf{1}^{\prime}\right)$, and $\mathrm{Fe}(2)-\mathrm{Fe}(3)$. The first two of these are symmetryrelated.

The mean lengths of nonbridged $\mathrm{Fe}-\mathrm{Fe}$ bonds range from 2.661 ± 0.009 to $2.736 \pm 0.010 \AA$, those of semibridged $\mathrm{Fe}-\mathrm{Fe}$ bonds from $\mathrm{Fe}(2)-\mathrm{Fe}(3) \quad 2.581 \pm 0.028$ to $\mathrm{Fe}(1)-\mathrm{Fe}(5) \quad 2 \cdot 626 \pm 0.009 \AA$. Semi-bridging therefore seems to induce a significant contraction. This is also observed ${ }^{11}$ in $\left[\mathrm{Fe}_{4}(\mathrm{CO})_{13}\right]^{2-}$ where the mean comparable lengths are 2.58 ± 0.01 and $2.50 \pm 0.01 \AA$.

The thirteen terminal carbonyl groups, of which six are three symmetry-related pairs, seem essentially normal, with mean dimensions $\mathrm{Fe}-\mathrm{C} 1.698 \pm 0 \cdot 101$, $\mathrm{C}-\mathrm{O}=1 \cdot 175 \pm 0.080 \AA$, and $\mathrm{Fe}-\mathrm{C}-\mathrm{O} \quad 170.5 \pm 5.9^{\circ}$. Comparable values in $\left[\mathrm{Fe}_{4}(\mathrm{CO})_{13}\right]^{2-}$ are 1.72 ± 0.05, $1 \cdot 18 \pm 0.04 \AA$, and $174 \cdot 4 \pm 3.8^{\circ}$.

The remaining carbonyl groups have been called 'semi-bridging' because of their geometries. $\mathrm{CO}(1)$ [and thus $\left.\mathrm{CO}\left(1^{\prime}\right)\right]$ is mainly bonded to $\mathrm{Fe}\left(\mathbf{l}^{1}\left[\mathrm{viz} . \mathrm{Fe}\left(\mathbf{1}^{\prime}\right)\right]\right.$, with $\mathrm{Fe}(1)-\mathrm{C}(1) 1.785 \pm 0.051 \AA . \mathrm{CO}(5)$ is mainly bonded to $\mathrm{Fe}(2)$, with $\mathrm{Fe}(2)-\mathrm{C}(5) \quad 1.937 \pm 0.061 \AA$. The bonds of lower order are $\mathrm{Fe}(5)-\mathrm{C}(1) 2 \cdot 188 \pm 0.051$ and $\mathrm{Fe}(3)-\mathrm{C}(5) 2.165 \pm 0.161 \AA$. Discrepancies between the two clusters spoil the accuracy for $\mathrm{CO}(5)$. The relevant bond angles are: $\mathrm{Fe}(1)-\mathrm{C}(1)-\mathrm{O}(1) 151 \cdot 8 \pm$ 4.3° and $\mathrm{Fe}(2)-\mathrm{C}(5)-\mathrm{C}(5) 154 \cdot 7 \pm 9.6^{\circ} ; \mathrm{Fe}(5)-\mathrm{C}(1)-\mathrm{O}(1)$ $126.0 \pm 3.8^{\circ}$ and $\mathrm{Fe}(3)-\mathrm{C}(5)-\mathrm{O}(5) \quad 127.2 \pm 5 \cdot 7^{\circ}$. Clearly, these are no normal terminal carbonyl groups, nor yet the fully bridging kind found in e.g. $\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)_{2^{-}}$ $\mathrm{Fe}_{4}(\mathrm{CO})_{10}$ in which $\mathrm{Fe}-\mathrm{C} \quad 1.923(6), \mathrm{Fe}^{\prime}-\mathrm{C} \quad 1.938(6)$, $\mathrm{C}-\mathrm{O} \quad 1 \cdot 175(8) \AA, \mathrm{Fe}-\mathrm{C}-\mathrm{O} \quad 141 \cdot 0(0 \cdot 5)$, and $\mathrm{Fe}^{\prime}-\mathrm{C}-\mathrm{O}$ $138 \cdot 0(0 \cdot 6)^{\circ} .