Metal-Carbonyl and Metal-Nitrosyl Complexes. Part XVI. ${ }^{1}$ Comparison of the Molecular Structures of Dicarbonyl(π-cyclopentadienyl)[bis(trifluoromethyl) phosphino]iron, $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{P}\left(\mathrm{CF}_{3}\right)_{2}\right]$, and its Oxidation Product, $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{P}(: \mathrm{O})\left(\mathrm{CF}_{3}\right)_{2}\right.$], as Determined by X-Ray Crystallography \dagger

By Michael J. Barrow and George A. Sim,* Department of Chemistry, University of Glasgow, Glasgow G12 800

Abstract

The molecular geometries of the complexes $\left[\left(\pi-\mathrm{C}_{6} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{P}_{\left.\left(\mathrm{CF}_{3}\right)_{2}\right]}\right.$ (1) and $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{P}(: \mathrm{O})\left(\mathrm{CF}_{3}\right)_{2}\right]$ (2) have been determined by X-ray crystal-structure analysis. Mean P-C bond lengths [1.878(8) in (1), 1.887(6) \AA in (2)] demonstrate that the covalent radius of phosphorus is essentially the same in both complexes, but the difference in the Fe-P bond length $[2 \cdot 265(3)$ in (1), $2 \cdot 191$ (3) A in (2)] is interpreted in terms of increased Fe $\rightarrow P$ $d_{\pi}-d_{\pi}$ back bonding in (2). The P-O bond length in (2) is $1-478(5) A$. Both complexes crystallize in the monoclinic system, space group $P 2_{1} / c$, with $Z=4$; unit-cell dimensions are: (1), $a=8 \cdot 602(7), b=11 \cdot 924(9)$, $c=12 \cdot 859(9) \AA, \beta=112 \cdot 75(9)^{\circ}:(2), a=11.938(8), b=7 \cdot 603(6), c=13 \cdot 818(9) \AA, \beta=100 \cdot 97(8)^{\circ}$. The crystal structures were elucidated by Fourier and full-matrix least-squares methods from diffractometer data. The analyses converged at $R 4.8 \%$ [1882 reflections, (1)] and 4.5% [1777 reflections, (2)].

Various spectroscopic results are consistent with some degree of $\mathrm{M} \rightarrow \mathrm{P} d_{\pi}-d_{\pi}$ back bonding in complexes which contain phosphorus ligands and transition metals. ${ }^{2}$ Moreover, the shortening of the $\mathrm{Cr}-\mathrm{P}$ bond in pentacarbonyl(triphenyl phosphite) chromium ($2 \cdot 309 \AA$) as compared with that in pentacarbonyl(triphenylphosphine)chromium ($2 \cdot 422 \AA \AA^{3}$ and of the Mo-P bond in trans-dicarbonyl- π-cyclopentadienyl-iodo(trimethyl phosphite)molybdenum $(2 \cdot 406 \AA)^{4}$ as compared with that in trans-dicarbonyl- π-cyclopentadienyl-iodo(triphenylphosphine)molybdenum $(2 \cdot 481 \AA)^{5}$ have been interpreted as indisputable evidence for π-bonding. Nevertheless, the range of metal-phosphorus distances measured for any one transition metal is large, e.g. $\mathrm{Fe}-\mathrm{P}$ ca. $2 \cdot 1-2 \cdot 4 \AA$, and it is unclear how much of this variation should in general be ascribed to π-bonding, since it is possible to argue that changes in the σ component of the metal-phosphorus bond are at least partly responsible. There have been few systematic structural studies aimed specifically at elucidating this problem.

We have now completed structural investigations of two closely related complexes, $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{P}\left(\mathrm{CF}_{3}\right)_{2}\right]$ (1)

[^0]and $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{P}(\mathrm{O})\left(\mathrm{CF}_{3}\right)_{2}\right]$ (2), where spectroscopic measurements suggest an appreciable difference in the extent of $\mathrm{Fe} \rightarrow \mathrm{P} \pi$-bonding. In particular, the

(1)

(2)
shift of the C-O stretching bands from 2046 and 2000 cm^{-1} in (1) to 2062 and $2019 \mathrm{~cm}^{-1}$ in (2) has been related to reduced $\mathrm{Fe} \rightarrow \mathrm{CO}$, and hence presumably increased $\mathrm{Fe} \rightarrow \mathrm{P}, \pi$-bonding in the case of (2), while the shift in the π - $\mathrm{C}_{5} \mathrm{H}_{5}$ resonance in the ${ }^{1} \mathrm{H}$ n.m.r. spectrum from $\tau 4.60$ in (1) to 4.36 in (2) is also considered to be evidence for increased $\mathrm{Fe} \rightarrow \mathrm{P}$ back bonding in the phosphine oxide complex. ${ }^{6}$ The X-ray results establish that whereas the $\mathrm{P}-\mathrm{C}$ bond lengths are essentially the same in both complexes, the $\mathrm{Fe}-\mathrm{P}$ bond in (2) is $c a$. $0.07 \AA$ shorter than that in (1).

[^1]
EXPERIMENTAL

Crystallographic Data.-(1), $\quad\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{P}\left(\mathrm{CF}_{3}\right)_{2}\right]$. $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~F}_{6} \mathrm{FeO}_{2} \mathrm{P}, M=345 \cdot 95$, Monoclinic, $a=8.602(7), b=$ $11.924(9), c=12.859(9) \AA, \beta=112.75(9)^{\circ}, U=1216.3 \AA^{3}$, $Z=4, D_{\mathrm{c}}=1 \cdot 89, F(000)=680$. Space group $P 2_{1} / c\left(C_{2 h}^{5}\right.$, No. 14). Mo- K_{α} radiation, $\lambda=0.71069 \AA ; \mu\left(\right.$ Mo- $\left.K_{\alpha}\right)=$ $14.7 \mathrm{~cm}^{-1}$.

