Compounds containing Platinum-Carbon Bonds. Part IV. ${ }^{1}$ Crystal and Molecular Structures of trans- and cis-Dichloro(1,3-diphenylimidazol-idin-2-ylidene)(triethylphosphine)platinum(II) \dagger

By Ljubica Manojlović-Muir * and Kenneth W. Muir, Department of Chemistry, University of Glasgow, Glasgow G12 800
The crystal structures of the trans (I) and cis (II) isomers of $\left[\mathrm{PtCl}_{2}\left\{\mathrm{C}\left(\mathrm{PhNCH}_{2}\right)_{2}\right\}\left(\mathrm{PEt}_{3}\right)\right]$ have been determined by X-ray diffraction methods. The structural models were refined by full-matrix least-squares, both to $R 0.048$ [(I), 2356 and (II), 1822 independent reflections measured on a diffractometer]. Crystal data are: (I), triclinic. space group $P \overline{1}, a=13.961(6), b=11 \cdot 782(4), c=10 \cdot 659(5) A, \alpha=92 \cdot 98(3), \beta=125 \cdot 29(3), \gamma=114.54(3)^{\circ}$, $Z=2$; (II), orthorhombic, space group Pnam, $a=15.991$ (2). $b=8.601$ (2), $c=16.703$ (2) $A, Z=4$.

Crystals of both compounds are built of discrete monomeric molecules, in which the co-ordination around the platinum atom is square planar. In (I) selected bond lengths are: $\mathrm{Pt}-\mathrm{Cl} 2 \cdot 302(10)$, $\mathrm{Pt}-\mathrm{P} 2 \cdot 291$ (4), and $\mathrm{Pt}-\mathrm{C}$ $2.020(16) \mathrm{A}$: in (II) they are $\mathrm{Pt}-\mathrm{Cl}$ (trans to C) $2 \cdot 362(3), \mathrm{Pt}-\mathrm{Cl}$ (trans to P) 2.381(3), $\mathrm{Pt}-\mathrm{P} 2 \cdot 234(3)$, and $\mathrm{Pt}-\mathrm{C} 2.009(13) \AA$. These results indicate that the order of the $\mathrm{Pt}-\mathrm{C}$ bonds is little greater than unity, and that the trans-influence of the carbene ligand is similar to that of phosphine and appreciably greater than that of chlorine.

Structural investigations described in this paper represent part of our continuing study of the relative trans-influence of various carbon-donor ligands in square-planar platinum(II) complexes. ${ }^{1-3}$ In this context, determination of the molecular structures of isomeric compounds, such as the trans (I) and cis (II) isomers of $\left[\mathrm{PtCl}_{2}\left\{\mathrm{C}\left(\mathrm{PhNCH}_{2}\right)_{2}\right\}\left(\mathrm{PEt}_{3}\right)\right]$, is of particular importance, since it permits comparison between corresponding bond lengths in different molecules containing the same metal atom bonded to the same

[^0]set of ligands. Prior to this work cis- and trans$\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$ were the only pair of isomeric platinum(II) complexes for which accurate structural results were available. ${ }^{4}$ A preliminary report on the molecular structures of isomeric bis(phosphine) complexes of platinum(iI) has recently appeared. ${ }^{5}$
The first general synthesis of carbenoid complexes of platinum(II) involved 1,2 -addition of alcohols or amines to the $\mathrm{C}-\mathrm{N}$ bond of an isocyanide complex. ${ }^{6}$ It has been found more recently that bridged binuclear complexes, such as $\left[\left\{\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\right\}_{2}\right]$, react with a variety of electronrich olefins to give carbenoid complexes. 7,8 In view of
${ }^{5}$ A. J. Cheney, W. S. McDonald, K. O'Flynn, B. L. Shaw, and B. L. Turtle, J.C.S. Chem. Comm., 1973, 128.
${ }^{6}$ E. M. Badley, J. Chatt, R. L. Richards, and G. A. Sim, Chem. Comm., 1969, 1322.

7 D. J. Cardin, B. Cetinkaya, M. F. Lappert, Lj. ManojlovićMuir, and K. W. Muir, Chem. Comm., 1971, 400.
${ }^{8}$ B. Cetinkaya, E. Cetinkaya, and M. F. Lappert, J.C.S. Dalton, 1973, 514.
the apparent generality of this reaction it seemed desirable to examine the molecular structure of a typical product, such as (I), by X-ray analysis.

The lemon-yellow crystals of (I) are converted by heating into a white solid (II). The extreme insolubility of (II) in organic solvents made its spectroscopic characterisation difficult. On the basis of chemical analysis and mass spectroscopic data, (II) was formulated as the cis-isomer of (I). ${ }^{7}$ The X-ray diffraction study of (II) has confirmed this formulation.

Preliminary accounts of this work have been published. ${ }^{7,9}$

EXPERIMENTAL

Crystal Data.-(i) trans-[$\left.\mathrm{PtCl}_{2}\left\{\mathrm{C}\left(\mathrm{PhNCH}_{2}\right)_{2}\right\}\left(\mathrm{PEt}_{3}\right)\right]$, (I). $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{PPt}, M=606 \cdot 4$, Triclinic, $a=13.961(6), b=$ $11.782(4), \quad c=10.659(5) \quad \AA, \alpha=92.98(3), \quad \beta=125 \cdot 29(3)$, $\gamma=114.54(3)^{\circ}, \quad U=1196.9 \quad \AA^{3}, \quad D_{\mathrm{c}}=1.682, \quad Z=2$, $F(000)=592$. Space group $P \overline{\mathbf{1}}$. Mo- K_{α} radiation, $\lambda=$ $0.71069 \AA ; \mu\left(\mathrm{Mo}-K_{\alpha}\right)=64.6 \mathrm{~cm}^{-1}$.
(ii) cis- $\left[\mathrm{PtCl}_{2}\left\{\mathrm{C}\left(\mathrm{PhNCH}_{2}\right)_{2}\right\}\left(\mathrm{PEt}_{3}\right)\right]$, (II). Orthorhombic, $a=15.991(2), b=8.601(2), c=16 \cdot 703(2) \AA, U=2297.3 \AA^{3}$, $D_{\mathrm{c}}=1.753, Z=4, F(000)=1184$. Space group Pnam (No. 62, $\left.D_{2 h}^{16}\right)$, equivalent positions: $\pm(x, y, z), \pm\left(x, y, \frac{1}{2}-z\right)$, $\pm\left(\frac{1}{2}+x, \frac{1}{2}-y, z\right), \pm\left(\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}+z\right)$. \quad Mo- K_{α} radiation; $\mu\left(\mathrm{Mo}-K_{\alpha}\right)=67 \cdot 3 \mathrm{~cm}^{-1}$.

Crystallographic Measurements.-(i) Isomer (I). Weissenberg and precession photographs revealed that the crystals belong to the triclinic system. A satisfactory structural model was derived in the space group $P \overline{1}$. The unit cell chosen is a Delaunay cell.

