Infrared and Raman Studies of Halogenotrimethylplatinum(IV) Complexes and Related Compounds

By Kenneth R. Seddon *† and Clive E. E. Upton, Donnan Laboratories, The University, Liverpool, L69 3BX

I.r. and Raman spectra of a series of platinum(IV) complexes of general type $[R_2(R')XPtL_2]$ (R = Me or CD₃; R' = Me, CD_a, CF_a, MeCO, PhCH₂, or CH₂:CH·CH₂; X = CI, Br, or I; L = phosphine or arsine) are reported. and bands due to v(Pt-CH₃) and v(Pt-X) have been unambiguously assigned. Group trends are correlated to changes in X and L, and the effect of progressive deuteriation has been observed. Scrambling of Me and CD_3 groups has been conveniently followed by identifying Pt-C stretching frequencies in the Raman spectra.

HALOGENOTRIMETHYLPLATINUM(IV) complexes have been the subject of many recent publications,¹⁻⁸ since the discovery of a convenient preparative route involving oxidative addition of alkyl halides to platinum(II) com-

† Present address: St. Catherine's College, Oxford OX1 3UJ. ¹ J. D. Ruddick and B. L. Shaw, J. Chem. Soc. (A), 1969,

2964.

² M. P. Brown, R. J. Puddephatt, and C. E. E. Upton, J. Organometallic Chem., 1973, 49, C61. ³ M. P. Brown, R. J. Puddephatt, and C. E. E. Upton, J.C.S.

Dalton, in the press. ⁴ M. P. Brown, R. J. Puddephatt, C. E. E. Upton, and S. W.

Lavington, J.C.S. Dalton, 1974, 1613.

plexes.^{9,10} Although the chemistry of these (and related) complexes, of general type $[R_2(R')XPtL_2]$ (R = Me or CD_3 ; R' = Me, CD_3 , CF_3 , MeCO, $PhCH_2$, or CH_2 : CH· CH_2 ; X = Cl, Br, or I; L = phosphine or arsine), has been extensively studied, very little spectroscopic data have been reported for them. ¹H N.m.r.

⁵ H. C. Clark and L. E. Manzer, Inorg. Chem., 1973, 12, 362.

 H. C. Clark and J. D. Ruddick, Inorg. Chem., 1970, 9, 2556.
 T. G. Appleton, H. C. Clark, and L. E. Manzer, J. Organo-U. C. Martin, C. Clark, and L. E. Manzer, J. Organo-U. C. Martin, M. C. Clark, and L. E. Manzer, J. Organo-U. C. Martin, M. C. Clark, and L. E. Manzer, J. Organo-U. C. Martin, M. C. Clark, and L. E. Manzer, J. Organo-U. C. Martin, M. C. Clark, and L. E. Manzer, J. Organo-U. C. Martin, M. C. Clark, and L. E. Manzer, J. Organo-U. C. Martin, M. C. Clark, and L. E. Manzer, J. Organo-U. C. Martin, M. C. Clark, and L. E. Manzer, J. Organo-U. C. Martin, M. C. Clark, and L. E. Manzer, J. Organo-U. C. Martin, M. C. Clark, and L. E. Manzer, J. Organo-Martin, M. C. Martin, M. Martin, M. Martin, M. C. Martin, M. Martin, M. C. Martin, M. M metallic Chem., 1974, 65, 275. ⁸ J. R. Hall and G. A. Swile, J. Organometallic Chem., 1973, 56,

419.

J. D. Ruddick and B. L. Shaw, J. Chem. Soc. (A), 1969, 2801.

¹⁰ J. D. Ruddick and B. L. Shaw, Chem. Comm., 1967, 1135.

studies and dipole-moment measurements established the stereochemistry of the complexes in solution.^{1,3-6,9} I.r. spectra of some of these complexes have been reported,^{1,9} but full spectral assignments have not been made. The region assignable to v(Pt-C) has been identified, but because of the poor resolution and weak intensity of the bands, individual assignments of the bands have not been made. There has been one report of the Raman spectra of $[PtMe_3(I)L_2]$ and $[PtMe_2(CD_3)(I)L_2]$ (L = PMe_2Ph or AsMe₃),⁵ but the results were limited because of the small number of complexes studied. The present work concerns a full Raman and i.r. study of a range of related complexes, and has resulted in unambiguous assignment of the Pt-C and Pt-X stretching frequencies.