The crystals were yellow-brown and of irregular shape. Crystal used for intensity measurements had dimensions ca. $0.4 \times 0.3 \times 0.3 \mathrm{~mm}^{3}$. Four-circle diffractometer intensity data (Zr filter) yielded 2913 independent reflections in range $\theta<28^{\circ}$; analysis based on 1882 reflections having $I>3 \sigma(I)$. Final least-squares weighting scheme: $w^{-1}=$ $1+0.0025\left(F_{\mathrm{o}}-10\right)^{2}$; analysis terminated at $R 4.8 \%$.
(2), $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{P}(\mathrm{O})\left(\mathrm{CF}_{3}\right)_{2}\right] . \quad \mathrm{C}_{9} \mathrm{H}_{5} \mathrm{~F}_{6} \mathrm{FeO}_{3} \mathrm{P}, M=$ 361.95, Monoclinic, $\quad a=11.938(8), \quad b=7.603(6), \quad c=$ $13.818(9) \AA, \beta=100.97(8)^{\circ}, U=1231.3 \AA^{3}, Z=4, D_{\mathrm{c}}=$ $1 \cdot 95, F(000)=712$. Space group $P 2_{1} / c\left(C_{2 h}^{5}\right.$, No. 14). Mo- K_{α} radiation; $\mu\left(\mathrm{Mo}-K_{\alpha}\right)=14.8 \mathrm{~cm}^{-1}$.

The crystals were yellow needles. Crystal used for intensity measurements had dimensions ca. $0.4 \times 0.4 \times$ $0.3 \mathrm{~mm}^{3}$. Four-circle diffractometer intensity data (graphite monochromator) yielded 2519 independent reflections in range $\theta<25^{\circ}$; analysis based on 1777 reflections having $I>3 \sigma(I)$. Final least-squares weighting scheme: $w^{-1}=1+0.025\left(F_{0}-15\right)^{2}$; analysis terminated at $R 4.5 \%$.

Structure Analysis.-Space-group information and approximate cell dimensions were obtained from Weissenberg and precession photographs. Intensity measurements were made with a Hilger and Watts four-circle computercontrolled X-ray diffractometer. The crystal axes were misaligned with respect to the instrument axes in order to minimize the effects of multiple reflections and the cell dimensions and orientation matrices were derived by least-squares treatment of the θ, χ, ϕ setting angles of twelve reflections (determined by a peak-finder programme) measured at both positive and negative $\omega-2 \theta$ offsets. Intensities were measured by the $\omega-2 \theta$ step-scan method and were placed on a uniform arbitrary scale by the periodic monitoring of several standard reflections. Intensities were corrected for Lorentz and polarization effects but absorption was neglected.

Initial co-ordinates for the iron atoms were derived from three-dimensional Patterson syntheses and the positions of the remaining non-hydrogen atoms were obtained from F_{0} Fourier syntheses. Positional and isotropic thermal parameters were then adjusted by a series of full-matrix least-squares calculations employing a unit weighting scheme. When convergence was reached, the hydrogen atoms were located in difference electron-density distributions and were introduced into the structure-factor calculations at theoretical positions $[r(\mathrm{C}-\mathrm{H}) 1 \cdot 00 \AA]$ and with fixed isotropic temperature factors $\left[\begin{array}{ll}B & 4 \cdot 00 \\ \AA^{2}\end{array}\right]$. At no stage of the analyses were any of the hydrogen parameters refined by the least-squares programme, although the co-ordinates were periodically recalculated to take account of the shifts of the carbon atoms.

The least-squares refinement procedure was continued with the provision of anisotropic thermal parameters for all non-hydrogen atoms. In the final two rounds allowance was made for the real and imaginary parts of the anomalous-dispersion corrections for iron and phosphorus. ${ }^{7}$
${ }_{8}^{7}$ D. T. Cromer, Acta Cryst., 1965, 18, 17.
${ }^{8}$ D. T. Cromer and J. T. Waber, Acta Cryst., 1965, 18, 104.

At the same time analytical weighting schemes were introduced to maintain $\left\langle w\left(F_{\mathrm{o}}-F_{\mathrm{c}}\right)^{2}\right\rangle$ approximately constant for different values of F_{o} over the whole range of $F_{\mathbf{0}}$. Also during the two final cycles of refinement certain of the most intense reflections which were believed to be affected by extinction or dead-time losses and which were consistently calculated with $F_{\mathrm{c}}>F_{\mathrm{o}}$ were removed from the data sets. For complex (1) reflections 002, 012, 020, 021, $102,115,110,143$, and 211 were omitted, while for (2) only 020 and 200 were removed. No parameter shift during the terminal stages of the refinement procedure was $>14 \%$ of the relevant σ, and difference-Fourier syntheses computed after completion of the analyses showed no significant peak or trough.