Final values of the cell parameters and the intensities of 3011 independent reflections, with $\theta\left(\mathrm{Mo}-K_{\alpha}\right) \geqslant 22^{\circ}$, were measured on a Hilger and Watts Y290 four-circle diffractometer, by use of techniques described previously. ${ }^{10}$ Integrated intensities, I, and their standard deviations, $\sigma(I)$, were derived from the relationships $I=C-\left(t_{\mathrm{p}} / t_{\mathrm{b}}\right)\left(B_{1}+B_{2}\right)$ and $\sigma^{2}(I)=C+\left(t_{\mathrm{p}} / t_{\mathrm{b}}\right)^{2}\left(B_{1}+B_{2}\right)+(q I)^{2}$, where C is the peak count, B_{1} and B_{2} the background counts, t_{p} the time taken to measure the peak, t_{b} the total time taken to measure the backgrounds, and $q=0.04$. Intensities of 2382 independent reflections, having $I / \sigma(I) \geqslant 3$, were used in the subsequent analysis. Corrections were applied for Lorentz, polarisation, and absorption effects. Transmission factors on $F_{0}{ }^{2}$, calculated by an analytical method, ${ }^{11}$ ranged from 0.30 to 0.64 .
(ii) Isomer (II). Weissenberg and precession photographs indicated orthorhombic mmm Laue symmetry. Systematically absent reflections ($0 k l$ when $k+l$ odd, and $h 0 l$ when h odd) were consistent with the space groups Pna2 (No. 33) and Pnam, the latter being a non-conventional setting of Pnma (No. 62). With $Z=4$, each molecule would be required to have m symmetry if the space group is Pnam.

The intensities of $c a .3300$ independent reflections with $\theta\left(\right.$ Mo- $\left.K_{\alpha}\right) \geqslant 28^{\circ}$ were measured on a Y290 diffractometer. Values of I and $\sigma(I)$ were obtained as before ($q=0.05$), and 1822 reflections, having $I / \sigma(I) \geqslant 3$, were used in the subsequent calculations. Lorentz, polarisation, and ab-
${ }^{9}$ D. J. Cardin, B. Cetinkaya, E. Cetinkaya, M. F. Lappert, Lj. Manojlović-Muir, and K. W. Muir, J. Organometallic Chem., 1972, 44, C59.
${ }^{10} \mathrm{Lj}$. Manojlović-Muir, J. Chem. Soc. (A), 1971, 2796; K. W. Muir, ibid., p. 2663.
${ }_{11}$ J. de Meulenaar and H. Tompa, Acta Cryst., 1965, 19, 1014.
sorption corrections were applie1. Transmission factors ${ }^{11}$ on $F_{0}{ }^{2}$ varied between 0.36 and 0.60 .

Structure Analyses.-For both complexes the positions of the non-hydrogen atoms were initially determined by Patterson and Fourier methods. The refinement of the structural models was by the method of full-matrix leastsquares. The function minimised was Σw^{2}, where $\Delta=\left|\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right|$ and $w=4 F_{0}^{2} / \sigma^{2}\left(F_{0}{ }^{2}\right)$. Atomic scattering factors were taken from ref. 12, except for those of platinum ${ }^{13}$ and hydrogen. ${ }^{14}$ Allowance was made for the anomalous scattering of platinum, chlorine, and phosphorus atoms, using values of Δf^{\prime} and $\Delta f^{\prime \prime}$ from ref. 15.
(i) Isomer (I). With allowance for the scattering of the platinum atom only R was $0 \cdot 27$. Subsequent refinement of the positional and isotropic thermal parameters of all the non-hydrogen atoms led to $R 0 \cdot 13$. Refinement of anisotropic temperature factors for the platinum, chlorine, and phosphorus atoms and also for the atoms of the imidazolidine ring brought R to 0.051 and R^{\prime} to 0.067 . Positions of the non-methyl hydrogen atoms were then derived from those of the heavier atoms, assuming normal bond lengths and valency angles; the scattering of these hydrogen atoms was allowed for in the subsequent calculations, but their positions were not refined. The refinement of 153 atomic parameters and of a scale factor converged at $R 0.048$ and $R^{\prime} 0.065$. The standard deviation of an observation of unit weight was $1 \cdot 6$. Analysis of the variation of mean $w \Delta^{2}$ with $\sin \theta$, and with $\left|F_{\mathrm{o}}\right|$, revealed no systematic trends. In a final-difference synthesis, function values ranged between $\pm \mathbf{1} \cdot 7 \mathrm{e}^{-3}$, the extreme values being associated with the position of the heavy atom; in the final electron-density synthesis the mean and minimum peak heights for carbon atoms were $5 \cdot 3$ and $3 \cdot 1 \mathrm{e}^{\AA} \AA^{-3}$.

Final atomic parameters, and a selection of functions derived from them are presented in Tables 1-3. A view of the molecule is shown in Figure 1.
(ii) Isomer (II). When the platinum scattering only was considered, R was $0 \cdot 29$. Refinement of the coordinates and isotropic temperature factors of the nonhydrogen atoms gave $R 0 \cdot 17$. Allowance for anisotropic vibrations of the platinum, chlorine, and phosphorus atoms reduced R to 0.059 and R^{\prime} to 0.083 . The positions of all hydrogen atoms were then determined from a low-angle difference synthesis, and these atoms were accordingly included in the structure-factor calculations and their positional and isotropic thermal parameters were refined. The refinement finally converged at $R 0.048$ and $R^{\prime} 0.060$; the standard deviation of an observation of unit weight was 1.4. Hence, agreement between observed and calculated structure factors was substantially improved by allowing for the scattering of the hydrogen atoms. Final values of their temperature factors (Table 4), and also the bond lengths and valency angles in which they are involved (Tables 5 and 7), appear physically reasonable if not particularly accurate.

The choice of the centrosymmetric space group Pnam thus led to a satisfactory refinement of a structural model which included the hydrogen atoms. We could find no evidence for any deviation of the molecules from the exact mirror symmetry required of them by the space group

[^1]Pnam and we conclude that such deviations, if they exist, are so slight as to be undetectable given the accuracy of our data. Accordingly, no effort has been made to refine the structure in the alternative space group $P_{n a 2_{1}}$ which imposes no symmetry requirement on the molecules.

Function values in the final difference synthesis vary from $1 \cdot 6$ to $-2 \cdot 2 \mathrm{e}^{-3}$. The weighting scheme employed appeared adequate in view of the lack of systematic variation of mean $w \Delta^{2}$ with $\sin \theta$ or $\left|F_{0}\right|$. A view of the molecule is given in Figure 2; least-squares planes are listed in Table 6.

Table 1
Fractional atomic co-ordinates and vibrational parameters in (I)

