Crystal and Molecular Structure of Di - μ-carbonyl-dicarbonyl[cyclohexyl(diphenyl)phosphine]((%5Cpi)-methylcylopentadienylnickelio)cobalt

By Ian L. C. Campbell and Frederick S. Stephens,* \dagger Department of Chemistry, University of Essex, Colchester CO4 3SQ

Abstract

The crystal structure of the title compound has been determined by X-ray diffraction methods using counter data. Refinement to $R 0.084$ for 3661 reflections was carried out by a least-squares procedure. The monoclinic unit cell. space group $P 2_{1} / c$, has dimensions $a=14.261 \pm 0.022, b=10.034 \pm 0.017, c=18.508 \pm 0.032 \AA$. $\beta=$ $98.5 \pm 0 \cdot 1^{\circ}$, for $Z=4$. The dimer molecule has a non-planar $\mathrm{Ni}(\mathrm{CO})_{2} \mathrm{Co}$ bridging system, the angle between the two $\mathrm{Ni}(\mathrm{CO}) \mathrm{Co}$ planes being 133.9°. Metal to bridge-carbon distances are $\mathrm{Ni}-\mathrm{C} 1.85$. $\mathrm{Co}-\mathrm{C} 1.93 \AA$; $\mathrm{Ni} \cdots \mathrm{Co}$ is $2.418(2)$ and $\mathrm{Co}-\mathrm{P} 2.269 \AA$. The cobalt atom is in a square-based pyramidal environment. The methylcyclopentadienyl ligand and the phenyl rings are planar, and the cyclohexyl ring is in a chair conformation.

Spectral studies of the complexes [(π-dienyl)$\left.\mathrm{NiCo}(\mathrm{CO})_{4} \mathrm{~L}\right]$ where L is a phosphine indicate the presence of a non-planar $\mathrm{Ni}(\mathrm{CO})_{2} \mathrm{Co}$ bridging system. ${ }^{1}$ The crystal structure analysis of one of these compounds, $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{NiCo}(\mathrm{CO})_{4}\left(\mathrm{PEt}_{3}\right)\right]$, ${ }^{2}$ has shown distortions in the carbonyl-bridging system which could not be readily explained. The crystal-structure analysis of the title compound was undertaken to determine its molecular structure and its relationship to other similar compounds.

EXPERIMENTAL

Crystal Data.- $-\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{CoNiO}_{4} \mathrm{P}, M=\mathbf{5 7 7} \cdot 1$, Monoclinic, $a=14.261 \pm 0.022, \quad b=10.034 \pm 0.017, \quad c=18.508 \pm$ $0.032 \AA, \beta=98.5 \pm 0.1^{\circ}, U=2619.3 \AA^{3}, D_{\mathrm{m}}=1.47$ (by flotation), $Z=4, \quad D_{\mathrm{c}}=1 \cdot 463, \quad F(000)=1192 . \quad \mathrm{Mo}-K_{\alpha}$ radiation, $\lambda=0.71069 \AA$, for cell dimensions and intensity measurements; $\mu\left(\mathrm{Mo}-K_{\alpha}\right)=14.7 \mathrm{~cm}^{-1}$. Space group $P 2_{1} / c$ (No. 14, C_{2}^{5}).

The complex crystallises in a tabular form on (100) with pinacoids $\{010\}$ and $\{001\}$. Unit-cell parameters were determined from single-crystal precession photographs. Since crystals of the compound decompose slowly in air the crystal used for the collection of intensity data was coated with an adhesive. The intensities were collected on a Philips PAILIRED diffractometer. Each reflection in the $h 0-14 l$ layers was recorded for $\sin \theta<0.54$. 3661 unique reflections giving counts ${ }^{3}$ for which $\sigma(I) / I<0 \cdot 5$ were used for the structure analysis. Intensities were corrected for Lorentz and polarisation effects but not for absorption or extinction. Scattering-factor curves for all atoms were taken from ref. 4, the values for the nickel and cobalt being corrected for anomalous dispersion. All calculations were carried out on a PDP 10 computer at the University of Essex with programmes written by one of us (F. S. S.).