Table 1
Atomic parameters, with estimated standard deviations in parentheses, for (1)

Atom	\boldsymbol{x}	y	ε
Fe	$0 \cdot 30935(7)$	$0 \cdot 15778(5)$	$0 \cdot 21409(5)$
P	$0 \cdot 05076(15)$	0.17287(10)	$0 \cdot 07380$ (10)
C(1)	$0 \cdot 2585(7)$	$-0.0154(4)$	0.2093(5)
$\mathrm{C}(2)$	$0 \cdot 3938(7)$	$0 \cdot 0041$ (5)	$0 \cdot 1775$ (4)
C(3)	0.5248 (6)	$0 \cdot 0554(5)$	$0 \cdot 2680$ (5)
C(4)	0-4694(6)	0.0686(4)	$0 \cdot 3555$ (4)
C(5)	$0 \cdot 3036(7)$	$0 \cdot 0255(5)$	$0 \cdot 3195(5)$
C(6)	$0 \cdot 3978$ (6)	$0 \cdot 2463(4)$	$0 \cdot 1417(4)$
O(6)	$0 \cdot 4613$ (6)	0.3010(4)	$0 \cdot 0967(4)$
$\mathrm{C}(7)$	$0 \cdot 2801$ (7)	$0 \cdot 2671$ (4)	$0 \cdot 2983(4)$
$\mathrm{O}(7)$	0-2708(6)	$0 \cdot 3349(3)$	$0 \cdot 3576(3)$
C(8)	$0 \cdot 0130(8)$	$0 \cdot 3250$ (5)	$0 \cdot 0352(5)$
$\mathrm{C}(9)$	$-0.1077(7)$	$0 \cdot 1665$ (6)	$0 \cdot 1415$ (6)
$\mathrm{F}(1)$	$0 \cdot 1015$ (6)	$0 \cdot 3531(4)$	-0.0268(4)
F(2)	$0.0534(7)$	$0 \cdot 3996(3)$	$0 \cdot 1167(4)$
$\mathrm{F}(3)$	$-0.1459(6)$	$0 \cdot 3460(4)$	-0.0312(4)
$\mathrm{F}(4)$	$-0.0956(5)$	0.0708(4)	$0 \cdot 1947$ (5)
F (5)	$-0 \cdot 2660(4)$	$0 \cdot 1706(5)$	$0 \cdot 0632(4)$
$F(6)$	$-0.1015(5)$	$0 \cdot 2450(4)$	$0 \cdot 2159(4)$
H(1)	$0 \cdot 1492$	-0.0519	$0 \cdot 1622$
H(2)	$0 \cdot 3972$	-0.0151	$0 \cdot 1027$
H(3)	$0 \cdot 6373$	0.0781	$0 \cdot 2690$
H(4)	0.5354	$0 \cdot 1028$	$0 \cdot 4308$
H(5)	$0 \cdot 2314$	0.0243	$0 \cdot 3645$

Anisotropic temperature coefficients in the form: $t=\exp$ $\left[-2 \pi^{2} 10^{-3}\left(h^{2} a^{* 2} U_{11}+k^{2} b^{* 2} U_{22}+l^{2} c^{* 2} U_{33}+2 h k a^{*} b^{*} U_{12}+\right.\right.$ $\left.2 h l a^{*} c^{*} U_{13}+2 k l b^{*} c^{*} U_{23}\right)$].

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Fe	$50 \cdot 1(3)$	$43 \cdot 7(3)$	$47 \cdot 4(3)$	$0 \cdot 7(3)$	$19 \cdot 5(2)$	$-2 \cdot 4(3)$
P	$52 \cdot 6(6)$	$61 \cdot 8(7)$	$53 \cdot 2(6)$	$7 \cdot 4(5)$	$16 \cdot 0(5)$	$-2 \cdot 5(5)$
$\mathrm{C}(1)$	$77(3)$	$42(2)$	$89(4)$	$-1(2)$	$10(3)$	$4(2)$
$\mathrm{C}(2)$	$93(4)$	$67(3)$	$64(3)$	$28(3)$	$30(3)$	$-4(2)$
$\mathrm{C}(3)$	$56(3)$	$75(3)$	$79(3)$	$16(2)$	$24(3)$	$4(3)$
$\mathrm{C}(4)$	$66(3)$	$72(3)$	$55(3)$	$11(2)$	$13(2)$	$9(2)$
$\mathrm{C}(5)$	$76(3)$	$63(3)$	$80(3)$	$13(2)$	$37(3)$	$22(3)$
$\mathrm{C}(6)$	$66(3)$	$58(3)$	$66(3)$	$-8(2)$	$32(2)$	$-7(2)$
$\mathrm{O}(6)$	$103(3)$	$83(2)$	$106(3)$	$-22(2)$	$62(3)$	$2(2)$
$\mathrm{C}(7)$	$83(3)$	$52(2)$	$58(3)$	$-1(2)$	$30(2)$	$-3(2)$
$\mathrm{O}(7)$	$139(4)$	$68(2)$	$80(2)$	$7(2)$	$50(3)$	$-20(2)$
$\mathrm{C}(8)$	$91(4)$	$83(4)$	$76(4)$	$31(3)$	$28(3)$	$23(3)$
$\mathrm{C}(9)$	$57(3)$	$93(4)$	$113(5)$	$-2(3)$	$34(3)$	$0(4)$
$\mathrm{F}(1)$	$156(4)$	$121(3)$	$132(3)$	$40(3)$	$87(3)$	$63(3)$
$\mathrm{F}(2)$	$207(5)$	$61(2)$	$106(3)$	$38(2)$	$55(3)$	$13(2)$
$\mathrm{F}(3)$	$102(3)$	$145(4)$	$152(4)$	$59(3)$	$17(3)$	$55(3)$
$\mathrm{F}(4)$	$106(3)$	$128(3)$	$222(6)$	$-5(3)$	$101(4)$	$48(4)$
$\mathrm{F}(5)$	$55(2)$	$214(5)$	$132(3)$	$8(2)$	$26(2)$	$-25(3)$
$\mathrm{F}(6)$	$118(3)$	$143(4)$	$114(3)$	$-1(3)$	$77(3)$	$-25(3)$

