Adducts of Molybdenum(v) Trichloride Sulphide

By David Britnell, Gerald W. A. Fowles,* and David A. Rice, Department of Chemistry, The University, Whiteknights, Reading RG6 2AD

The compound MoCl_aS reacts with methyl cyanide to give MoCl_aS,MeCN and MoCl_aS,2MeCN, which have been characterised as containing six-co-ordinate molybdenum with bridging Mo-S-Mo and terminal Mo=S bonds respectively. The complex MoCl₃S.2MeCN reacts with other ligands; 1.4-dioxan and 1.2-bis(methoxy)ethane give adducts MoCl₃S,2diox and MoCl₃S,bme, while pyridine gives the salt [Hpy][MoCl₄S,py] and 1,10phenanthroline reduces molybdenum to the quadrivalent state in forming MoCl₂S, phen. Direct reaction of MoCl₃S with py gives MoCl₃S, 3py (one py being in the lattice). The salts WCl₃S and MoCl₃S did not react with any of the ligands tried even after prolonged reaction periods.

THE chemistry of molybdenum(v) trichloride oxide and tribromide oxide has been studied in some detail.¹⁻⁵ but reported work with the corresponding trihalide sulphide and selenide has been limited to their preparation.^{6,7} Some adducts of WCl₃S have been prepared ⁷ from WCl₄S by reduction with various ligands. We now report attempts to prepare complexes of MoCl₂S, MoCl₃Se, and WCl₃S by direct reaction of the trihalide sulphides or selenides with ligands.

EXPERIMENTAL

As the compounds are very moisture sensitive, the preparative and handling procedures were carried out by means of conventional vacuum-line or dry-box methods. All ligands and solvents were rigorously dried and distilled on the vacuum line before use. The compounds MoCl₃S, MoCl₃Se, and WCl₃S were prepared by heating the appropriate pentahalide with either Sb₂S₃ or Sb₂Se₃.⁷

Conductivity measurements were carried out in cells specially adapted to eliminate air and moisture; molecular weights were determined by the elevation of b.p. method; oxidation states were determined by titration with cerium-(IV) sulphate.

Preparations.-Analytical data are given in the Table. (i) Molybdenum(v) trichloride sulphide-methyl cyanide (1/1) and (1/2). The compound MoCl₃S (2 g) and MeCN (50 cm³) were sealed in an evacuated ampoule, and the mixture heated gently under reflux for 48 h. A green solution formed together with a green precipitate and the latter

† 1 B.M. = 0.927×10^{-23} A m⁻².

¹ R. A. Walton, *Progr. Inorg. Chem.*, 1972, **16**, I. ² D. L. Kepert, 'The Early Transition Metals,' Academic Press, London, 1972.

³ K. Feenan and G. W. A. Fowles, Inorg. Chem., 1965, 4, 310.

(MoCl₃S,MeCN) was isolated by filtration in vacuo. Evaporation of the solution gave a dark green powder of composition MoCl₃S, 2MeCN. The magnetic moment (in B.M.) of MoCl_aS,MeCN was determined over a temperature range: $\mu = 1.07$ (298); 1.04 (273); 1.03 (253); 1.03 (233); 1.00 (193); 0.99 (173); 0.98 (153); 0.97 (133); and 0.94 113 K).†

(ii) Molybdenum(v) trichloride sulphide-1,4-dioxan (1/2) and -1.2-bis(methoxy)ethane (1/1). The adduct MoCl₂S,2MeCN (2 g) was heated under reflux in a sealed ampoule with neat ligand (50 cm³; diox or bme) for 16 h. The green solids obtained on evaporation of the excess of ligand still contained some McCN (i.r. spectral evidence) so they were heated for a further period with two further successive quantities of fresh ligand.