Structure Determination.-The positions of the two metal atoms were obtained from a three-dimensional Patterson synthesis. The complete solution of the structure was obtained from a series of Fourier syntheses, each phased by the increased number of atoms. Refinement of the structure was carried out by a least-squares procedure in which the function minimised was $\Sigma w \Delta^{2}$. The weight for each reflection, w, was initially unity and in the final refinement given by $w=\left(10 \cdot 0-0 \cdot 1\left|F_{\mathrm{o}}\right|+0.0015\left|F_{\mathrm{o}}\right|^{2}\right)^{-1}$. For this latter weighting scheme the average values of $w \Delta^{2}$ for ranges of increasing $\left|F_{o}\right|$ were almost constant.
\dagger Present address: School of Chemistry, Macquarie University,
orth Ryde, New South Wales 2113 , Australia. North Ryde, New South Wales 2113 , Australia.
\ddagger See Notice to Authors No. \bar{i} in J.C.S. Dalton, 1973, Index issue.
${ }^{1}$ A. R. Manning, personal communication.
= F. S. Stephens, J.C.S. Dalton, 1974, 1067.

Reflections, for which $\left|F_{\mathrm{c}}\right|<\frac{1}{3}\left|F_{\mathrm{o}}\right|$ were omitted from the least-squares analysis.

Initial refinement used a full-matrix procedure in which positional and individual isotropic thermal parameters for each atom were refined. A difference-Fourier synthesis was calculated when the maximum shift in a parameter was of the order of its σ. This map showed no unusual features and yielded the approximate positions for all hydrogen atoms. In subsequent calculations the contributions for the hydrogen atoms were included with the positions calculated, assuming $\mathrm{C}-\mathrm{H} 1 \cdot 0 \AA$, and with thermal parameters of $B 6 \cdot 0 \AA^{2}$. Refinement was continued for all non-hydrogen atoms with inclusion of individual-layer scale factors. After two cycles the refined layer scale factors were used to produce a unique data set which was used in subsequent calculations.

Final refinement was carried out with anisotropic thermal parameters for all non-hydrogen atoms. Owing to the large number of parameters being refined (317) it was necessary to refine the parameters in block matrices; the six matrices contained the parameters for (1) the overall scale and thermal parameters, (2) the nickel, cobalt, and phosphorus atoms, and carbonyl groups, (3) the cyclopentadienyl ligand, (4) the cyclohexyl ring, and (5) and (6) the two phenyl rings. Refinement was terminated when the maximum shift in a parameter was $<0 \cdot 1 \sigma$. 3589 reflections were included in the final cycle of refinement. The final value for R, based on 3661 reflections, was 0.084 and for $R^{\prime}\left[=\left(\Sigma w \Delta^{2} / \Sigma w\left|F_{\mathrm{o}}\right|^{2}\right)^{\frac{1}{2}}\right]$ was 0.093 .

Final atomic co-ordinates and thermal parameters are given together with their estimated standard deviations in Tables 1 and 2. Observed and calculated structure factors are listed in Supplementary Publication No. SUP 21177 (22 pp., 1 microfiche). \ddagger

discussion

Figure 1 shows a perspective drawing of the molecule and the labelling of the atoms. ${ }^{5}$ Figure 2 shows the packing of the molecules in the crystal. ${ }^{5}$ The molecules are held in the crystal by van der Waals forces. The closest intermolecular carbon-oxygen contacts are $\mathrm{O}(\mathrm{B} 2) \cdots \mathrm{C}(36)$ at $-x, \frac{1}{2}+y, \frac{1}{2}-z 3.35$ and $\mathrm{O}(\mathrm{Bl}) \cdots \mathrm{C}(24)$ at $x,-\frac{1}{2}-y,-\frac{1}{2}+z 3 \cdot 39 \AA$. All $\mathrm{C} \cdots \mathrm{C}$ contact distances are $>\mathbf{3 \cdot 6} \AA$. The bond distances and angles, together with their estimated
${ }^{3}$ M. Mack, Norelco Reporter, 1965, 12, 40.
4 'International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.
${ }_{5}$ C. K. Johnson, ORTEP: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations, Report ORNL 3794, 1965, Revised 1971, Oak Ridge National Laboratory, Oak Ridge, Tennessec.

Table 1
Atomic co-ordinates (fractional) with estimated standard deviations in parentheses