All hydrogen atoms have $B 4.0 \AA^{2}$.
Throughout the structure-factor calculations the atomic scattering factors of ref. 8 were used for non-hydrogen atoms, and of ref. 9 for hydrogen atoms. Observed and
${ }^{9}$ R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. Phys., 1965, 42, 3175.
calculated structure factors are listed in Supplementary Publication No. SUP 21207 (19 pp., 1 microfiche).*

RESULTS AND DISCUSSION

Table 1 gives the final atomic parameters for complex (1) while those for (2) are given in Table 2. Details of the molecular geometries are listed in Table 3, and of planes in Table 4. The molecules are separated by normal van der Waals distances, the shorter of which are listed in Table 5. The atom labelling schemes are

Table 2
Atomic parameters, with estimated standard deviations in parentheses, for (2)

Atom	x	y	Σ
Fe	$0 \cdot 28892(5)$	0.14825(8)	$0 \cdot 21807(4)$
P	$0 \cdot 25892(9)$	-0.12960(14)	0.17973(8)
$\mathrm{O}(1)$	$0 \cdot 3396$ (3)	$-0.2681(5)$	$0 \cdot 2237$ (3)
C(1)	$0 \cdot 3324(5)$	$0 \cdot 0648(7)$	$0 \cdot 3649$ (3)
C(2)	$0 \cdot 4189$ (4)	$0 \cdot 1689$ (9)	0.3418(4)
C(3)	$0 \cdot 3721$ (7)	$0 \cdot 3354(8)$	$0 \cdot 3163$ (4)
C(4)	$0 \cdot 2558$ (7)	$0 \cdot 3290$ (9)	$0 \cdot 3234(5)$
C(5)	$0 \cdot 2325$ (5)	$0 \cdot 1617(8)$	$0 \cdot 3525$ (4)
C(6)	$0 \cdot 3830$ (4)	$0 \cdot 1805(7)$	0.1345(4)
$\mathrm{O}(6)$	0.4436(4)	0.2104(8)	0.0826(3)
C(7)	$0 \cdot 1672(5)$	$0 \cdot 2252(6)$	$0 \cdot 1328$ (4)
O (7)	0.0919 (4)	$0 \cdot 2812$ (6)	$0.0794(3)$
C(8)	$0 \cdot 2310(5)$	-0.1691(7)	0.0426(4)
C(9)	$0 \cdot 1132(4)$	-0.1998(6)	$0 \cdot 1997$ (4)
$\mathrm{F}(1)$	$0 \cdot 3268(4)$	-0.1353(6)	$0 \cdot 0084$ (3)
$\mathrm{F}(2)$	$0 \cdot 1518(4)$	-0.0680 (6)	-0.0087(2)
$\mathrm{F}(3)$	$0 \cdot 2037(4)$	$-0.3335(5)$	$0 \cdot 0179(3)$
$\mathrm{F}(4)$	$0 \cdot 1126(4)$	$-0.2034(6)$	$0 \cdot 2955(3)$
F (5)	$0 \cdot 0823(3)$	-0.3589(4)	$0 \cdot 1670$ (3)
$\mathrm{F}(6)$	0.0299(3)	$-0.0919(5)$	$0 \cdot 1602(4)$
$\mathrm{H}(1)$	$0 \cdot 3408$	-0.0605	0.3871
$\mathrm{H}(2)$	$0 \cdot 4996$	$0 \cdot 1321$	$0 \cdot 3430$
$\mathrm{H}(3)$	$0 \cdot 4136$	$0 \cdot 4398$	$0 \cdot 2966$
H(4)	$0 \cdot 2001$	$0 \cdot 4283$	$0 \cdot 3097$
$\mathrm{H}(5)$	$0 \cdot 1567$	$0 \cdot 1179$	$0 \cdot 3629$

Anisotropic temperature coefficients in the form: $t=\exp$ $\left[-2 \pi^{2} 10^{-3}\left(h^{2} a^{* 2} U_{11}+k^{2} b^{* 2} U_{22}+l^{2} c^{* 2} U_{33}+2 h k a^{*} b^{*} U_{12}+\right.\right.$ $\left.\left.2 h l a^{*} c^{*} U_{13}+2 k l b^{*} c^{*} U_{23}\right)\right]$.