^{12}$ Evidence has been accumulated for a number of iron carbonyl species in which the geometry of semi-bridging CO groups ranges from one extreme to the other. Thus distances in the black isomer of $\left(\mathrm{Ph}_{2} \mathrm{C}_{2}\right)_{2} \mathrm{Fe}_{3}\left(\mathrm{CO}_{8}\right.$ are ${ }^{13} \mathrm{Fe}-\mathrm{Cl} 1.84$ and $1 \cdot 77, \mathrm{Fe}^{\prime}-\mathrm{Cl} 1.99$ and $1.99 \AA$. In the two isomers of $\mathrm{Fe}_{3}(\mathrm{CO})_{11}\left(\mathrm{PPh}_{3}\right)$ distances are ${ }^{14} \mathrm{Fe}-\mathrm{C} 1.83,1.89$, and $\mathrm{Fe}-\mathrm{C}^{\prime} 2 \cdot 08,1.94$; $\mathrm{Fe}-\mathrm{C} 1.74,1 \cdot 79$, and $\mathrm{Fe}^{\prime}-\mathrm{C} 1.98,1.94 \AA$. These bridging CO groups are only slightly asymmetric, but in $\left[\mathrm{Fe}_{4}-\right.$ $\left.(\mathrm{CO})_{13}\right]^{2-}$ the asymmetry is more pronounced ${ }^{11}$ with $\mathrm{Fe}-\mathrm{C} 1.82 \pm 0.02, \mathrm{Fe}^{\prime}-\mathrm{C} 2.28 \pm 0.04 \AA$, and $\mathrm{Fe}-\mathrm{C}-\mathrm{O}$ $154 \cdot 6 \pm 2 \cdot 7^{\circ}$. In $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ it is similar, with $\mathrm{Fe}-\mathrm{C}$ 2.08(2), 2.18(2) and $\mathrm{Fe}^{\prime}-\mathrm{C} 2 \cdot 24(2), 2 \cdot 36(2) \AA .{ }^{15}$ Epstein and Dahl ${ }^{16}$ find $\mathrm{Fe}-\mathrm{C} 1.741(20)$ and $\mathrm{Fe}^{\prime}-\mathrm{C} 2 \cdot 388(20) \AA$ in $\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{PhC}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}_{2} \mathrm{Ph}\right)_{2} \mathrm{Fe}(\mathrm{CO})$, with $\mathrm{Fe}-\mathrm{C}-\mathrm{O}$ $166 \cdot 4(1 \cdot 7)^{\circ}$. Finally, in $\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{HOC}_{2} \mathrm{Me}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{3}$ (ref. 17) and $\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CHCPh}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{3}$ (ref. 18) ${ }^{14}$ D. J. Dahmand and R. A. Jacobson, Chem. Comm., 1966, 496.
${ }^{15}$ C. H. Wei and L. F. Dahl, J. Amer. Chem. Soc., 1969, 91, 1351.
${ }_{16}$ E. F. Epstein and L. F. Dahl, J. Amer. Chem. Soc., 1970, 92, 493.