RESULTS AND DISCUSSION

The complexes studied are listed in Tables 1 and 2, together with Raman and i.r. assignments of v(Pt-C), v(Pt-X), and other bands of structural significance. The structures of these complexes are known 1,3,4,6,9 and fall into one of two structural types, (I) and (II). Within

these types, the complexes can be arranged in several series to show a variety of trends (e.g. effects of progressive deuteriation, changing halogen, changing the neutral ligand, etc).

Effect of Progressive Deuteriation.—Consider, initially, the series of four complexes [PtMe₃(I)L₂], [PtMe₂(CD₃)- $(I)L_2$, $[PtMe(CD_3)_2(I)L_2]$, and $[Pt(CD_3)_3(I)L_2]$ [L =PMe,Ph). All these have been shown to have structure (I).^{2,3,9} Examination of Table I reveals that, while bands assignable to v(Pt-C) were visible in the i.r. spectra, some were weak and poorly resolved shoulders, some were too weak to be observed, and others were masked by ligand bands. In the Raman spectra, however, the v(Pt-C) bands were all strong and clearly resolved. Thus, we confine our discussion principally to the Raman results, while noting that where the i.r. bands were identified they coincided with the positions of the bands in the Raman spectra.

The spectrum of the complex $[PtMe_3(I)L_2]$ showed three bands at 541, 529, and 519 cm⁻¹; that of $[Pt(CD_3)_3]$ - $(I)L_2$ showed these bands shifted to 502, 488, and 477 cm⁻¹ respectively. The bands gave a $\nu(Pt-CH_3)$: $\nu(\text{Pt-CD}_3)$ ratio of ca. $(18/15)^{\frac{1}{2}}$: 1, showing that the Pt-CH₃ vibrations are not coupled to any great extent

¹¹ T. G. Appleton, H. C. Clark, and L. E. Manzer, Co-ordination

Chem. Rev., 1973, 10, 335.
¹² D. M. Adams, J. Chem. Soc., 1962, 1220.
¹³ F. Basolo and R. G. Pearson, 'Mechanisms of Inorganic Reactions,' 2nd edn., John Wiley, New York, 1967.
¹⁴ D. M. Adams, J. Chatt, J. Gerratt, and A. D. Nestland, J. Chem. Soc. 1064, 724.

Chem. Soc., 1964, 734.

with any other vibrations within the molecule.^{11,12} Examination of the spectra of the specifically deuteriated complexes enabled the higher-frequency bands of the two regions (*i.e.* those at 541 and 502 cm⁻¹) to be positively identified as being due to v(Pt-R') (R' = Me or CD_3 trans to halogen). This band will be referred to as The other two bands in each region (*i.e.* at 529, 519νt. and 488, 477 cm⁻¹) are thus due to $\nu(PtR_2)_{asym}$ and $\nu(PtR_2)_{sym}~(R=Me~or~CD_3~\text{trans}$ to phosphine): these will be referred to as v_a and v_s respectively; v_c refers to v(PtR) (where R is *trans* to phosphine) for complexes of type (II). The ratios $v(Pt-CH_3) : v(Pt-CD_3)$ for another six pairs of complexes $\{e.g. [PtMe_3(Br)L_2] \text{ and } [Pt(CD_3)_2 Me(Br)L_2$ were all approximately constant, lying in the range 1.088 ± 0.008 : 1. For all these complexes, it was found that the highest-frequency band in each region was due to v_t (Table 1). This was also true of the complexes of type (II) (Table 2).