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Fe	40.4(4)	35•8(3)	35.5(3)	$-1.8(3)$	6.1(2)	$2 \cdot 5(3)$
P	40.1(6)	35-6(6)	36.9(5)	$3 \cdot 2(5)$	8.7(4)	$0 \cdot 5(4)$
$\mathrm{O}(1)$	57(2)	$51(2)$	73(2)	16(2)	7(2)	$5(2)$
C(1)	77(3)	46(3)	33(2)	-6(2)	7(2)	0 (2)
$\mathrm{C}(2)$	48(3)	99(5)	40(3)	-8(3)	0 (2)	$-11(3)$
$\mathrm{C}(3)$	131(6)	64(4)	49(3)	$-49(4)$	7(3)	$-9(3)$
C(4)	113(5)	68(4)	60(3)	37(4)	3(3)	$-17(3)$
C(5)	63(3)	81 (4)	45(3)	$-1(3)$	17(2)	$-10(3)$
C(6)	$55(3)$	66(3)	45(3)	-8(2)	3(2)	15(2)
$\mathrm{O}(6)$	81(3)	140(4)	63(2)	$-29(3)$	28(2)	22(3)
C(7)	$61(3)$	35(2)	57(3)	2(2)	$5(2)$	-4(2)
$\mathrm{O}(7)$	77(3)	64(2)	87(3)	21(2)	$-26(2)$	7(2)
$\mathrm{C}(8)$	$76(3)$	58(3)	$49(3)$	4(3)	18(3)	-6(2)
$\mathrm{C}(9)$	63(3)	39(2)	63(3)	-6(2)	17(2)	3(2)
$\mathrm{F}(1)$	113(3)	139(4)	70 (2)	$-14(3)$	53(2)	$-20(2)$
$\mathrm{F}(2)$	134(3)	108(3)	45(2)	37(3)	-9(2)	-3(2)
$\mathrm{F}(3)$	157(4)	71 (2)	68(2)	$-14(2)$	27(2)	$-30(2)$
$\mathrm{F}(4)$	105(3)	134(3)	69(2)	$-49(3)$	44(2)	$-3(2)$
$F(5)$	87(2)	58(2)	130(3)	$-30(2)$	33(2)	-22(2)
$\mathrm{F}(6)$	45(2)	79(2)	159(4)	6(2)	17(2)	29(2)

indicated in Figures 1 and 2 which show molecules of (1) and (2) projected on the mean planes through the carbon atoms of the cyclopentadienyl rings. Figure 3 shows the molecule of complex (2) projected on the

[^2]plane containing the $\mathrm{Fe}-\mathrm{P}$ bond, perpendicular to the cyclopentadienyl ring.

A few previous structural studies have involved comparison between complexes containing, respectively, $\mathrm{PR}_{3}{ }_{3}$ and $\mathrm{PR}_{3}{ }_{3}$ ligands. ${ }^{3-5,10}$ In these cases the

Table 3
Molecular geometries of both complexes
(a) Intramolecular distances (\AA), with estimated standard deviations in parentheses

	(1)	(2)
$\mathrm{Fe}-\mathrm{P}$	$2 \cdot 265(3)$	$2 \cdot 191(3)$
$\mathrm{Fe}-\mathrm{C}(1)$	$2 \cdot 106(6)$	$2.095(5)$
$\mathrm{Fe}-\mathrm{C}(2)$	$2 \cdot 090$ (6)	$2.084(6)$
$\mathrm{Fc}-\mathrm{C}(3)$	$2 \cdot 101(6)$	2.083(7)
$\mathrm{Fe}-\mathrm{C}(4)$	2.096(6)	2.093(7)
$\mathrm{Fe}-\mathrm{C}(5)$	2.093(6)	2.096(7)
$\mathrm{Fe}-\mathrm{C}(6)$	1.763 (6)	1.775 (6)
$\mathrm{Fe}-\mathrm{C}(7)$	$1.773(6)$	1.786(6)
$\mathrm{P}-\mathrm{O}(1)$		1-478(5)
$\mathrm{P}-\mathrm{C}$ (8)	$1.875(7)$	$1 \cdot 885$ (6)
$\mathrm{P}-\mathrm{C}(9)$	$1.881(8)$	$1 \cdot 889(6)$
$\mathrm{C}(1)-\mathrm{C}(2)$	1-394(10)	$1 \cdot 386(8)$
$\mathrm{C}(1)-\mathrm{C}(5)$	1-403(8)	$1 \cdot 384$ (8)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1 \cdot 408(8)$	$1.401(9)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1 \cdot 390$ (9)	1-412(12)
$\mathrm{C}(4)-\mathrm{C}(5)$	1-415(8)	$1.378(9)$
$\mathrm{C}(6)-\mathrm{O}(6)$	$1 \cdot 141$ (8)	1-135(7)
$\mathrm{C}(7)-\mathrm{O}(7)$	$1 \cdot 135(8)$	1-132(7)
$\mathrm{C}(8)-\mathrm{F}(1)$	$1 \cdot 341$ (10)	1-342(8)
$\mathrm{C}(8)-\mathrm{F}(2)$	$1 \cdot 315(8)$	1-316(7)
$\mathrm{C}(8)-\mathrm{F}(3)$	$1 \cdot 326$ (8)	1-320(7)
$\mathrm{C}(9)-\mathrm{F}(4)$	$1 \cdot 314(9)$	$1 \cdot 325$ (7)
$\mathrm{C}(9)-\mathrm{F}(5)$	$1 \cdot 345(7)$	1-319(7)
$\mathrm{C}(9)-\mathrm{F}(6)$	$1 \cdot 324(9)$	1-324(7)
$\mathrm{Fe} \cdot \cdots \mathrm{O}(6)$	$2 \cdot 904(6)$	2.908(6)
Fe. . O(7)	2.906(6)	2.918(5)
(b) Intramolecular angles deviations in parentheses	$\left({ }^{\circ}\right)$, with	mated standard
	(1)	(2)
$\mathrm{P}-\mathrm{Fe}-\mathrm{C}(6)$	91-3(2)	94.0(2)
$\mathrm{P}-\mathrm{Fe}-\mathrm{C}(7)$	95.8(2)	$94 \cdot 7(2)$
$\mathrm{C}(6)-\mathrm{Fe}-\mathrm{C}(7)$	$94 \cdot 3$ (3)	93-5(3)
$\mathrm{Fe}-\mathrm{P}-\mathrm{C}(8)$	107.7(3)	$112.7(2)$
$\mathrm{Fe}-\mathrm{P}-\mathrm{C}(9)$	107.0(3)	$110 \cdot 5(2)$
$\mathrm{C}(8)-\mathrm{P}-\mathrm{C}(9)$	94.5(3)	96.4(3)
$\mathrm{Fe}-\mathrm{P}-\mathrm{O}(1)$		121.6(2)
$\mathrm{O}(1)-\mathrm{P}-\mathrm{C}(8)$		106.1(3)
$\mathrm{O}(1)-\mathrm{P}-\mathrm{C}(9)$		106.6(3)
$\mathrm{Fe}-\mathrm{C}(6)-\mathrm{O}(6)$	177.0(5)	176.3(6)
$\mathrm{Fe}-\mathrm{C}(7)-\mathrm{O}(7)$	175.6(5)	177.0(5)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	108.8(5)	107.2(5)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	107.6(5)	107.5(6)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	108.1(4)	107.9(6)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	107.8(6)	108.1(6)
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	107.6(5)	109.3(5)
$\mathrm{P}-\mathrm{C}(8)-\mathrm{F}(1)$	108.6(5)	108.9(4)
$\mathrm{P}-\mathrm{C}(8)-\mathrm{F}(2)$	118.6(4)	114.8(4)
$\mathrm{P}-\mathrm{C}(8)-\mathrm{F}(3)$ $\mathrm{F}(1)-\mathrm{C}(8)-\mathrm{F}$	112.5(5)	$113.5(4)$
$\mathrm{F}(1)-\mathrm{C}(8)-\mathrm{F}(2)$	$105 \cdot 6(6)$	105.8(5)
$\mathrm{F}(1)-\mathrm{C}(8)-\mathrm{F}(3)$	104.6(5)	106.0(5)
$\underset{\mathrm{F}}{\mathrm{F}}(2)-\mathrm{C}(8)-\mathrm{F}(3)$	105.9(6)	107.3(5)
$\mathrm{P}-\mathrm{C}(9)-\mathrm{F}(4)$ $\mathrm{P}-\mathrm{C}(9)-\mathrm{F}(5)$	$110 \cdot 5(5)$	109•4(4)
$\mathrm{P}-\mathrm{C}(9)-\mathrm{F}(5)$ $\mathrm{P}-\mathrm{C}(9)-\mathrm{F}(6)$	$110 \cdot 9(5)$ $118.2(5)$	$114 \cdot 5(4)$ $113.9(4)$
$\mathrm{F}(4)-\mathrm{C}(9)-\mathrm{F}(5)$	$105 \cdot 9(5)$	105.6(5)
$\mathrm{F}(4)-\mathrm{C}(9)-\mathrm{F}(6)$	105.4(6)	106.2(5)
$\mathrm{F}(5)-\mathrm{C}(9)-\mathrm{F}(6)$	105.1(5)	106.7(4)