	x / a	y / b	z / c	$\sigma_{\text {rms }} / \AA$
Ni	$0 \cdot 28523(9)$	$0 \cdot 28338(12)$	0.16101(6)	0.0012
Co	0.20786(8)	$0 \cdot 08709(11)$	$0 \cdot 19983$ (6)	0.0011
P	$0 \cdot 21622(14)$	$0.07851(20)$	$0 \cdot 32313$ (10)	$0 \cdot 0020$
$\mathrm{O}(\mathrm{Bl})$	0.2573(9)	$0 \cdot 0816(9)$	$0 \cdot 0534(4)$	0.010
O (B2)	$0 \cdot 1268(6)$	$0 \cdot 3472$ (7)	$0 \cdot 2296(5)$	0.010
O (T1)	0.0217 (6)	$0 \cdot 0071(10)$	$0 \cdot 1279(5)$	0.010
O (T2)	$0 \cdot 3321$ (7)	$-0.1454(11)$	0.1988(6)	0.011
C (B1)	$0 \cdot 2505(9)$	$0 \cdot 1307(11)$	0.1085(6)	0.011
C(B2)	$0 \cdot 1793(7)$	$0 \cdot 2736(10)$	$0 \cdot 2088(5)$	0.010
$\mathrm{C}(\mathrm{Tl})$	0.0916(8)	$0.0367(9)$	$0 \cdot 1581(6)$	0.010
C(T2)	$0 \cdot 2853$ (8)	$-0.0557(11)$	$0 \cdot 2029(6)$	0.011
C(1)	0.4322(8)	$0 \cdot 3172(11)$	$0 \cdot 1513(7)$	0.011
C(2)	$0.4152(8)$	$0 \cdot 3768(12)$	$0 \cdot 2162(6)$	0.012
$\mathrm{C}(3)$	$0 \cdot 3408$ (9)	$0 \cdot 4694(12)$	$0 \cdot 1984$ (7)	0.013
C(4)	$0 \cdot 3140$ (9)	$0 \cdot 4719(11)$	$0 \cdot 1213$ (6)	0.012
C(5)	$0 \cdot 3704$ (8)	$0 \cdot 3740$ (10)	$0 \cdot 0935(5)$	0.010
C(6)	$0 \cdot 5023(10)$	$0 \cdot 2078(15)$	$0 \cdot 1451$ (9)	0.015
C(11)	$0 \cdot 3186(5)$	$0 \cdot 1699$ (8)	$0 \cdot 3678(4)$	0.008
C(12)	$0 \cdot 4086$ (6)	$0 \cdot 1141$ (9)	$0 \cdot 3730(6)$	0.010
$\mathrm{C}(13)$	$0 \cdot 4887(7)$	$0 \cdot 1887(12)$	$0 \cdot 4005$ (7)	0.011
$\mathrm{C}(14)$	$0 \cdot 4806(8)$	$0 \cdot 3167(11)$	0.4226(6)	0.011
$\mathrm{C}(15)$	$0 \cdot 3929$ (7)	$0 \cdot 3757(10)$	$0 \cdot 4170$ (6)	0.010
$\mathrm{C}(16)$	$0.3112(6)$	0.3036(9)	$0 \cdot 3888$ (5)	0.010
$\mathrm{C}(21)$	$0 \cdot 2286$ (6)	$-0.0898(8)$	0.3611(4)	0.010
$\mathrm{C}(22)$	$0 \cdot 2687$ (8)	$-0.1140(9)$	$0 \cdot 4337(5)$	0.010
$\mathrm{C}(23)$	$0 \cdot 2692(7)$	$-0.2457(10)$	$0 \cdot 4614$ (5)	0.010
$\mathrm{C}(24)$	$0 \cdot 2138(9)$	$-0.3432(10)$	$0 \cdot 4232$ (6)	0.011