Effect of Change of Halogen.-Comparison of the far-i.r. spectra of the complexes $[PtR_2(R')(I)L_2]$, $[PtR_2(R') (Br)L_2$, and $[PtR_2(R')(Cl)L_2]$ (R = R' = Me, L =PMe₂Ph) enabled unambiguous assignments of v(Pt-X)to be made. Although the Pt-I stretch (132 cm⁻¹) was prominent in both the Raman and i.r. spectra, Pt-Br (168 cm⁻¹) and Pt-Cl (250 cm⁻¹) stretches were hard to distinguish in the Raman. For the full range of complexes studied (Tables 1 and 2), very little change was observed in the positions of v(Pt-X); v(Pt-I) fell in the range 128-132 cm⁻¹, v(Pt-Br) in the range 153-169 cm^{-1} , and v(Pt-Cl) in the range 243-255 cm^{-1} . There are very few data in the literature for the expected region for v(Pt-Br) and v(Pt-I) for Pt^{IV} .¹¹

The change of halogen also had a pronounced effect on v_t . For the above series of complexes it occurred at 541, 558, and 566 cm⁻¹ respectively. This shift is that predicted in accord with the changing trans-influence of the halides, and has also been observed in the spectra of many platinum(II) complexes.¹³⁻¹⁵ The change in halogen also had a smaller effect on the position of v_a and v_s (see Table 1). There has been much discussion recently about the nature of the *cis*-influence of ligands.^{11,16} It appears to be a small effect, which is reported to vary in the same or opposite direction to the trans-influence. The results presented here would indicate that the cisinfluence of the halide ions is in the same direction as their trans-influence. There have been two recent reports that some ligands exert a cis-influence in the opposite direction to their trans-influence.17,18

The same trends were seen for the series of complexes $[PtMe_3(X)L_2]$ (L = AsMe_2Ph). The effect of the cisinfluence was also seen for complexes of type (II) {e.g. $[Pt(COMe)Me_2(X)L_2]$ and $[Pt(CH_2Ph)Me_2(X)L_2]$ (L = PMe₂Ph) (see Table 2)}.

Effect of Change of Neutral Ligand.-Consider the

 J. M. Jenkins and B. L. Shaw, J. Chem. Soc., 1965, 6789.
 F. R. Hartley, Chem. Soc. Rev., 1973, 2, 163.
 B. W. Dale, R. J. Dickinson, and R. V. Parish, J.C.S. Chem. Comm., 1974, 35.

¹⁸ K. R. Dixon, K. C. Moss, and M. A. R. Smith, Inorg. Nuclear Chem. Letters, 1974, 10, 373.