	x			
Atom	x	y	z	B / \AA^{2}
Pt	$0 \cdot 37275(7)$	$0 \cdot 16943(6)$	$0 \cdot 13509(9)$	$*$
$\mathrm{Cl}(1)$	$0 \cdot 3231(6)$	$0 \cdot 1608(5)$	$0 \cdot 3084(7)$	$*$
$\mathrm{Cl}(2)$	$0 \cdot 4273(7)$	$0 \cdot 1858(5)$	$-0 \cdot 0317(8)$	$*$
P	$0 \cdot 2869(5)$	$-0 \cdot 0577(4)$	$0 \cdot 0651(6)$	$*$
$\mathrm{~N}(1)$	$0 \cdot 5634(14)$	$0 \cdot 4703(12)$	$0 \cdot 3486(18)$	$*$
$\mathrm{~N}(2)$	$0 \cdot 3824(15)$	$0 \cdot 4254(14)$	$0 \cdot 0996(19)$	$*$
$\mathrm{C}(1)$	$0 \cdot 4423(17)$	$0 \cdot 3684(16)$	$0 \cdot 1973(22)$	$*$
$\mathrm{C}(2)$	$0 \cdot 5819(21)$	$0 \cdot 6050(16)$	$0 \cdot 3538(28)$	$*$
$\mathrm{C}(3)$	$0 \cdot 4662(22)$	$0 \cdot 5769(16)$	$0 \cdot 1776(28)$	$*$
$\mathrm{C}(4)$	$0 \cdot 6597(17)$	$0 \cdot 4554(16)$	$0 \cdot 4810(22)$	$4 \cdot 5(4)$
$\mathrm{C}(5)$	$0 \cdot 7081(20)$	$0 \cdot 3799(18)$	$0 \cdot 4598(25)$	$5 \cdot 6(4)$
$\mathrm{C}(6)$	$0 \cdot 8032(24)$	$0 \cdot 3609(23)$	$0 \cdot 6083(31)$	$7 \cdot 6(6)$
$\mathrm{C}(7)$	$0 \cdot 8503(21)$	$0 \cdot 4233(21)$	$0 \cdot 7601(28)$	$6 \cdot 4(5)$
$\mathrm{C}(8)$	$0 \cdot 8043(21)$	$0 \cdot 4990(20)$	$0 \cdot 7758(27)$	$6 \cdot 4(5)$
$\mathrm{C}(9)$	$0 \cdot 7093(20)$	$0 \cdot 5157(19)$	$0 \cdot 6439(26)$	$5 \cdot 8(4)$
$\mathrm{C}(10)$	$0 \cdot 2513(19)$	$0 \cdot 3548(18)$	$-0 \cdot 0707(24)$	$5 \cdot 3(4)$
$\mathrm{C}(11)$	$0 \cdot 1355(20)$	$0 \cdot 2362(19)$	$-0 \cdot 1102(25)$	$5 \cdot 7(4)$
$\mathrm{C}(12)$	$0 \cdot 0049(23)$	$0 \cdot 1628(22)$	$-0 \cdot 2803(30)$	$7 \cdot 2(5)$
$\mathrm{C}(13)$	$0 \cdot 0036(27)$	$0 \cdot 2171(26)$	$-0 \cdot 3952(34)$	$8 \cdot 4(6)$
$\mathrm{C}(14)$	$0 \cdot 1073(27)$	$0 \cdot 3300(26)$	$-0 \cdot 3546(34)$	$9 \cdot 0(7)$
$\mathrm{C}(15)$	$0 \cdot 2386(23)$	$0 \cdot 4060(21)$	$-0 \cdot 1887(29)$	$7 \cdot 0(5)$
$\mathrm{C}(16)$	$0 \cdot 1106(21)$	$-0 \cdot 1548(20)$	$-0 \cdot 0074(27)$	$6 \cdot 4(5)$
$\mathrm{C}(17)$	$0 \cdot 0087(27)$	$-0 \cdot 1420(26)$	$-0 \cdot 1697(35)$	$9 \cdot 2(7)$
$\mathrm{C}(18)$	$0 \cdot 3909(19)$	$-0 \cdot 0967(18)$	$0 \cdot 2451(24)$	$5 \cdot 4(4)$
$\mathrm{C}(19)$	$0 \cdot 5439(23)$	$-0 \cdot 0290(22)$	$0 \cdot 3252(30)$	$7 \cdot 5(6)$
$\mathrm{C}(20)$	$0 \cdot 2748(19)$	$-0 \cdot 1377(17)$	$-0 \cdot 0978(23)$	$5 \cdot 2(4)$
$\mathrm{C}(21)$	$0 \cdot 1985(21)$	$-0 \cdot 2950(20)$	$-0 \cdot 1649(27)$	$6 \cdot 6(5)$

* These atoms were assigned anisotropic temperature factors of the form $\exp \left[-10^{-4}\left(h^{2} \beta_{11}+k^{2} \beta_{22}+l^{2} \beta_{33}+2 h k \beta_{12}+\right.\right.$ $\left.\left.2 h l \beta_{13}+2 k l \beta_{23}\right)\right]$. Final values of the $\beta_{i j}$ parameters are:

Atom	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Pt	$107(1)$	$78(1)$	$156(1)$	$56(1)$	$84(1)$	$44(1)$
$\mathrm{Cl}(1)$	$232(9)$	$128(6)$	$234(11)$	$101(6)$	$183(9)$	$74(6$
$\mathrm{Cl}(2)$	$300(11)$	$140(6)$	$387(15)$	$138(7)$	$291(12)$	$131(8)$
P	$128(6)$	$78(5)$	$193(10)$	$54(5)$	$102(7)$	$40(6)$
$\mathrm{N}(1)$	$126(20)$	$91(16)$	$184(31)$	$47(16)$	$99(23)$	$60(19)$
$\mathrm{N}(2)$	$156(21)$	$115(18)$	$187(31)$	$85(17)$	$83(23)$	$61(20)$
$\mathrm{C}(1)$	$136(23)$	$107(21)$	$159(34)$	$64(20)$	$113(26)$	$78(24)$
$\mathrm{C}(2)$	$191(31)$	$71(19)$	$287(50)$	$72(21)$	$147(36)$	$46(25)$
$\mathrm{C}(3)$	$203(32)$	$76(19)$	$286(50)$	$76(21)$	$144(36)$	$90(25)$

Table 2
Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ in (I)
(a) Bond lengths

$\mathrm{Pt}-\mathrm{Cl}(1)$	$2 \cdot 311(6)$	$\mathrm{Pt}-\mathrm{Cl}(2)$	2-292(6)
$\mathrm{Pt}-\mathrm{P}$	$2 \cdot 291$ (4)	$\mathrm{Pt}-\mathrm{C}(\mathrm{l})$	$2 \cdot 020$ (16)
$\mathrm{C}(1)-\mathrm{N}(1)$	1.37(2)	$\mathrm{C}(1)-\mathrm{N}(2)$	1.33(2)
$\mathrm{N}(1)-\mathrm{C}(2)$	$1 \cdot 49(2)$	$\mathrm{N}(2)-\mathrm{C}(3)$	$1 \cdot 49$ (2)
$\mathrm{N}(1)-\mathrm{C}(4)$	1-36(2)	$\mathrm{N}(2)-\mathrm{C}(10)$	1-44(2)
$\mathrm{C}(4)-\mathrm{C}(5)$	$1 \cdot 40(3)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1 \cdot 42(3)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1 \cdot 47(3)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.44(3)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1 \cdot 36(3)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1 \cdot 41$ (4)
$\mathrm{C}(7)-\mathrm{C}(8)$	$1 \cdot 35(3)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1 \cdot 29(4)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1 \cdot 37(3)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1 \cdot 42(3)$
$\mathrm{C}(9)-\mathrm{C}(4)$	$1 \cdot 44(3)$	$\mathrm{C}(15)-\mathrm{C}(10)$	$1 \cdot 37(3)$
$\mathrm{P}-\mathrm{C}(16)$	1.83(2)	$\mathrm{C}(16)-\mathrm{C}(17)$	1-55(4)
$\mathrm{P}-\mathrm{C}(18)$	1-85(2)	$\mathrm{C}(18)-\mathrm{C}(19)$	$1.53(3)$
$\mathrm{P}-\mathrm{C}(20)$	1.81(2)	$\mathrm{C}(20)-\mathrm{C}(21)$	$1.56(3)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1 \cdot 49$ (3)		