$\mathrm{C}(25)$	$0 \cdot 1758(8)$	$-0.3219(10)$	$0 \cdot 3506(6)$	0.011
C(26)	$0 \cdot 1714$ (7)	-0.1902(9)	$0 \cdot 3227(6)$	0.010
C(31)	$0 \cdot 1162(6)$	$0 \cdot 1460$ (9)	$0 \cdot 3640$ (4)	0.010
$\mathrm{C}(32)$	$0 \cdot 1262(7)$	$0 \cdot 1478(12)$	$0 \cdot 4450(5)$	0.011
C(33)	$0.0422(9)$	$0 \cdot 2078(13)$	$0 \cdot 4742$ (6)	0.012
$\mathrm{C}(34)$	-0.0489(8)	$0 \cdot 1615(15)$	$0 \cdot 4380$ (7)	0.013
C(35)	-0.0599(7)	$0 \cdot 1532(12)$	$0 \cdot 3573$ (7)	0.012
$\mathrm{C}(36)$	$0 \cdot 0229$ (6)	$0 \cdot 0963(10)$	$0 \cdot 3273(5)$	0.010
$\mathrm{H}(2)$	$0 \cdot 449$	$0 \cdot 358$	0.267	
$\mathrm{H}(3)$	$0 \cdot 314$	$0 \cdot 525$	$0 \cdot 236$	
H(4)	$0 \cdot 264$	$0 \cdot 529$	0.092	
$\mathrm{H}(5)$	$0 \cdot 368$	$0 \cdot 353$	0.041	
$\mathrm{H}(61)$	0.555	$0 \cdot 246$	$0 \cdot 147$	
H(62)	$0 \cdot 507$	$0 \cdot 138$	$0 \cdot 179$	
$\mathrm{H}(63)$	$0 \cdot 493$	$0 \cdot 174$	0.093	
$\mathrm{H}(12)$	$0 \cdot 418$	$0 \cdot 018$	0.358	
$\mathrm{H}(13)$	$0 \cdot 555$	0. 145	0.407	
$\mathrm{H}(14)$	$0 \cdot 540$	$0 \cdot 372$	0.443	
$\mathrm{H}(15)$	$0 \cdot 386$	$0 \cdot 469$	0.435	
$\mathrm{H}(16)$	$0 \cdot 249$	$0 \cdot 350$	$0 \cdot 383$	
$\mathrm{H}(22)$	$0 \cdot 297$	-0.038	0.464	
$\mathrm{H}(23)$	$0 \cdot 310$	-0.268	0.510	
H(24)	$0 \cdot 200$	-0.432	0.446	
$\mathrm{H}(25)$	$0 \cdot 148$	-0.401	0.319	
$\mathrm{H}(26)$	$0 \cdot 132$	-0.165	0.275	
H(31)	$0 \cdot 114$	0.242	0.351	
$\mathrm{H}(321)$	$0 \cdot 187$	$0 \cdot 194$	0.466	
$\mathrm{H}(322)$	$0 \cdot 134$	0.051	0.463	
H(331)	0.046	$0 \cdot 310$	0.469	
H(332)	0.043	$0 \cdot 195$	0.528	
$\mathrm{H}(341)$	-0.061	0.071	$0 \cdot 460$	
$\mathrm{H}(342)$	-0.102	$0 \cdot 214$	0.454	
$\mathrm{H}(351)$	-0.074	$0 \cdot 246$	0.336	
H(352)	-0.120	$0 \cdot 102$	0.338	
H(361)	$0 \cdot 022$	$0 \cdot 111$	$0 \cdot 274$	
$\mathrm{H}(362)$	$0 \cdot 018$	-0.004	0.332	