) <i>a</i>	Pt-CH ₃)					ν(Ι	t-cD ₃)						
	Rai	uman			I.r.		l	Ramar	-		I.	ſ	v(F	₹-X)	Other band	s
Complex		4	Va V	±	e7	a d	[±	2	[4	t t	R/	5	Raman	I.r.	Raman	I.r.
[PtMe _a (I)(PMe _a Ph) _a]	541s 52	29s	519s	542vvw	530w (sh)	520m			2		3	2	132s	132m		
[PtMe _a (CD ₃)1(PMe ₃ Ph) ₂] [PtMe(CD ₃) ₂ 1(PMe ₃ Ph) ₂]	540m 540m	30s	518s	*-	529w	518w	500m	489s	477s	502vw (sh)	++	478w	132s 132s	• * 1		
[Pt(CD _s) ₃ 1(PMe ₂ Ph) ₂] [PtMe ₃ (Br)(PMe ₂ Ph) ₂]	558s 53	36s {	527s	554vvw	531w (sh)	526m	502s	488s	477s	501vw (sh)	++	478m	132s 168w	1 68m		
[PtMe(CD ₃),Br(PMe,Ph),] [PtMe_(Cl)(PMe,Ph),]	558s 566m 54	t] د ا	539c	554vvw +	538w (ch)	520m		495s	4 86s		++		168w 251vw	* 950m		
[PtMe(CD ₃) ₂ Cl(PMe ₂ Ph) ₂]	564m	{	5 (-+-	(ITE) MORA	IIIAAA		498s	489s		++	++	251vw	240m		
$[PtMe_3(I)(PMe_3)_2]$	543s	526s,	Ŀ.	540vvw	526vw (sh)	521m							130s	*		
[PtMe ₃ (I)(dppe)] [PtMe ₂ (I)(PMePh_)_]	543s 53	₩ 1	522s	540vvw (sh)	++	+ +							126s	*		
[21217 TATE 4// 4// 5/217 T	545vs, b:		526s	541vvw	++	++							128s	*		
[PtMe _s (I)(AsMe _s Ph) _s]	548s		r	+-	542w (sh)	536m							132s	131m	591w [v(As-Me)]	592m
[PtMe ₂ (CD ₃)I(AsMe ₂ Ph) ₂]	53	39s Į	585s	-	537vw	532w	504m			501 v w			131s	*	594w [v(As-Me)]	592m
[PtMe _a (Br)(AsMe ₂ Ph) ₂]	557m 54	15s	539s	554vvw	542w (sh)	538m							167w	168m	* [v(As-Me)]	590m
[PtMe _s (U)(AsMe ₂ Pb) ₂] [PtMe _s (COMe)Br(PMe ₂ Ph) ₂]	557H 54	13S 25S	537S 518s	ŧ-	545w (sh) 527w (sh)	540m 519m							244vw +	250m 153m	591w [v(As-Me)] 1 669vvw [v(C=0)]	090m 1 669s
[Pt(CD ₃),(COMe)Br(PMe,Ph) ₂]					/			484s	478s		++	478m	·· +	*	1.670 vvw $[\nu(C=0)]$	1 668s
[PtMe _a (COMe)Cl(PMe ₂ Ph) ₂]	52	36s {	521s		529w (sh)	521m							243w	246m	1 648vvw [v(C=O)]	1 643s
[Pt(CD ₃) ₂ (COMe)Cl(PMe ₂ Ph) ₂]	C N	2	-11-			2		484s	478s		++	479w	245w	* 001	† [ν(C=O)]	1642s
[Pt(CD ₃) ₂ (CF ₃)I(PMe ₂ Ph) ₂]	0.0	S	S#10		MIGG	mere		490s	476s		++	478w (sh)	129vw	* 11671		
	þ	ppe =	1,2-Bis-(diphenylphosph	ino)ethane.	w = weal	k, sh = sh	oulder, 1	m = medi	im, s = strong,	and v :	= very.				
	*	Not e:	vamined.	† Band expec	ted but not ol	bserved.	‡ Obscur	ed by lig	and bands							

TABLE I TABLE I Raman and i.r. spectral data (cm⁻¹) for complexes of type (I)

series of complexes $[PtMe_3(I)L_2]$ [L = PMe_2Ph, PMe_3, PMePh₂, 1,2-bis(diphenylphosphino)ethane (dppe), and AsMe₂Ph]. v_t Is virtually constant for this series (see Table 1). However, changes were observed in ν_a and ν_s , both in magnitude and splitting, but comparison of the results is difficult.

observed for the complex $[PtMe_2(CD_3)(I)L_2]$, the band due to $v(Pt-CD_3)_c$ being split.

It is hoped that Raman spectroscopy will prove a useful technique for studying scrambling processes, and will be used to complement n.m.r. studies.

Solution Studies .- Attempts to record Raman spectra

TABLE 2

Raman and i.r. spectral data (cm⁻¹) for complexes of type (II)

		v(Pt-	-CH3)					
	Ram	nan	I.r		$\nu(\text{Pt}-2)$	X)	Ot	her bands
Complex	νt	νc	νt	ν _c	Raman	I.r.	I.r.	Raman
$\begin{array}{l} Pt(CH_2 \cdot CH_2 CH_2 (Br)(PMe_2 Ph)_2] \\ Pt(CH_2 \cdot CH_2 CH_2 (Cl)(PMe_2 Ph)_2] \\ Pt(CH_2 Ph)Me_2 (Br)(PMe_2 Ph)_2] \\ Pt(CH_2 Ph)Me_2 (Cl)(PMe_2 Ph)_2] \end{array}$	554s 554s 551s 556s	528s 526s 521s 523s	551vw 554vw 547w 544w	525m 526m 519m 520m	169vw 253vvw 164vw 254vvw	168m 251m 166m 255m	l 611m 1 611m	1 617m [ν(C=C)] 1 613m [ν(C=C)]