17 A. A. Hock and O. S. Mills, Acta Cryst., I961, 14, 139.
18 M. van Meerssche and P. Piret, Acta Cryst., 1967, 23, 119.
$\mathrm{Fe}-\mathrm{C}$ is $1.73-1.74$ and $\mathrm{Fe}^{\prime}-\mathrm{C} 2.48-2.49 \AA$, with the CO groups virtually linear.

Table 4
Non-bonding contacts (\AA) within the crystal
(a) Within the anions, to $2.8 \AA$

Atoms	(A)	(B)	Mean
$\mathrm{Fe}(3) \cdots \mathrm{C}(7)$	$2.582(77)$	$2.718(50)$	2.650 ± 0.068

(b) Between atoms of the asymmetric unit, to $3.5 \AA$ Atoms
$\mathrm{O}(3) \mathrm{A} \cdots \mathrm{C}(1 \mathrm{~N}) \quad 3 \cdot 30$
(c) Between symmetry-related asymmetric units (not $x, \frac{1}{2}-y$, z), to $3.5 \AA$

$\mathrm{O}(1) \mathrm{A} \cdots \mathrm{O}\left({ }^{(1)} \mathrm{B}\right.$	$3 \cdot 41$	$\mathrm{O}(2) \mathrm{A} \cdots \mathrm{C}\left(\mathbf{I}^{1}\right) \mathrm{B}$	$3 \cdot 39$
$\mathrm{O}(5) \mathrm{B} \cdots \mathrm{O}\left(9^{\text {II }}\right.$) B	$3 \cdot 37$	$\mathrm{O}(7) \mathrm{B} \cdots \mathrm{C}\left(8^{\mathrm{V}}\right) \mathrm{B}$	$3 \cdot 35$
$\mathrm{O}(5) \mathrm{B} \cdots \mathrm{O}\left(9^{\text {III }}\right.$) B	$3 \cdot 37$	$\mathrm{O}(1) \mathrm{A} \cdots \cdot \mathrm{C}\left(2 \mathrm{~N}^{\mathbf{V I I}}\right)$	$3 \cdot 24$
$\mathrm{O}(3) \mathrm{A} \cdots \mathrm{O}\left(3^{\text {I }}\right) \mathrm{B}$	$3 \cdot 35$	$\mathrm{O}(8) \mathrm{A} \cdots \mathrm{C}\left(1 \mathrm{~N}^{\mathrm{VI}}\right)$	$3 \cdot 20$
$\mathrm{O}(7) \mathrm{B} \cdots \mathrm{O}\left(9^{\mathbf{V}}\right)^{\text {B }}$	3.35	$\mathrm{O}(8) \mathrm{A} \cdots \mathrm{C}\left(2 \mathrm{~N}^{\text {VII }}\right)$	3.07
$\mathrm{O}(6) \mathrm{B} \cdots \mathrm{O}\left(7^{\text {IV }}\right) \mathrm{B}$	3.33	$\mathrm{C}(4 \mathrm{~N}) \cdots \mathrm{O}\left(3 \mathrm{~B}^{\text {VIII }}\right.$)	$3 \cdot 46$
$\mathrm{O}(6) \mathrm{B} \cdots \mathrm{O}\left(7^{\mathrm{V}}\right) \mathrm{B}$	3.33	$\mathrm{C}(4 \mathrm{~N}) \cdots \mathrm{O}\left(7^{\text {IX }}\right) \mathrm{B}$	$3 \cdot 44$
$\mathrm{O}(3) \mathrm{A} \cdots \mathrm{O}\left(\mathbf{1}^{1}\right) \mathrm{B}$	$3 \cdot 26$	$\mathrm{C}(4 \mathrm{~N}) \cdots \mathrm{O}\left({ }^{\mathrm{x}}\right.$) B	$3 \cdot 4$
$\mathrm{O}(6) \mathrm{B} \cdots \mathrm{O}(9 I 1) \mathrm{B}$	$3 \cdot 26$	$\mathrm{C}(3 \mathrm{~N}) \cdots \mathrm{O}\left(1^{\mathrm{I}}\right) \mathrm{B}$	$3 \cdot 41$
$\mathrm{O}(6 \mathrm{~B}) \cdots \mathrm{O}\left(9^{\text {III }}\right) \mathrm{B}$	$3 \cdot 26$	$\mathrm{C}(\mathrm{IN}) \cdots \mathrm{O}\left(8^{\mathrm{I}}\right) \mathrm{B}$	$3 \cdot 41$
$\mathrm{O}(2) \mathrm{A} \cdots \mathrm{O}\left(\mathbf{1}^{\mathrm{I}}\right) \mathrm{B}$	3.14	$\mathrm{C}(4 \mathrm{~N}) \cdots \mathrm{O}\left(3^{\mathrm{x}}\right) \mathrm{B}$	$3 \cdot 39$
$\mathrm{O}(2) \mathrm{A} \cdots \mathrm{C}\left(2^{\mathrm{I}}\right.$) B	3-43	$\mathrm{C}(2) \mathrm{A} \cdots \mathrm{O}\left(2^{\text {I }}\right.$) B	$3 \cdot 30$
$\mathrm{O}(3) \mathrm{A} \cdots \mathrm{C}\left(1^{1}\right) \mathrm{B}$	3-40	$\mathrm{C}(4 \mathrm{~N}) \cdots \mathrm{O}\left(8^{\mathrm{x}}\right) \mathrm{B}$	$3 \cdot 14$

Roman numeral superscripts denote the following equivalent positions:

```
    I \(\frac{1}{2}-x,-y, \frac{1}{2}+z\)
    II \(\frac{1}{2}-x,-y, \frac{1}{2}\)
III \(-1+x\), \(\frac{1}{2}-y, z\)
IV \(-\frac{1}{2}+x, y, 1 \frac{1}{2}-z\)
    \(\mathrm{V}-\frac{2}{2}+x, \frac{1}{2}-y, 1 \frac{1}{2}-z\)
```

 VI \(\frac{1}{2}+x, y, \frac{1}{2}-z\)
 VII $\frac{1}{2}+x, y, \frac{1}{2}+x, y, z$
VIII $1 \frac{1}{2}-x,-y, \frac{1}{2}+z$
IX $1-x, \frac{1}{2}+y, 1-z=z$