(iii) *Pyridinium tetrachlorothiomolybdate*(v)-pyridine (1/1). The adduct MoCl₃S,2MeCN (2 g) and pyridine (py) (1:4 mol ratio) were heated gently in a scaled ampoule with benzene (50 cm³). The green solution formed initially gradually turned brown and deposited a green solid, [Hpy]-[MoCl₄S,py], which was isolated by filtration, washed with benzene, and pumped free from solvent. An intractable tar remained when the brown solution was evaporated.

(iv) Molybdenum(v) trichloride sulphide-pyridine (1/3). The compound $MoCl_aS$ (2 g) was heated gently under reflux for 24 h with py (50 cm³) in a sealed ampoule, and the green solution evaporated to leave MoCl_aS, 3py.

(v) Molybdenum(IV) dichloride sulphide-1,10-phenanthro-4 P. C. Crouch, G. W. A. Fowles, P. R. Marshall, and R. A.

Walton, J. Chem. Soc. (A), 1968, 1634.
⁵ D. A. Edwards, J. Inorg. Nuclear Chem., 1965, 27, 303.
⁶ D. Britnell, G. W. A. Fowles, and R. Mandyczewsky, Chem. Comm., 1970, 608.

7 D. Britnell, G. W. A. Fowles, and D. A. Rice, J.C.S. Dalton, in the press.

line (1/1). The adduct MoCl₃S,2MeCN (2 g) was allowed to react with 1,10-phenanthroline (phen) (1:2 mol ratio) in dichloromethane solution at room temperature. The green solution which formed initially gradually turned red, and red crystals of MoCl₂S, phen were formed as the solvent was removed by the pump.

(vi) Other attempted preparations. (a) Only nonstoicheiometric materials were obtained from the reaction of MoCl₃S,2MeCN with PPh₃, tetrahydrofuran (thf), Et₂O, and MeSCH₂CH₂SMe. (b) Non-stoicheiometric materials also resulted when MoCl₂S, MeCN was heated under reflux with pv, diox, thf, and bme. (c) The compounds MoCl₃Se

MoCl₃S Complexes were prepared by direct reaction with MeCN and py, and the methyl cyanide complex was used as a starting material for other complexes. Thus methyl cyanide can be replaced by diox, 1,2-bis-(methoxy)ethane, py, and phen to give well defined complexes, although with triphenylphosphine, diethyl ether, thf, and 1,2-bis(methylthio)ethane the products were non-stoicheiometric. The Table lists the products, their analytical data, and their i.r. spectra in the 200-400 cm⁻¹ region, together with the peak at ca. 480 cm⁻¹ tentatively assigned to a v(Mo=S) stretching mode.⁴

Analytical and i.r. data $(400-200 \text{ cm}^{-1})$ of the complexes prepared from MoCl₃S

	Analyses/(%)																	Diffuse	
	Found						Calc.							ul a/Ma=S	a(Mare) (Oxida	Te	reflectance
Complex	Mo	S	CI	С	н	N	Mo	S	CI	н	н	N	Colour	μ_{l} B.M.	cm ⁻¹	M a	state	spectra b	$(10^{-3}\tilde{\nu}/cm^{-1})$
MoCl ₃ S,McCN	35-0	12.3	$38 \cdot 2$	9.0	1.0	5.1	34.9	11-6	38.7	8-7	1.1	$5 \cdot 1$	Green	1.07			5-2	340s, 285m, 270m	37·2(sh), 30·0, 21·8, 10·5, 8·0(sh)
MoCl ₃ S,2McCN	29-9	9.7	33-8	$13 \cdot 2$	$2 \cdot 0$	6.7	30-3	10.1	33.7	$15 \cdot 2$	1.9	8.8	Green	1.85	480	330	4-9	320s, br, 285(sh), 245w	37.0, 24.0, 13.0
MoCl ₃ S,2diox	23.7	7.4	26.4	$22 \cdot 1$	8·7		23.4	7.8	26.0	23.4	$3 \cdot 9$		Green	1.71	475	400	5.0	320s, br, 285s	37·0, 34·2, 29·0, 22·2, 15·6
MoCl ₃ S,bme	29.0	$8 \cdot 9$	31.9	13-0	2.8		29.6	9.9	32.8	14.8	3.1		Green	1.68	470		5.2	$315, \mathrm{s~br}$	37·5, 34·2, 30·0, 18·0
MoCl ₃ S,3py	$19 \cdot 9$	6.5	$22 \cdot 0$	37.4	3.2	8.6	20.4	6.8	22.6	38.2	$3 \cdot 2$	8.9	Green	2.01	475	280 c	4.8	320s, 300s, 280(sh)	37.6, 31.8, 26.2, 22.0, 16.0
[Hpy][MoCl ₄ S,py]	21.8	7-0	32-8	29.()	$2 \cdot 6$	7.3	22.4	7.5	$33 \cdot 1$	28.0	2.4	6.5	Green	1.74	490	đ	5.1	340s, 322s, 255	36·0, 28·6, 36·4, 21·0, 7·0
MoCl ₂ S,phen	25.3	6.6	18-4	39-6	2.7	8.3	25.4	8.5	18.7	38.0	2.1	7.4	Red	1.99	460		3.8	335s, 330s, 295s, 235w	44.6, 37.0, 23.6, 19.0, 14.5