alteration to the length of the metal-phosphorus bond has been explained in terms of the variable π-acceptor properties of phosphorus, arising from the differing electronegativities of the groups $R^{\mathbf{1}}$ and $R^{\mathbf{2}}$. We now ${ }^{10}$ D. A. Allison, J. Clardy, and J. G. Verkade, Inorg. Chem., 1972, 11, 2804.

Table 4
Equations of least-squares planes in which X, Y, Z refer to orthogonal co-ordinates obtained by the transformation:

$$
\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{lll}
a \sin \beta, & 0, & 0 \\
0, & b, & 0 \\
a \cos \beta, & 0, & c
\end{array}\right] \quad\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Distances (\AA) of atoms from the planes are shown in square brackets

$$
\begin{aligned}
& \text { Plane }(1): \mathrm{C}(1)-(5) \text { in }(1) \\
& \quad-0.3717 X+0.8987 Y-0.2329 Z+1 \cdot 3479=0 \\
& \quad[\mathrm{C}(1)-0 \cdot 006, \mathrm{C}(2) 0 \cdot 005, \mathrm{C}(3)-0 \cdot 002, \mathrm{C}(4)-0.002, \mathrm{C}(5) \\
& \quad 0 \cdot 004, \mathrm{Fe} \mathrm{1.725,P2} \mathrm{\cdot 869,C(6)2} \mathrm{\cdot 699,C(7)2} \mathrm{\cdot 708]} \\
& \text { Plane (2): C(1)-(5) in (2) } \\
& \quad 0 \cdot 2360 X+0 \cdot 2880 Y+0.9281 Z-5 \cdot 0336=0 \\
& {[\mathrm{C}(1)-0 \cdot 007, \mathrm{C}(2) 0 \cdot 005, \mathrm{C}(3)-0 \cdot 002, \mathrm{C}(4)-0 \cdot 022, \mathrm{C}(5)} \\
& 0 \cdot 006, \mathrm{Fe} \mathrm{1.722,P} 2.842, \mathrm{C}(6) 2 \cdot 662, \mathrm{C}(7) 2 \cdot 727]
\end{aligned}
$$

Table 5
Intermolecular approaches $(<3 \cdot 0 \AA$)
(a) For (1)