The distortion of the Fe_{6} skeleton, although slight, does seem related to the presence of the semi-bridging CO groups. The carbido-carbon atom, C(11), lies just off-centre in the octahedron. It does, of course,
lie in the mirror plane and is thus equidistant from $\mathrm{Fe}(1)$ and $\mathrm{Fe}\left(\mathrm{l}^{\prime}\right)$; within that plane, bonding distances to the other iron atoms decrease in the order $\mathrm{Fe}(2)>$ $\mathrm{Fe}(3)>\mathrm{Fe}(4)>\mathrm{Fe}(5)$, with $\mathrm{Fe}(\mathrm{l})$ taking a median position (see Table 2). The straight-through angles of Table 3 (section A.iii) also illustrate the deviations.

Only one of the tetramethylammonium ions was completely located. It has the expected dimensions, with mean $\mathrm{N}-\mathrm{C} 1.630 \pm 0.071 \AA$, and mean $\mathrm{C}-\mathrm{N}-\mathrm{C} 109.5 \pm$ $4 \cdot 8^{\circ}$. Only the nitrogen atom of the other cation could be located; the carbon atoms are presumably subject to spherical disorder about the nitrogen atom.

Intermolecular distances in the crystal are consistent with normal van der Waals packing radii. They are listed in Table 4. The failure to find the methyl carbons of the second tetramethylammonium cation renders the list incomplete. The packing is, however, very regular and no abnormally short contacts are likely to have been missed. The approximate expected carbon positions about $N(2)$ are shown by dashed circles in Figure 1, which also shows the unit cell contents about the $y=1 / 4$ mirror plane; the crystallographic centre of symmetry at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ will reproduce the same contents about $y=3 / 4$, in such a way that a cluster of type (A) will lie above one of type (B) and vice versa. Tetramethylammonium ions are regularly interspersed close to the $y=0$ and $y=1 / 2$ planes. The co-ordination pattern is thus 6:12.

We thank Drs. M. J. Mays and J. Knight for providing crystals of the complex, and the National Science Foundation for a grant (to M. R. C.).

[^0]: $98 \cdot 2 \pm 3 \cdot 6$
 144.9 ± 1.7
 144.9 ± 1.7
 97.8 ± 1.7
 $55 \cdot 6 \pm 1.7$
 83.4 ± 1.7
 $83 \cdot 4 \div 1 \cdot 7$
 $101 \cdot 3 \pm 1.7$
 $162.0+1.7$
 128.5 ± 1.7
 158.7 ± 5.2
 $158.7=5 \cdot 2$
 103.5 ± 3.7
 $\begin{array}{r}87.0 \text { 亡 } 1.7 \\ 133.6 \\ \hline\end{array}$
 133.62 .8
 $\begin{array}{rl}88 \cdot 2 & 1 \cdot 7 \\ 129.0 & 2.2\end{array}$
 $129.0 \pm 2 \cdot 2$
 107.6 ± 3.7
 $107.6=3.0$
 99.0 ± 2.2
 $55 \cdot 0 \pm 4 \cdot 1$
 $145 \cdot 2 \pm 4 \cdot 0$
 $145 \cdot 2 \pm 4 \cdot 0$
 93.6 ± 1.7
 $47 \cdot 1$ I 1.7
 $138 \cdot 4 \pm 1.7$
 87.0 ± 1.6
 $123 \cdot 2+1 \cdot 6$
 114.5 ± 1.6
 107.0 ± 2.6
 $70.2+2.6$
 $70 \cdot 2 \pm 2 \cdot 6$
 157.9 ± 3
 82.2 ± 1.7
 131.3 ± 1.8
 $131 \cdot 3 \pm 1.8$
 98.0 ± 1.7
 $119 \cdot 2 \pm 2 \cdot 2$
 $178 \cdot 5 \pm 2.2$
 89.7 ± 2.3
 $112 \cdot 4 \pm 1.6$
 77.5 ± 1.6
 168.0 ± 1.7
 168.0 ± 1.7
 42.4 ± 1.4
 $42 \cdot 4 \pm 1.4$
 $88 \cdot 5 \pm 1.4$
 $88 \cdot 4 \pm 1.4$

[^1]: ${ }^{11}$ R. J. Doedens and L. F. Dahl, J. Amer. Chem. Soc., 1966, 88, 4847.

 12 M. R. Churchill and P. H. Bird, Inorg. Chem., 1969, 8, 1941.
 ${ }_{13}$ R. P. Dodge and V. Schomaker, J. Organometallic Chem., 1965, 3, 274.