a Measured by elevation of b.p. in benzene solution. b Italicised bands suggest probable Mo-Cl modes. c Dissociation to MoCl₃S, py and py. d 1:1 Electrolyte in MeCN.

and WCl_oS were heated under reflux with all the ligands referred to under reactions of MoCl₃S,2MeCN, but despite prolonged reflux periods no reaction took place; analysis showed the products to be unchanged MoCl_aSe and WCl_aS.

RESULTS AND DISCUSSION

The trichloride and tribromide oxides of molvbdenum and tungsten have the NbCl₃O structure with six-coordinate metal atoms bridged by both chlorine and oxygen atoms,^{8,9} although there is a modification of

MoCl₂O which contains terminal oxygen atoms. The sulphur and selenium analogues under discussion also have the NbCl₃O structure, (I).¹⁰ Hence it is interesting to note that while the trihalide oxides react directly with a number of ligands, often under relatively mild conditions,⁴ the trihalide sulphide and selenide are appreciably less reactive. The compounds MoCl₃Se and WCl_aS, for instance, did not react with any of the ligands tried, even after prolonged periods under reflux, and only MeCN and py reacted with MoCl₃S. This reduced activity suggests that the M-S-M bridging is more resistant to attack by donor ligands than the comparable M-O-M bridges.

⁸ P. C. Crouch, G. W. A. Fowles, J. L. Frost, P. R. Marshall, and R. A. Walton, J. Chem. Soc. (A), 1968, 1061.

(i) MoCl₃S,2MeCN and MoCl₃S,MeCN.—The 1:2 adduct is monomeric in benzene solution and behaves as a non-electrolyte in methyl cvanide. The roomtemperature magnetic moment (1.85 B.M.) rules out any interaction through neighbouring molybdenum atoms, so the structure would appear to be a simple six-coordinate monomer. This requires a terminal Mo=S bond and the i.r. spectrum shows a peak at 480 cm^{-1} that can be tentatively assigned to v(Mo=S). There is no such peak in the spectrum of the 1:1 adduct, on the other hand, and this implies a Mo-S-Mo bridging system rather than a terminal Mo=S bond. Insolubility of the adduct in the usual solvents ruled out measurements of molecular weight and conductance but is consistent with a polymeric structure, (II). The low room-temperature magnetic moment (1.07 B.M.) and the other magnetic data (see Experimental section) indicate some Mo-Mo interaction and this could possibly be by way of the bridging sulphur atom.