Table 2 (Continued)
(b) Bond angles

$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{Cl}(2)$	178.1(2)
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{P}$	88.5(2)
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{C}(1)$	89.6(6)
$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{P}$	93.3(2)
$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{C}(1)$	88.7(6)
$\mathrm{P}-\mathrm{Pt}-\mathrm{C}(1)$	177.6(5)
Pt -P-C(16)	$111.5(7)$
$\mathrm{Pt}-\mathrm{P}-\mathrm{C}(18)$	$112 \cdot 8(6)$
$\mathrm{Pt}-\mathrm{P}-\mathrm{C}(20)$	$115 \cdot 8(6)$
$\mathrm{C}(16)-\mathrm{P}-\mathrm{C}(18)$	104.4(9)
$\mathrm{C}(16)-\mathrm{P}-\mathrm{C}(20)$	105.7(9)
$\mathrm{C}(18)-\mathrm{P}-\mathrm{C}(20)$	$105 \cdot 8(9)$
$\mathrm{P}-\mathrm{C}(16)-\mathrm{C}(17)$	109.6(16)
$\mathrm{P}-\mathrm{C}(18)-\mathrm{C}(19)$	$114.2(15)$
$\mathrm{P}-\mathrm{C}(20)-\mathrm{C}(21)$	117.0(14)
$\mathrm{Pt}-\mathrm{C}(1)-\mathrm{N}(1)$	125.6(13)
$\mathrm{Pt}-\mathrm{C}(1)-\mathrm{N}(2)$	127.2(12)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	$107 \cdot 2(14)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	$111 \cdot 9(15)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)$	125•7(14)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(4)$	122-4(14)

$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(3)$	$114 \cdot 4(14)$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(10)$	$125 \cdot 9(14)$
$\mathrm{C}(3)-\mathrm{N}(2)-\mathrm{C}(10)$	$119 \cdot 6(14)$
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$104 \cdot 1(13)$
$\mathrm{N}(2)-\mathrm{C}(3)-\mathrm{C}(2)$	$101 \cdot 6(13)$
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	$120 \cdot 9(17)$
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(9)$	$119 \cdot 2(16)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(9)$	$119 \cdot 8(17)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$116 \cdot 4(19)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$121 \cdot 4(21)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$119 \cdot 9(21)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$123 \cdot 1(21)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(4)$	$119 \cdot 1(19)$
$\mathrm{N}(2)-\mathrm{C}(10)-\mathrm{C}(11)$	$118 \cdot 4(18)$
$\mathrm{N}(2)-\mathrm{C}(10-\mathrm{C}(15)$	$120 \cdot 0(17)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(15)$	$121 \cdot 5(18)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(2)$	$119 \cdot 1(20)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$115 \cdot 6(20)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$124 \cdot 1(25)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(15)$	$122 \cdot 3(26)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(10)$	$117 \cdot 0(20)$

(c) Intermolecular distances
$\begin{array}{lll}\mathrm{C}(3) & \cdots \mathrm{Cl}\left(2^{1}\right) & 3.48 \\ \mathrm{C}(2) & \cdots \mathrm{Cl}\left(\text { (II }^{(1)}\right. & 3.57\end{array}$
$\begin{array}{ll}\mathrm{C}(9) \cdots \mathrm{C}\left(17^{\mathrm{III}}\right) & 3.64 \\ \mathrm{C}(8) \cdots \mathrm{C}\left(6^{\mathrm{III}}\right) & 3 \cdot 66\end{array}$
Superscripts refer to the following transformations of the fractional co-ordinates:

I I $-x, 1-y,-z \quad$ III $1+x, 1+y, 1+z$
II $1-x, 1-y, 1-z$

Table 3
Equations of least-squares planes in (I), and, in square brackets, deviations (\AA) of atoms from these planes
Plane (A): $\mathrm{Pt}, \mathrm{Cl}(1), \mathrm{Cl}(2), \mathrm{P}, \mathrm{C}(1)$

$$
8.980 x-4 \cdot 133 y+2 \cdot 434 z=2.976
$$

[Pt - $0.001, \mathrm{Cl}(1) 0.012, \mathrm{Cl}(2) 0.016, \mathrm{P}-0.003, \mathrm{C}(1)-0.047$, $\mathrm{N}(1) 0.988, \mathrm{~N}(2)-1.058]$
Plane (B): Pt, C(1), N(1), N(2)

$$
12 \cdot 783 x-1.714 y-8.986 z=3.261
$$

$[P t \quad 0, \mathrm{C}(1)-0.011, \mathrm{~N}(1) 0.002, \mathrm{~N}(2) 0.003, \mathrm{C}(2)-0.039$, $\mathrm{C}(3) 0.114, \mathrm{C}(4) 0.069, \mathrm{C}(10)-0.022]$
Plane (C): C(1)-(3), N(1), N(2)

$$
12.916 x-1.994 y-8.881 z=3.227
$$

$[\mathrm{C}(1)-0.001, \mathrm{~N}(1) 0.016, \mathrm{C}(2)-0.059, \mathrm{C}(3) 0.068, \mathrm{~N}(2)$ $-0.021, \operatorname{Pt} 0.050, C(4) 0.114, C(10)-0.061]$
Plane (D): C(4)-(9)

$$
7 \cdot 788 x+5 \cdot 909 y-4 \cdot 611 z=5 \cdot 616
$$

$[\mathrm{C}(4)-0.005, \mathrm{C}(5) 0.023, \mathrm{C}(6)-0.033, \mathrm{C}(7) 0.002, \mathrm{C}(8) 0.019$, $\mathrm{C}(9)-0.014, \mathrm{~N}(1)-0.0057]$
Plane (E): C(10)-(15)

$$
11.796 x-9.494 y-5.011 z=-0.075
$$

$[\mathrm{C}(10) 0.025, \mathrm{C}(11)-0.017, \mathrm{C}(12)-0.009, \mathrm{C}(13) 0.036, \mathrm{C}(14)$ $-0.016, \mathrm{C}(15)-0.020, \mathrm{~N}(2) 0.0048$]
Plane (F): C(1), N(1), C(2), C(4)

$$
12 \cdot 520 x-1 \cdot 300 y-9 \cdot 194 z=3 \cdot 242
$$

$[\mathrm{C}(1) 0.003, \mathrm{~N}(1)-0.005, \mathrm{C}(2) 0.004, \mathrm{C}(4) 0.003]$
Plane (G): C(1), N(2), C(3), C(10)
$12.843 x-2.315 y-9.041 z=3.039$
$[\mathrm{C}(1) 0.006, \mathrm{~N}(2)-0.013, \mathrm{C}(3) 0.008, \mathrm{C}(10) 0.006]$
Observed and calculated structure factors for both compounds are listed in Supplementary Publication No. SUP 21122 ($27 \mathrm{pp} ., 1$ microfiche).* The computer pro-

* See Notice to Authors No. 7 in J.C.S. Dalton, 1973, Index issue.

Table 4
Fractional atomic co-ordinates and vibrational parameters in (II)