$\mathrm{F}(1) \cdots \mathrm{H}\left(5^{\mathrm{I}}\right)$	$2 \cdot 56$	$\mathrm{F}(4) \cdots \mathrm{H}\left(3^{\text {IV }}\right.$)	$2 \cdot 81$
$\mathrm{F}(3) \cdots \mathrm{H}\left(4^{\text {II }}\right.$)	$2 \cdot 66$	$\mathrm{F}(2) \cdots \mathrm{H}(5 \mathrm{~V})$	2.96
$\mathrm{F}(3) \cdots \mathrm{H}\left(3^{\text {II }}\right.$)	$2 \cdot 68$	$\mathrm{O}(6) \cdots \mathrm{F}\left(5^{\mathrm{VI}}\right)$	$2 \cdot 98$
$\mathrm{O}(6) \cdots \mathrm{H}\left(4^{\mathrm{I}}\right)$	$2 \cdot 71$	$\mathrm{F}(6) \cdots \mathrm{H}\left(\mathbf{l}^{\mathbf{v}}\right)$	3.00
$\mathrm{F}(5) \cdots \mathrm{H}\left(2^{\text {III }}\right)$	$2 \cdot 72$		
(b) For (2)			
$\mathrm{O}(1) \cdots \mathrm{H}\left(2^{\mathrm{vII}}\right)$	$2 \cdot 41$	$\mathrm{F}(6) \cdots \mathrm{H}\left(4^{\mathrm{X}}\right)$	$2 \cdot 86$
$\mathrm{O}(1) \cdots \mathrm{H}\left(3^{\mathrm{VIII}}\right)$	$2 \cdot 53$	$\mathrm{F}(1) \cdots \mathrm{H}\left(\mathrm{l}^{\text {IX }}\right.$)	2.88
$\mathrm{F}(5) \cdots \mathrm{H}\left(4^{\text {VIII }}\right)$	2.73	$\mathrm{F}(2) \cdots \mathrm{H}\left(4^{\mathrm{I}}\right)$	$2 \cdot 88$
$\mathrm{H}(2) \cdots \mathrm{H}\left(3^{\mathrm{VII}}\right)$	2.77	$\mathrm{O}(6) \cdots \mathrm{H}\left(3^{\mathrm{VII}}\right)$	2.97
$\mathrm{F}(3) \cdots \mathrm{H}\left(1^{\text {IX }}\right.$)	9.78	$\mathrm{F}(6) \cdots \mathrm{F}\left(2^{\mathrm{III}}\right)$	2.97
$\mathrm{F}(5) \cdots \mathrm{H}\left(5^{\mathbf{x}}\right)$	2.81	$\mathrm{F}(4) \cdots \mathrm{H}\left(4^{\mathrm{VIII}}\right)$	2.98

Roman numerals as superscripts refer to the following equivalent positions relative to the reference molecules at x, y, z :

$$
\begin{array}{ll}
\text { I } x, \frac{1}{2}-y,-\frac{1}{2}+z & \text { VI } 1+x, y, z \\
\text { II }-1+x, \frac{1}{2}-y,-\frac{1}{2}+z & \text { VII } 1-x,-\frac{1}{2}+y, \frac{1}{2}-z \\
\text { III }-x,-y,-z & \text { VII } x,-1+y, z \\
\text { IV }-1+x, y, z & \text { IX } x,-\frac{1}{2}-y,-\frac{1}{2}+z \\
\text { V }-x, \frac{1}{2}+y, \frac{1}{2}-z & \text { X }-x,-\frac{1}{2}+y, \frac{1}{2}-z
\end{array}
$$

report the effect of a change in the co-ordination number and oxidation level or valency of phosphorus.

Figures 1 and 2 show that the molecular conformations of (1) and (2) are virtually identical; a small

Figure 1 Projection of (1) on the least-squares plane through the carbon atoms of the cyclopentadienyl ring
rotation of the cyclopentadienyl ring about its C_{5} axis from (1) to (2) is probably a consequence of the differing crystal packing. The principal molecular dimensions of the two complexes are compared in Table 6, from which it is evident that the main structural changes
occurring on oxidation at the phosphorus atom are a shortening of the $\mathrm{Fe}-\mathrm{P}$ bond by $0.074(4) \AA$ and an increase in the $\mathrm{Fe}-\mathrm{P}-\mathrm{C}$ and $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles by $c a .3^{\circ}$, the latter change being consistent with a small increase of

Figure 2 Projection of (2) on the least-squares plane through the carbon atoms of the cyclopentadienyl ring

Figure 3 Projection of (2) on the plane perpendicular to the cyclopentadienyl ring and containing the $\mathrm{Fe}-\mathrm{P}$ bond. Hydrogen atoms are omitted

Table 6

Comparison of principal molecular dimensions in complexes (1) and (2). Estimated standard deviations, in parentheses, include contributions from errors in the unit-cell dimensions