Scrambled Complexes.—Although scrambling reactions have been known for many years, 19, 20 they have only recently been successfully applied to platinum(IV) complexes.^{3,5,7,21} The process under consideration is (1).

$$(I) \xrightarrow{\text{heat}} (I) + (II) \qquad (1)$$

Samples for Raman spectroscopy were obtained by evaporating solutions to dryness. The results are listed in Table 3. Although the spectra were not as well resolved as those for pure complexes, all the bands were

TABLE 3

Raman spectra (cn	n ⁻¹) for scrambled complexes
Complex	$\nu(\text{Pt-C})$
$PtMe(CD_3)_2Cl(PMe_2Ph)_2]$	559m,* 530m, 517m, 490 (sh),* 485s *
$[PtMe(CD_3)_2Br(PMe_2Ph)_2]$	553m,* 527m, 513m, 487 (sh),* 481s *
$[PtMe(CD_3)_2I(PMe_2Ph)_2]$	541m,* 529m, 519m, 501s, 488s,* 477s *
$[PtMe_2(CD_3)I(PMe_2Ph)_2]$	541s, 530s,* 520s,* 502m,* 488m, 477m

* Bands present in unscrambled complex.

still discernible. The interpretation of the spectra of the scrambled complexes $[PtMe(CD_3)_2(Br)L_2]$ and $[PtMe(CD_3)_2(Cl)L_2]$ (L = PMe₂Ph) was straightforward: bands at 527 and 530 cm^{-1} are due to $\nu(\text{Pt-CH}_3)_c$ and

of the complexes in benzene proved unsuccessful. However, weak spectra could be obtained from solutions in chloroform, and these are listed in Table 4; all the bands listed showed depolarization ratios of less than 0.5:1. The positions of v_t were similar to those in the solids, but in solution the symmetric and asymmetric bands, v_a and v_s , for the groups *trans* to the phosphine became degenerate.

EXPERIMENTAL

Preparation of Complexes.--Most of the complexes were prepared by standard literature methods.^{1,3,4,6,9} The following have not previously been reported.

Benzylchlorodimethylbis(dimethylphenylphosphine)platinum(IV), (II). Benzyl chloride (2 cm³) was added to a solution of the complex cis-[PtMe₂(PMe₂Ph)₂] (0.3 g) in diethyl ether (10 cm³). After 2 weeks at room temperature, colourless crystals of the product separated. These were collected by filtration, washed with diethyl ether (20 cm³), and dried in vacuo, yield 0.15 g, m.p. 134-136 °C (decomp.) (Found: C, 47.8; H, 5.50. Calc. for C₂₅H₃₅ClP₂Pt: C, 47.8; H, 5.60%). ¹H N.m.r. spectrum in CDCl₃: Pt-CH₃ (trans to Cl), 7 9.47 (triplet), 3 J(PH) 7.0, 2 J(Pt-CH₃) 73 Hz; Pt-CH₃ (trans to phosphine), 9.68 (triplet), ³ /(PH) 7.5, ² /(Pt-CH₃) 56; P-CH₃, 8.44 (multiplet); CH₂ protons, 7.40 (triplet) and 7.48 (triplet), ³/(PH) 11.0, ²/(PtH) 66.

 $\label{eq:allylchlorodimethylbis} (dimethylphenylphosphine) platinum-$ (IV), (II). This was prepared and purified as above using

TABLE 4

	Raman spectra (cm ⁻¹) fe	or solutions in chl	oroform	
Complex	$\nu(\text{Pt-CH}_3)_t$	$\nu(\mathrm{PtMe}_2)$	$\nu(\text{Pt-CD}_3)_t$	$\nu[\operatorname{Pt}(\operatorname{CD}_3)_2]$
PtMe ₂ (I)(PMe ₂ Ph) ₂]	538m	528s		
$PtMe_2(CD_3)I(PMe_2Ph)_2]$		529s	502m	
$PtMe_{3}(Br)(PMe_{2}Ph)_{2}]$	552m	530s		
$PtMe(CD_3)_2Br(PMe_2Ph)_2]$	554 m			490s
$PtMe_{a}(Cl)(PMe_{2}Ph)_{2}]$	558m	532s		
$PtMe(CD_3)_2Cl(PMe_2Ph)_2]$	559m			491s

bands at 513 and 517 cm⁻¹ are due to ν (Pt-CD₃)_t. However, for the complex $[PtMe(CD_3)_2(I)L_2]$ an extra band at 529 cm⁻¹ was observed. This may be due to solidstate splitting of v(Pt-CH₃)_c. A similar effect was 19 G. Calingaert and H. A. Beatty, J. Amer. Chem. Soc., 1939, **61**, 2748.