Atom	x	y	z	B / \AA^{2}
Pt	$0 \cdot 05158(3)$	$0 \cdot 08785$ (5)	1/4	*
$\mathrm{Cl}(1)$	-0.0886(2)	$0 \cdot 1742(4)$	1/4	
$\mathrm{Cl}(2)$	$0.0006(2)$	-0.1722(4)	1/4	
P	$0.0875(2)$	0.3388(4)	1/4	*
N	$0 \cdot 2158(5)$	$-0.0084(9)$	$0 \cdot 1843$ (5)	3•6(2)
C(1)	$0 \cdot 1707(8)$	$0 \cdot 0134(17)$	1/4	3•8(2)
C(2)	$0.3028(7)$	-0.0504(14)	$0 \cdot 2060(7)$	$4 \cdot 7(2)$
$\mathrm{C}(3)$	$0 \cdot 1919(6)$	$0 \cdot 0048(12)$	$0 \cdot 1043$ (6)	$4 \cdot 3(2)$
$\mathrm{C}(4)$	$0 \cdot 2382$ (8)	$0 \cdot 0990(15)$	$0.0536(8)$	$5 \cdot 4(2)$
$\mathrm{C}(5)$	$0 \cdot 2164(10)$	$0 \cdot 1121(18)$	-0.0260(10)	$7 \cdot 3(3)$
C(6)	$0 \cdot 1475(11)$	$0 \cdot 0332(19)$	-0.0557(11)	$7 \cdot 1(3)$
C(7)	$0 \cdot 1024$ (9)	$-0.0610(16)$	$-0.0072(8)$	6.2(3)
C(8)	$0 \cdot 1231(7)$	$-0.0755(14)$	$-0.0726(7)$	5.0(2)
$\mathrm{C}(9)$	$0.0452(8)$	$0 \cdot 4419$ (15)	$0 \cdot 1637(7)$	$5 \cdot 1(2)$
C(10)	$0 \cdot 0786(10)$	$0 \cdot 3862(19)$	$0 \cdot 0842(10)$	6.9(3)
C(11)	$0 \cdot 1976(10)$	$0 \cdot 3799(17)$	1/4	3.9(2)
$\mathrm{C}(12)$	$0 \cdot 2208(11)$	$0 \cdot 5573(20)$	1/4	$4 \cdot 7(3)$
$\mathrm{H}(2 \mathrm{~A}) \dagger$	$0 \cdot 335(6)$	$0 \cdot 037(11)$	$0 \cdot 178(6)$	$5(2)$
$\mathrm{H}(2 \mathrm{~B})$	$0 \cdot 319$ (6)	$-0.163(14)$	$0 \cdot 180(6)$	6(2)
H(4)	$0 \cdot 284(7)$	$0 \cdot 148(13)$	$0 \cdot 078(6)$	6(2)
$\mathrm{H}(5)$	$0 \cdot 250(11)$	$0 \cdot 145(20)$	$-0.075(10)$	$11(5)$
$\mathrm{H}(6)$	$0 \cdot 151(10)$	$0.042(17)$	$-0.116(11)$	13 (5)
$\mathrm{H}(7)$	0.046 (8)	$-0.145(16)$	$-0.030(8)$	7(3)
$\mathrm{H}(8)$	$0 \cdot 094(6)$	$-0 \cdot 140(11)$	$0 \cdot 120(5)$	$3(2)$
$\mathrm{H}(9 \mathrm{~A})$	$0 \cdot 048$ (7)	0.571 (16)	$0 \cdot 179$ (8)	8(3)
$\mathrm{H}(9 \mathrm{~B})$	$0.004(13)$	$0 \cdot 431(19)$	$0 \cdot 175(10)$	13(5)
$\mathrm{H}(10 \mathrm{~A})$	$0.058(9)$	$0 \cdot 427(17)$	$0.032(10)$	$11(4)$
$\mathrm{H}(10 \mathrm{~B})$	$0 \cdot 142(7)$	$0 \cdot 415(12)$	$0 \cdot 080(6)$	6(2)
$\mathrm{H}(10 \mathrm{C})$	$0 \cdot 061$ (8)	0.243(19)	$0 \cdot 080(8)$	7(4)
$\mathrm{H}(11)$	$0 \cdot 216$ (6)	$0 \cdot 346(12)$	$0 \cdot 200(6)$	3(2)
H (12A)	$0 \cdot 283(12)$	$0.569(19)$	1/4	7(4)
$\mathrm{H}(12 \mathrm{~B})$	0-205(4)	$0 \cdot 589$ (8)	$0 \cdot 205(4)$	$2(2)$

* These atoms were assigned anisotropic temperature factors as defined in Table 1, with $\beta_{13}=\beta_{23}=0$ by symmetry. Final $\beta_{i j}$ values are:

Atom	β_{11}	β_{22}	β_{33}	β_{12}
Pt	$22(1)$	$68(1)$	$52(1)$	$1(1)$
$\mathrm{Cl}(1)$	$21(1)$	$108(5)$	$85(3)$	$6(2)$
$\mathrm{Cl}(2)$	$37(2)$	$61(4)$	$72(2)$	$-10(2)$
P	$26(1)$	$61(4)$	$59(2)$	$2(2)$

\dagger Each hydrogen atom is numbered according to the carbon atom to which it is attached.

Figure 1 Perspective view of the structure of the transcomplex (I), showing the atomic numbering scheme. Thermal ellipsoids enclose 50% of probability. Hydrogen atoms are omitted for clarity

Table 5
Selected interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$ in (II)
(a) Bond lengths

$\mathrm{Pt}-\mathrm{Cl}(\mathrm{l})$	2.362(3)	$\mathrm{C}(11)-\mathrm{C}(12)$	1.570(23)
$\mathrm{Pt}-\mathrm{Cl}(2)$	2-381(3)	$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	1-02(10)
$\mathrm{Pt}-\mathrm{P}$	2-234(3)	$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	$1 \cdot 10(12)$
$\mathrm{Pt}-\mathrm{C}(1)$	$2 \cdot 009(13)$	$\mathrm{C}(4)-\mathrm{H}(4)$	0.94(12)
$\mathrm{C}(1)-\mathrm{N}$	$1 \cdot 327$ (11)	$\mathrm{C}(5)-\mathrm{H}(5)$	1.02(18)
$\mathrm{C}(2)-\mathrm{N}$	1-482(14)	$\mathrm{C}(6)-\mathrm{H}(6)$	$1.01(18)$
$\mathrm{C}(3)-\mathrm{N}$	$1 \cdot 395$ (13)	$\mathrm{C}(7)-\mathrm{H}(7)$	1-22(13)
$\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)$	1.471 (23)	$\mathrm{C}(8)-\mathrm{H}(8)$	1.08(9)
$\mathrm{C}(3)-\mathrm{C}(4)$	$1 \cdot 387(16)$	$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$	$0 \cdot 70$ (20)
$\mathrm{C}(4)-\mathrm{C}(5)$	$1 \cdot 379(21)$	$\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$	$1 \cdot 14(14)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1 \cdot 386(23)$	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~A})$	$0 \cdot 99$ (16)
$\mathrm{C}(6)-\mathrm{C}(7)$	$1 \cdot 353(22)$	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~B})$	$1 \cdot 05(12)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1 \cdot 379(18)$	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{C})$	1-26(16)
$\mathrm{C}(8)-\mathrm{C}(3)$	1-402(15)	$\mathrm{C}(11)-\mathrm{H}(11)$	$0 \cdot 94(10)$
$\mathrm{P}-\mathrm{C}(9)$	$1.823(13)$	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$	$1.00(19)$
$\mathrm{P}-\mathrm{C}(11)$	$1 \cdot 796(16)$	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$	0.84(7)
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.510(20)$		
(b) Bond angles			
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{Cl}(2)$	88.3(1)	$\mathrm{N}-\mathrm{C}(3)-\mathrm{C}(8)$	122.5(9)
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{P}$	86.6(1)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$120 \cdot 1(12)$
$\mathrm{Cl}(1)-\mathrm{Pt}-\mathrm{C}(1)$	179.8(4)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$120 \cdot 4(15)$
$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{P}$	174.9(1)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	120.1(16)
$\mathrm{Cl}(2)-\mathrm{Pt}-\mathrm{C}(1)$	91.5(4)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$120 \cdot 4(13)$
$\mathrm{P}-\mathrm{Pt}-\mathrm{C}(1)$	93.7(4)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	120.6(11)
$\mathrm{Pt}-\mathrm{C}(1)-\mathrm{N}$	124.1(6)	$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(4)$	$118.4(10)$
$\mathrm{N}-\mathrm{C}(1)-\mathrm{N}^{\prime}$	111-6(16)	$\mathrm{Pt}-\mathrm{P}-\mathrm{C}(9)$	$112 \cdot 0(4)$
$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(2)$	$110 \cdot 1(8)$	$\mathrm{Pt}-\mathrm{P}-\mathrm{C}(11)$	$116 \cdot 3(5)$
$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(3)$	129.1(9)	$\mathrm{C}(9)-\mathrm{P}-\mathrm{C}\left(9^{\prime}\right)$	104.6(8)
$\mathrm{C}(2)-\mathrm{N}-\mathrm{C}(3)$	120.8(8)	$\mathrm{C}(9)-\mathrm{P}-\mathrm{C}(11)$	$105 \cdot 5(5)$
$\mathrm{N}-\mathrm{C}(2)-\mathrm{C}\left(2^{\prime}\right)$	104-1(13)	$\mathrm{P}-\mathrm{C}(9)-\mathrm{C}(10)$	114.2(10)
$\mathrm{N}-\mathrm{C}(3)-\mathrm{C}(4)$	119.1(10)	$\mathrm{P}-\mathrm{C}(11)-\mathrm{C}(12)$	$115.0(11)$
(c) Intermolecular distances			
$\mathrm{H}(10 \mathrm{C}) \cdots \mathrm{H}\left(7^{\mathrm{I}}\right)$	$2 \cdot 07$	$\mathrm{H}(12 \mathrm{~A}) \cdots \mathrm{Cl}\left(\mathbf{l}^{\text {IV }}\right.$)	$2 \cdot 93$
$\mathrm{H}(5) \cdots \cdot \mathrm{H}\left(12 \mathrm{~B}^{\text {II }}\right)$	$2 \cdot 33$	$\mathrm{C}(11) \cdots \mathrm{Cl}\left(1^{\text {IV }}\right)$	$3 \cdot 45$
$\mathrm{H}(9 \mathrm{~A}) \cdots \mathrm{Cl}\left(2^{\text {III }}\right)$	$2 \cdot 62$		