Bond or angle	(1)	(2)
$\mathrm{Fe}-\mathrm{P}$	2.265(3) A	2.191(3) \AA
$\mathrm{Fe}-\mathrm{C}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) *$	2.097(7)	$2 \cdot 090$ (7)
$\mathrm{Fe}-\mathrm{C}(\mathrm{CO})$ *	1.768(7)	1-780(7)
C-O *	$1.138(8)$	$1.134(7)$
$\mathrm{P}-\mathrm{C}$ *	$1.878(8)$	1.887(6)
$\mathrm{P}-\mathrm{O}$		$1.478(5)$
$\mathrm{Fe}-\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \dagger$	1.725	1.722
$\mathrm{C}-\mathrm{F}$ *	$1 \cdot 328(5)$	$1 \cdot 324(5)$
$\mathrm{OC}-\mathrm{Fe}-\mathrm{CO}$	$94.3(3)^{\circ}$	93.5(3) ${ }^{\circ}$
$\mathrm{Fe}-\mathrm{P}-\mathrm{C}$ *	107.4(5)	111.6(15)
$\mathrm{Fe}-\mathrm{P}-\mathrm{O}$		121.6(2)
$\mathrm{C}-\mathrm{P}-\mathrm{C}$	94.5(3)	96.4(3)
$\mathrm{C}-\mathrm{P}-\mathrm{O}$ *		106.4(4)
$\mathrm{F}-\mathrm{C}-\mathrm{F}$ *	105.4(4)	106.3(4)
	\dagger Plane.	

s character in the σ-bonding hybrid orbitals on phosphorus. We attribute the former change almost wholly to increased $\mathrm{Fe} \rightarrow \mathrm{P} d_{\pi}-d_{\pi}$ back bonding, for the following reasons. Firstly, the shift in the C-O stretching frequencies must imply greater $\mathrm{Fe} \rightarrow \mathrm{P}$ back donation in (2) since the alternative explanation of reduced
$\mathrm{P} \rightarrow \mathrm{Fe} \sigma$-donation is incompatible with the shortening of the $\mathrm{Fe}-\mathrm{P}$ bond. Secondly, the similarity of the $\mathrm{P}-\mathrm{C}$ bond lengths in (1) and (2) argues against any notable decrease in the σ-bonding covalent radius of phosphorus, although there is evidence for a slight change in hybridization; indeed, the $\mathrm{P}-\mathrm{C}$ bonds lengthen slightly and it is clear that oxidation has not caused any overall 'shrinking' of the phosphorus atom.

The lengths of the $\mathrm{Fe}-\mathrm{CO}$ and $\mathrm{C}-\mathrm{O}$ bonds [means $1.768(7)$ and $1 \cdot 138(8) \AA$ in (1), and $1.780(7)$ and $1 \cdot 134(7) \AA$ in (2)] change in a manner consistent with decreased $\mathrm{Fe} \rightarrow \mathrm{CO}$ and hence increased $\mathrm{Fe} \rightarrow \mathrm{P}$ back bonding in the oxidized complex, though the effects are small and within the limits of experimental error. In the comparison of $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2}\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\right] \mathrm{I}$ with the analogous PPh_{3} complex it was noted that a contraction of the Mo-P bond was accompanied by an appreciably smaller lengthening of the Mo-CO bonds.4,5

The $\mathrm{P}-\mathrm{O}$ separation $[1 \cdot 478(5) \AA$] in (2) may be com${ }^{11}$ T. Moritani, K. Kuchitsu, and Y. Morino, Inorg. Chem., 1971, 10, 344.
pared with the shorter distance ${ }^{11}$ ($\mathbf{1} \cdot \mathbf{4 4 6} \AA$) for POCl_{3} where the sum of electronegativities for the three chlorine substituents ($3 \times 3 \cdot 0$) is about the same as that for the two CF_{3} groups (2×3.5) and one iron atom (1.8) in complex (2). On the basis of the frequency $v(\mathrm{P}: \mathrm{O})$ which is much lower in (2) than in compounds of the type $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{X}(\mathrm{X}=\mathrm{C}-, \mathrm{N}$-, O -, or halogen-ligand) it has been suggested ${ }^{6}$ that in (2) both Fe and O compete for the phosphorus d orbitals. Such competition may explain the almost identical carbonyl stretching frequencies observed in (2) and the complexes $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Fe}(\mathrm{CO})_{2} \mathrm{P}(\mathrm{E})\left(\mathrm{CF}_{3}\right)_{2}\right] \quad(\mathrm{E}=\mathrm{S}$ or Se$) .{ }^{6}$ The decreasing electronegativity down the series O, S, Se might normally be expected to reduce the π-acceptor properties of phosphorus but, in this case, may be compensated by a reduction in the competing $\mathrm{E} \rightarrow \mathrm{P}$ π-bonding.
We thank Dr. R. C. Dobbie for supplies of the complexes and the S.R.C. for financial support.
[4/1061 Received, 30th May, 1974]

[^0]: \dagger Reprints not available.
 ${ }^{1}$ Part XV, D. I. Woodhouse, G. A. Sim, and J. G. Sime, J.C.S. Dalton, 1974, 1331.
 ${ }_{2}$ J. G. Verkade, Co-ordination Chem. Rev., 1972, 9, 1, and refs. therein.

[^1]: ${ }^{3}$ H. J. Plastas, J. M. Stewart, and S. O. Grim, J. Amer. Chem. Soc., 1969, 91, 4326.
 ${ }^{4}$ A. D. U. Hardy and G. A. Sim, J.C.S. Dalton, 1972, 1900.
 5 M. A. Bush, A. D. U. Hardy, Lj. Manojlović-Muir, and G. A. Sim, J. Chem. Soc. (A), 1971, 1003.
 ${ }^{6}$ R. C. Dobbie and P. R. Mason, J.C.S. Dalton, 1973, 1124; M. J. Barrow, G. A. Sim, R. C. Dobbie, and P. R. Mason, J. Organometallic Chem., 1974, 69, C4.

[^2]: * See Notice to Authors No. 7 in J.C.S. Dalton, 1973, Index issue.