cis-[PtMe₂(PMe₂Ph)₂] (0.31 g) and allyl chloride (2 cm³), producing colourless crystals, yield 0.21 g, m.p. 141-143 °C

20 M. L. Delwaulle, M. B. Buisset, and M. Delhave, J. Amer. Chem. Soc., 1952, 74, 5768. ²¹ B. T. Heston and K. J. Timmins, J.C.S. Chem. Comm., 1973,

931.

(decomp.) (Found: C, 43·4; H, 5·55%. Calc. for $C_{21}H_{33}$ -ClP₂Pt: C, 43·6; H, 5·40%). ¹H N.m.r. spectrum in CDCl₃: Pt-CH₃ (trans to Cl), τ 9·57 (triplet), ³*J*(PH) 7·0, ²*J*(Pt-CH₃) 71 Hz; Pt-CH₃ (trans to phosphine), 9·20 (triplet), ³*J*(PH) 7·8, ²*J*(Pt-CH₃) 56; P-CH₃, 8·46 (multiplet); allyl protons, 5·11 and 5·41 (complex).

Acetylbromobis(dimethylphenylphosphine)bis(trideuteriomethyl)platinum(IV), (I). Acetyl bromide (8 µl) and the complex cis-[Pt(CD₃)₂(PMe₂Ph)₂] (0.055 g) in diethyl ether (10 cm³) were allowed to stand for 30 min, whence cream crystals formed. These were collected by filtration, washed with diethyl ether (20 cm³), and dried in vacuo, yield 0.03 g, m.p. 101--105 °C (decomp.). ¹H N.m.r. spectrum in CDCl₃: Pt-acetyl (trans to Br), τ 8.10, ³J(PtH) 14.4 Hz; P-CH₃, (i) 8.43 (doublet), ²J(PH) 9.6, ³J(Pt-CH₃) 14.4, (ii) 8.50 (doublet), ²J(PH) 9.6, ³J(Pt-CH₃) 14.4.

Iodobis(dimethylphenylphosphine)bis(trideuteriomethyl)-(trifluoromethyl)platinum(IV), (I). A solution of the complex cis-[Pt(CD₃)₂(PMe₂Ph)₂] (0.048 g) in liquid trifluoroiodomethane (3 cm³) was allowed to stand for 24 h at room temperature in a sealed tube. The light yellow *crystals* obtained were washed with diethyl ether (20 cm³) and dried Physical Methods and Analyses.—I.r. spectra (4 000—200 cm⁻¹) were recorded on a Perkin-Elmer 577 instrument and the far-i.r. spectra (400—40 cm⁻¹) on a Beckman-R.I.I.C. FS720 interferometer. Raman spectra were recorded on a Spex model 1401 spectrometer using the 632·8 nm line of a He-Ne laser of 70 mW (for powdered samples) or the 488·0 nm line of an Ar⁺ laser at 530 mW (for solutions). ¹H N.m.r. spectra were recorded using a Perkin-Elmer R12B spectrometer. Elemental analyses were carried out by the Alfred Bernhardt Microanalytical Laboratories.

We thank Drs. M. P. Brown and R. J. Puddephatt for their interest in this work, Professor D. A. Long and his staff for the use of Raman facilities at the University of Bradford, the P.C.M.U. at Harwell for measuring the far-i.r. spectra, the S.R.C. for the award of a maintenance grant (to C. E. E. U.), and I.C.I. for the award of a research fellowship (to K. R. S.).

[4/762 Received, 17th April, 1974]