$\mathrm{H}(9 \mathrm{~A}) \cdots \mathrm{Cl}\left(2^{\text {III }}\right) \quad 2 \cdot 6$
Co-ordinates of primed atoms are derived from those of the corresponding unprimed atom in Table 4 by the transformation $x, y, \frac{1}{2}-z$.
Superscripts refer to the following transformations of fractional co-ordinates
$\begin{array}{ll}\text { I }-x,-y,-z & \text { III } x, 1+y, z \\ \text { II } \frac{1}{2}-x,-\frac{1}{2}+y,-z & \text { IV } \frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}-z\end{array}$

Table 6
Equations of least-squares planes in (II), with, in square brackets, deviations (\AA) of atoms from planes
Plane (A): $\mathrm{Pt}, \mathrm{C}(1), \mathrm{N}, \mathrm{N}^{\prime}$

$$
-4.824 x-8.200 y+0.114 z=-0.941
$$

$\left[\mathrm{Pt}-0.001, \mathrm{C}(1) 0.036, \mathrm{~N}-0.011, \mathrm{~N}^{\prime} 0.005, \mathrm{C}(2)-0.083\right.$, $C(3)-0.013]$
Plane (B): C(3)-(8)

$$
9.470 x-6.654 y-3.765 z=1.396
$$

$[C(3)-0.003, C(4) 0.001, C(5) 0.007, C(6)-0.010, C(7) 0.007$, $\mathrm{C}(8)-0.001, \mathrm{~N} 0.010]$
Plane (C): C(1)-(3), N

$$
-4.038 x-8.322 y-0.114 z=-0.825
$$

$$
[\mathrm{C}(1)-0.004, \mathrm{~N} 0.003, \mathrm{C}(2)-0.002, \mathrm{C}(3)-0.002]
$$

grams used were C. K. Johnson's ORTEP, the ATLAS versions of J. M. Stewart's ' X-ray ' 63 ' and ' X-ray ' 70 ' systems including N. W. Alcock's ABSCOR absorption correction program, the Hilger and Watts software package for the Y 290 diffractometer, the HILGA data processing program of M. A. Bush, K. W. Muir, and D. White, and the REDUX cell reduction program of K. W. Muir.

DISCUSSION

Crystals of (I) and (II) contain discrete monomeric molecules which are separated by normal van der Waals contacts. A somewhat greater efficiency in packing appears to be achieved in crystals of (II), where each molecule occupies a volume of $574 \AA^{3}$, as compared with (I), where the corresponding value is $598 \AA^{3}$. However, this difference may merely indicate that within individual molecules of (II) the atoms are more compactly arranged. Intermolecular contacts do not appear to be on average shorter in (II) than they are in (I) (Tables 2 and 5).

Figure 2 Perspective view of the structure of the cis-complex (II), showing the atomic numbering scheme. Thermal ellipsoids enclose 50% of probability. Hydrogen atoms are omitted for clarity

In each structure there is excellent agreement between chemically equivalent bond lengths and valency angles. Indeed, only in the case of the $\mathrm{P}-\mathrm{C}-\mathrm{C}$ angles in (II) does a χ^{2} test indicate that the deviations of individual values from the mean are significant at a probability level of $<0.1 \%$. Accordingly, we consider the mean bond lengths and valency angles in Table 7 and Figure 3 as the best values obtainable from each analysis, and these are used in the subsequent discussion.

Co-ordination of the Metal Atoms.-In both molecules a square plane about the platinum atom is defined by two chlorine atoms, the phosphorus atom of the triethylphosphine ligand, and the donor carbon atom of the carbenoid ligand. Deviations from ideal square planar co-ordination of the metal atoms are small. In (I) individual atoms are displaced by $<0.05 \AA$ from the co-ordination plane of the platinum atom. The corresponding plane in (II) coincides with a crystallographic mirror plane. In both molecules the triethylphosphine ligands adopt a conformation in which one ethyl group lies in the co-ordination plane of the metal atom. [In (I) the $\mathrm{Pt}-\mathrm{P}-\mathrm{C}(20)-\mathrm{C}(21)$ torsion angle is 172°; in (II) the $\mathrm{Pt}-\mathrm{P}-\mathrm{C}(11)-\mathrm{C}(12)$ torsion angle is exactly 180° since all the atoms involved lie on the mirror plane at $z=1 / 4$.] Steric repulsion between the ethyl group so situated and the appropriate cis-ligand leads to the opening of the $\mathrm{P}-\mathrm{Pt}-\mathrm{Cl}(2)$ angle in (I) to $93 \cdot 3(2)^{\circ}$, and of the $\mathrm{P}-\mathrm{Pt}-\mathrm{C}(1)$ angle in (II) to $93 \cdot 7(4)^{\circ}$.

Triethylphosphine Ligands.-Corresponding bond lengths and valency angles in the phosphine ligands of (I) and (II) agree well. The interbond angles at the phosphorus atoms show the usual departures from the

Table 7
Mean bond lengths (\AA) and angles (${ }^{\circ}$) in (I) and (II) (a) Bonds

(I)	(II)
$1.545(17) a$	$1.540(30)$
$1.399(13)$	$1.381(8)$
$1.830(12)$	$1.810(14)$
	$1.02(4)$

(b) Angles

(I)	(II)
$119 \cdot 9(8)$	$120 \cdot 0(5)$
$119 \cdot 6(9)$	$120 \cdot 8(17)$
$113 \cdot 4(13)^{b}$	$114 \cdot 2(22)$
$105 \cdot 3(5)$	$105 \cdot 1(5)$
$113 \cdot 6(22)^{b}$	$114 \cdot 6(7)^{c}$
	$109 \cdot 7(21)$
	$119 \cdot 3(35)$
	$110.9(43)$

${ }^{a}$ The standard deviation of each mean is the larger of σ_{A} and σ_{B}. σ_{A} is calculated from the individual standard deviations, σ_{j}, by the relation $\sigma_{\Delta}=\left(\sum_{j} 1 / \sigma_{j}^{2}\right)^{-\frac{1}{3}} . \quad \sigma_{B}$ is calculated from the deviations of individual values x_{j} from their mean, \bar{x}, by $\sigma_{\mathrm{B}}=$ $\left[\Sigma\left(x_{j}-\bar{x}\right)^{2} \mid n(n-1)\right] 1 . \quad{ }^{b}$ Differences between individual values $\stackrel{j}{j}$ significant at 1% but not at $0 \cdot 1 \%$ level. ${ }^{c}$ Difference between individual values significant at $<0 \cdot 1 \% . \quad d X=N$ or C.