In the reaction of WCl₂O with pv^4 two analogous complexes (WCl₃O,2py and WCl₃O,py) were also obtained, the 1:2 adduct being a six-co-ordinate monomer and the 1:1 adduct an oxygen-bridged polymer that shows magnetic interaction.⁴

(ii) MoCl₃S, bme and MoCl₃S, 2diox.—The i.r. spectra of both complexes contain bands associated with ν (Mo=S) and that of the diox complex shows both modified and unmodified COC stretching frequencies,

⁹ M. G. B. Drew and I. B. Tomkins, Acta Cryst., 1970, B26,

 <sup>1161.
 &</sup>lt;sup>10</sup> D. E. Sands, A. Salkin, and R. E. Elson, Acta Cryst., 1959,

showing the ligand to be unidentate.4,11 The diox complex is monomeric in benzene solution and is clearly six-co-ordinate. The bme complex is also likely to be a monomer with a chelating ligand molecule. Thus the room-temperature magnetic moment of 1.68 B.M. rules out Mo-Mo interactions, and the i.r. spectrum shows the ligand to be in the gauche chelating form.¹²

(iii) MoCl₃S,3py and [Hpy][MoCl₄S,py].—The direct reaction of MoCl₃S with py gives MoCl₃S, 3py as product, whereas MoCl_aS,2MeCN reacts with py to give a product with analysis corresponding to the overall composition MoCl₄S,2py. The complex MoCl₃S,3py appears to be six-co-ordinate MoCl_aS,2py with the third molecule of py in the lattice; an analogous situation has been reported for TiCl₃,4py.¹³ The i.r. spectrum shows the presence of both co-ordinated and unco-ordinated py molecules,¹⁴ but no bands attributable to Hpy⁺. When the complex was dissolved in benzene, molecular-weight measurements indicated dissociation, but conductivity measurements on methyl cyanide solutions showed the species to be non-conducting. MoCl₄S,2py, on the other hand, appears to be a pyridinium salt, [Hpy]-¹¹ R. J. H. Clark, D. J. Machin, J. Lewis, and R. S. Nyholm, J. Chem. Soc., 1963, 379. ¹² G. W. A. Fowles, T. E. Lester, and J. S. Wood, J. Inorg.

Nuclear Chem., 1969, 31, 657. ¹³ R. Collins and M. G. B. Drew, Inorg. Nuclear Chem. Letters,

1972, **8**, 975.

 $[MoCl_4S, py]$, since it behaves as a 1:1 electrolyte in methyl cyanide solution ¹⁵ and its i.r. spectrum shows both the pyridinium cation and co-ordinated py to be present. The Hpy⁺ proton presumably comes from one of the excess of pyridine molecules.¹⁶

(iv) MoCl₂S, phen.—Oxidation-state titrations show molybdenum to be present in the quadrivalent state in this complex; the magnetic moment (1.99 B.M.) is well below the spin-only value but very similar to that of $[MoBr_4(pdma)_2]$ $\int pdma = o$ -phenylenebis(dimethylarsine)].¹⁷ The complex behaves as a non-electrolyte in methyl cyanide solution, and we suggest that it may contain six-co-ordinate molybdenum through bridging chlorine atoms. Thus the i.r. spectrum shows a Mo=S bond to be present, which rules out Mo-S-Mo bridging, and the complex low-frequency spectrum is consistent with both terminal and bridging Mo-Cl bonds being present; the usual bands of co-ordinated phen are found but there is no evidence for a protonated cation.

[4/1386 Received, 9th July, 1974]

¹⁴ N. S. Gill, R. H. Nuttall, D. E. Scaife, and D. W. A. Sharp, J. Inorg. Nuclear Chem., 1961, 18, 179.

J. Inorg. Nuclear Chem., 1961, 18, 113.
 ¹⁵ R. A. Walton, *Quart. Rev.*, 1965, 19, 143.
 ¹⁶ R. E. McCarley, B. G. Hughes, J. C. Boatman, and B. A. Torp, *Adv. Chem. Ser.*, 1963, 37, 243.
 ¹⁷ H. L. Nigam, R. S. Nyholm, and M. H. B. Stiddard, *J. Chem.*

Soc., 1960, 1806.