Figure 3 Mean bond lengths and valency angles in the imidazolidine rings of (a) complex (I) and (b) complex (II)
ideal tetrahedral value of $109^{\circ} 28^{\prime}$. The $\mathrm{P}-\mathrm{C}-\mathrm{C}$ angles are greater than this value, presumably because of intramolecular overcrowding. In each molecule the substituents adopt approximately staggered conformation relative to the $\mathrm{P}-\mathrm{CH}_{2}$ bonds. Thus in (I) the $\mathrm{C}(18)-\mathrm{P}-\mathrm{C}(16)-\mathrm{C}(17)$ and $\mathrm{C}(16)-\mathrm{P}-\mathrm{C}(18)-\mathrm{C}(19)$ torsion angles are $175(2)$ and $178(2)^{\circ}$, while the comparable $\mathrm{C}\left(9^{\prime}\right)-\mathrm{P}-\mathrm{C}(9)-\mathrm{C}(10)$ angle in (II) is $\mathbf{1 7 4 (1) ^ { \circ }}$.

Geometry of the Carbenoid Ligands.-The different environments of the carbenoid ligands in (I) and (II) are reflected in small, but significant, conformational differences. In each compound the carbenoid carbon atom and the three atoms directly bonded to it are coplanar. Furthermore, each nitrogen atom is coplanar with the three carbon atoms to which it is bonded. However, in (I) the imidazolidine ring is slightly puckered, and the displacements of the Pt and $\mathrm{C}(4)$ atoms from the mean plane through the ring are 0.050 and $0.114 \AA$. In (II) the atoms of the imidazolidine ring deviate by $<0.001 \AA$ from the plane $4.020 x+$ $8 \cdot 325 y=0.798$, and the displacements of the Pt and $\mathrm{C}(3)$ atoms are respectively $0 \cdot 141$ and $0.014 \AA$. Despite these conformational differences corresponding valency angles at the ring atoms in (I) and (II) agree well (Figure 3), as do chemically equivalent bond lengths. The $\mathrm{N}-\mathrm{C}$ (carbenoid) distances (1.35 and $1.33 \AA$) are much shorter than the formally single $\mathrm{N}-\mathrm{C}(\mathrm{Ph})$ bonds ($1.40 \AA$), which suggests that they possess appreciable multiple character. It has been pointed out recently that such bond lengths in complexes of several metals vary only slightly, and that the mean of $1.31(1) \AA$ is consistent with an $\mathrm{N}-\mathrm{C}$ bond order of $1 \cdot 7 .{ }^{16}$

The C-C distances $[1 \cdot 49(3)$ and $1 \cdot 471(16) \AA]$ in the imidazolidine rings appear rather short, possibly because of the effects of librational shrinkage.

The co-ordination plane of the carbenoid carbon atom makes a dihedral angle with that of the platinum atom of 71° in (I) and 90° in (II).

Platinum-Carbenoid Bonding.-The $\mathrm{Pt}-\mathrm{C}$ bond lengths in (I) and (II) are slightly but not significantly shorter than the $\mathrm{Pt}-\mathrm{C}($ trans to Cl$)$ distance $[2.03(2) \AA]$ in trans$\left[\mathrm{PtCl}\left(\mathrm{CH}: \mathrm{CH}_{2}\right)\left(\mathrm{PPhEt}_{2}\right)_{2}\right]^{17}$ and the $\mathrm{Pt}-\mathrm{C}($ trans to I$)$ bond length $\left[2.029(11) \AA\right.$ in trans $-\left[\mathrm{PtI}\left\{\mathrm{C}\left(\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Cl}\right) \mathrm{Me}\right\}-\right.$ $\left.\left(\mathrm{PEt}_{3}\right)_{2}\right]^{18}$ It therefore appears that there is little $\mathrm{Pt}-\mathrm{C}$ multiple bonding in (I) and (II), and that the vacant p orbital of the carbenoid carbon atom accepts p electrons from nitrogen in preference to d electrons from platinum, as indicated by the Lewis structure (1).

(1)

However, the trans-influence of $\mathrm{C}\left(\mathrm{PhNCH}_{2}\right)_{2}$ on $\mathrm{Pt}-\mathrm{Cl}$ bonds is less than that of σ-vinyl, as may be seen by comparison of the $\mathrm{Pt}-\mathrm{Cl}$ (trans to C) bond length in (II) with the corresponding value $[2 \cdot 398(4) \AA]$ in trans$\left[\mathrm{PtCl}\left(\mathrm{CH}: \mathrm{CH}_{2}\right)\left(\mathrm{PPhEt}_{2}\right)_{2}\right]$. A small degree of $\mathrm{Pt} \rightarrow \mathrm{C}$
${ }^{16}$ F. A. Cotton and C. M. Lukehart, Progr. Inorg. Chem., 1973, 16, 487.
${ }_{17}$ C. J. Cardin, D. J. Cardin, M. F. Lappert, and K. W. Muir, J. Organometallic Chem., 1973, 60, C70.
${ }_{18}$ K. P. Wagner, P. M. Treichel, and J. C. Calabresse, J. Organometallic Chem., 1973, 56, C33.
${ }_{19} \mathrm{Lj}$. Manojlović-Muir and K. W. Muir, Inorg. Chim. Acta, 1974, 10, 47.
back-donation in the carbenoid complex, but not in the vinyl complex, would explain this difference. Such back-donation would reduce the electron population in the metal d orbital and, consequently, the electrostatic repulsion experienced by the trans-chlorine atom. Some confirmation of this view is obtained from the high correlation ${ }^{19}$ between the π-acidity of a carbon donor ligand and its ability to shorten the trans- $\mathrm{Pt}-\mathrm{Cl}$ bond in a platinum(II) complex.

In Table $8 \mathrm{Pt}-\mathrm{C}$ bond lengths in (I) and (II) are
Table 8
Selected Pt-C bond lengths (\AA) in platinum(iI) carbenoid complexes

Complex	Pt-C	transLigand
trans $-\left[\mathrm{PtMe}\{\mathrm{C}(\mathrm{OMe}) \mathrm{Me}\}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]^{+}$	$2 \cdot 13(2){ }^{\text {a }}$	Me
trans $-\left[\mathrm{Pt}(\mathrm{CNMe})_{2}\{\mathrm{C}(\mathrm{SEt}) \mathrm{NHMe}\}_{2}\right]^{+}+$	$2.058(7)^{\text {b }}$	C(SEt) NHMe
trans $-\left[\mathrm{PtCl}_{2}\left\{\mathrm{C}\left(\mathrm{PhNCH}_{2}\right)_{2}\right\}\left(\mathrm{PEt}_{3}\right)\right]$	$2 \cdot 020(16){ }^{\text {c }}$	PEt_{3}
cis $-\left[\mathrm{PtCl}_{2}\left\{\mathrm{C}\left(\mathrm{PhNCH}_{2}\right)_{2}\right\}\left(\mathrm{PEt}_{3}\right)\right]$	2.009(13)	Cl
cis- $\left[\mathrm{PtCl}_{2}\{\mathrm{C}(\mathrm{OEt}) \mathrm{NHPh}\}\left(\mathrm{PEt}_{3}\right)\right]$	$1.98(2){ }^{\text {d }}$	Cl
cis- $\left[\mathrm{Pt}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{CH}_{3}\right)(\mathrm{CNMe})_{2}\right]^{+}$	$1.95(2){ }^{\text {e }}$	CNMe

compared with similar ones in other carbenoid complexes of platinum(II). ${ }^{\mathbf{6}, 20-22}$ Although the variations in these bond lengths are difficult to explain in detail, they appear to involve at least three separate electronic effects. (i) It is now well established ${ }^{16}$ that multiple $\mathrm{M}-\mathrm{C}$ bonding in an $\mathrm{M}-\mathrm{CXY}$ carbenoid complex decreases as the ability of X and Y to donate electrons into the vacant p orbital of the carbenoid carbon atom becomes greater. The order ${ }^{\mathbf{1 6}, 23}$ of increasing donor ability of X and Y is $\mathrm{Me}<\mathrm{OR} \sim \mathrm{SR}<\mathrm{NR}_{2}$. For the ligands listed in Table 8 this leads to the following π-acidity series: $\quad \mathrm{C}(\mathrm{OMe}) \mathrm{Me}>\mathrm{C}(\mathrm{OEt}) \mathrm{NHPh} \sim$ $\mathrm{C}(\mathrm{SEt}) \mathrm{NHMe}>\mathrm{C}\left(\mathrm{PhNCH}_{2}\right)_{2} \sim \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{CH}_{3}$. The correlation between this series and the $\mathrm{Pt}-\mathrm{C}$ bond lengths is poor. (ii) The data in Table 8 suggest that the transinfluence of the various ligands on $\mathrm{Pt}-\mathrm{C}$ (carbenoid) bonds decreases in the order: $\mathrm{Me}>\mathrm{C}(\mathrm{SEt}) \mathrm{NHMe}>\mathrm{PEt}_{3} \sim$ $\mathrm{Cl} \geqslant \mathrm{CNMe}$. This series is similar to those derived from $\mathrm{Pt}^{-} \mathrm{Cl}$ bond lengths ${ }^{19}$ and from spectroscopic data. ${ }^{24}$ However, it should be considered tentative, in view of the limited accuracy of the $\mathrm{Pt}-\mathrm{C}$ bond lengths quoted in Table 8. It is, perhaps, surprising that the $\mathrm{Pt}-\mathrm{C}$ bond lengths in (I) and (II) differ by only $0.011(21) \AA$ since PEt_{3} has a substantially greater transinfluence than Cl on both $\mathrm{Pt}-\mathrm{Cl}$ and $\mathrm{Pt}-\mathrm{P}$ bonds (see later). (iii) The tendency of dipositive platinum to donate electrons to a carbenoid ligand may be smaller in cationic than in electroneutral complexes.
trans-Influence of the Ligands.-It may be argued, from the trends in both the $\mathrm{Pt}-\mathrm{P}$ and the $\mathrm{Pt}-\mathrm{Cl}$ bond

[^2] 1973,57, 213.
${ }_{21}$ W. M. Butler and J. H. Enemark, Inorg. Chem., 1973, 12, 540.
${ }_{22}$ W. M. Butler, J. H. Enemark, J. Parks, and A. L. Balch, Inorg. Chem., 1973, 12, 451.
${ }^{23}$ R. J. Hoare and O. S. Mills, J.C.S. Dalton, 1972, 653.
${ }^{24}$ T. G. Appleton, H. C. Clark, and L. E. Manzer, Co-ordination Chem. Rev., 1973, 10, 335.
lengths in (I) and (II), that the trans-influence of the carbenoid ligand is comparable with that of tertiary phosphine and significantly greater than that of chloride. Similar conclusions have been made from far-i.r. and from n.m.r. spectroscopic results. ${ }^{9}$

Thus the $\mathrm{Pt}-\mathrm{P}($ trans to C$)$ distance $[2 \cdot 291(4) \AA]$ in (I) is comparable with $\mathrm{Pt}-\mathrm{P}($ trans to P$)$ distances in trans$\left[\mathrm{PtCl}\left(\mathrm{Me}_{3} \mathrm{SiCH}_{2}\right)\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]^{1}[2 \cdot 293(3) \AA]$ and in trans$\left[\mathrm{PtBr}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right][2 \cdot 315(4) \AA] .{ }^{25}$ The $\mathrm{Pt}-\mathrm{P}($ trans to Cl$)$ distances are much shorter, the mean for five such bonds being $2 \cdot 237(2) ~ \AA,{ }^{26}$ close to that of $2 \cdot 234(3) \AA$ in (II).

Furthermore, the $\mathrm{Pt}-\mathrm{Cl}($ trans to C$)$ distance $[2 \cdot 362(3) \AA]$ in (II) is the same as the corresponding distance
$[2 \cdot 365(5) \AA]$ in $c i s-\left[\mathrm{PtCl}_{2}\{\mathrm{C}(\mathrm{OEt}) \mathrm{NHPh}\}\left(\mathrm{PEt}_{3}\right)\right] .{ }^{6}$ These distances are only slightly shorter than $\mathrm{Pt}-\mathrm{Cl}($ trans to P$)$ [$2 \cdot 381(3) \AA]$ in (II) but are significantly longer than the mean $\mathrm{Pt}-\mathrm{Cl}($ trans to Cl$)$ bond length $[2 \cdot 302(10) \AA]$ in (I). Mean $\mathrm{Pt}-\mathrm{Cl}($ trans to P$)$ and $\mathrm{Pt}-\mathrm{Cl}$ (trans to Cl$)$ distances in several platinum(II) compounds are respectively $2 \cdot 376(5)$ and $2 \cdot 303(5) ~ \AA .{ }^{19}$

We thank Professor M. F. Lappert for gifts of crystals and for many stimulating discussions, and the S.R.C. for financial support.
[4/924 Received, 9th May, 1974]
${ }^{25}$ G. G. Messmer and E. L. Amma, Inorg. Chem., 1966, 5, 1775. ${ }^{26} \mathrm{Lj}$. Manojlović-Muir, K. W. Muir, and R. Walker, J. Organometallic Chem., 1974, 66, C21.

[^0]: \dagger No reprints available.
 ${ }^{1}$ Part III, B. Jovanović, Lj. Manojlović-Muir, and K. W. Muir, J.C.S. Dalton, 1974, 195.
 ${ }^{2}$ B. JovanoviC, Lj. Manojlovic-Muir, and K. W. Muir, J.C.S. Dalton, 1972, 1178.
 ${ }^{3}$ B. Jovanović and Lj. Manojlović-Muir, J.C.S. Dalton, 1972, 1176
 ${ }_{4}^{4}$ G. H. W. Milburn and M. R. Truter, J. Chem. Soc. (A), 1966, 1609 .

[^1]: 12 ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.
 ${ }^{13}$ D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.
 ${ }^{14}$ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175 .
 ${ }_{15}$ D. T. Cromer, Acta Cryst., 1965, 18, 17.

[^2]: ${ }^{20}$ R. F. Stepaniak and N. C. Payne, J. Organometallic Chem.,