standard deviations derived directly from the leastsquares inverse matrices, are given in Table 3. The molecule consists of the nickel and cobalt atoms bridged by two carbonyl groups, with the methylcyclopentadienyl ligand π-bonded to the nickel atom and the phosphine ligand co-ordinated to the cobalt atom. The $\mathrm{Co}-\mathrm{P}$ distance $(2 \cdot 269 \AA)$ is similar to that observed for the non-bridged structure $\left[\left(\mathrm{HCF}_{2} \cdot \mathrm{CF}_{2}\right) \mathrm{Co}(\mathrm{CO})_{3}\left(\mathrm{PPh}_{3}\right)\right]$

Table 2
Thermal parameters $\left(\times 10^{4}\right)$,* with estimated standard deviations in parentheses

	b_{11}	b_{22}	b_{33}	b_{12}	b_{13}	b_{23}
Ni	48-4(7)	73.3(11)	20.1(3)	$-21 \cdot 7(8)$	12.55(4)	2-3(6)
Co	33.7(6)	62.8(10)	16.9(3)	$-9 \cdot 5(7)$	7-8(4)	1.6(5)
P	$23 \cdot 0(9)$	46.7(17)	$15 \cdot 1(3)$	$-3 \cdot 3(12)$	$6 \cdot 9(6)$	$-0.6(9)$
O(B1)	192(11)	152(12)	30(3)	-84(10)	48(5)	$-21(5)$
$\mathrm{O}(\mathrm{B2})$	68(5)	89(8)	52(4)	27(6)	26(4)	16(4)
O (T1)	$51(5)$	179(13)	$62(4)$	$-21(7)$	-10(4)	$-30(6)$
O (T2)	100(8)	191(14)	$65(5)$	79 (9)	$34(5)$	-7(7)
C(B1)	85(8)	98(12)	24(3)	-45(8)	20(4)	$-1(5)$
C(B2)	47(6)	78(9)	$25(3)$	0 (6)	10(3)	$19(5)$
C(T1)	48(6)	64(9)	34(4)	$-9(6)$	3(4)	-12(5)
C(T2)	$64(7)$	118(13)	27(3)	8(8)	$21(4)$	$7(5)$
C(1)	48(6)	$99(12)$	43(4)	-23(7)	21 (4)	4(6)
$\mathrm{C}(2)$	$54(7)$	126(14)	$34(4)$	-33(8)	17(4)	$-9(6)$
$\mathrm{C}(3)$	72(8)	111(13)	50(5)	-42(9)	$36(6)$	$-26(7)$
C(4)	73(8)	84(11)	39(4)	-7(8)	$19(5)$	14 (6)
$\mathrm{C}(5)$	55(6)	94(11)	24(3)	$-11(7)$	17(4)	14(5)
$\mathrm{C}(6)$	71(9)	148(18)	74(7)	10(11)	$30(7)$	$8(10)$
$\mathrm{C}(11)$	20(4)	65(7)	$14(2)$	-5(4)	8(2)	-6(3)
C(12)	26(4)	60(9)	46(4)	$8(5)$	7 (3)	$-6(5)$
$\mathrm{C}(13)$	$31(5)$	119(14)	48(5)	$-9(7)$	5(4)	$-12(7)$
$\mathrm{C}(14)$	49(6)	100(12)	32(4)	-8(7)	10(4)	$-8(5)$
$\mathrm{C}(15)$	41 (6)	87(10)	36(4)	$-18(6)$	12(4)	$-19(5)$
$\mathrm{C}(16)$	35(5)	$75(9)$	22(3)	2(5)	$14(3)$	$-2(4)$
$\mathrm{C}(21)$	33(4)	60(8)	21(2)	-7(5)	7 (3)	$7(4)$
$\mathrm{C}(22)$	63(7)	69(9)	19(3)	$5(6)$	$-4(3)$	6(4)
C (23)	44(5)	100(11)	23(3)	15 (6)	$8(3)$	8(5)
$\mathrm{C}(24)$	$74(8)$	59(9)	36(4)	11 (7)	$13(5)$	$10(5)$
C (25)	67(7)	74(10)	39(4)	$-27(7)$	$6(5)$	$14(5)$
$\mathrm{C}(26)$	48(6)	63(9)	31(3)	$-13(6)$	$4(3)$	$6(4)$
C(31)	23(4)	83(9)	19(2)	$-1(5)$	7 (3)	$-3(4)$
$\mathrm{C}(32)$	47(6)	169(16)	20 (3)	$30(8)$	12(3)	$-11(6)$
$\mathrm{C}(33)$	69(8)	162(16)	24(3)	38(10)	17(4)	6 (6)
$\mathrm{C}(34)$	48(7)	$221(22)$	$39(4)$	46(10)	$19(5)$	18(8)
$\mathrm{C}(35)$	35(6)	141(15)	44(5)	4(7)	18(4)	1(7)
$\mathrm{C}(36)$	28(4)	109(11)	$30(3)$	13(6)	12(3)	$3(5)$
For all hydrogen atoms $B=6.0 \AA^{2}$.						
* Anisotropic thermal parameters are in th$-\left(h^{2} b_{11}+k^{2} b_{22}+l^{2} b_{33}+2 h k b_{12}+2 h l b_{13}+2 k l b_{23}\right) .$						

Figure 1 A perspective drawing of the molecule and the labelling of the atoms. Thermal ellipsoids are scaled to include 36% probability
$(2 \cdot 267 \AA),{ }^{6}$ but longer than that in $\left[\left\{\mathrm{Bu}_{3} \mathrm{PCo}(\mathrm{CO})_{3}\right\}_{2}\right]$ $(2 \cdot 18 \AA),{ }^{7} \quad\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{NiCo}(\mathrm{CO})_{4}\left(\mathrm{PEt}_{3}\right)\right] \quad(2 \cdot 236 \quad \AA),{ }^{2}$ and 6 J. B. Wilford and H. M. Powell, J. Chem. Soc. (A), 1967, 2092. 7 J. A. Ibers, J. Organometallic Chem., 1968, 14, 423.
$\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{FeCo}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{2} \mathrm{Me}\right)\right] \quad(2 \cdot 221 \quad \AA) .{ }^{8}$ The carbon atoms bound to the phosphorus atom exhibit the expected trigonal symmetry about the $\mathrm{Co}^{-}-\mathrm{P}$ direction.

TAble 3
Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$, with estimated standard deviations in parentheses

(a) Distances *			
	$\mathrm{Ni} \cdot \mathrm{Co}$	$2 \cdot 418(2)$	
$\mathrm{Ni}-\mathrm{C}(\mathrm{Bl})$	1.842(11)	$\mathrm{Co}-\mathrm{C}(\mathrm{Bl})$	1.929(10)
$\mathrm{Ni}-\mathrm{C}(\mathrm{B2})$	$1 \cdot 863(9)$	$\mathrm{Co}-\mathrm{C}(\mathrm{B} 2)$	1-928(10)
$\mathrm{Ni}-\mathrm{C}$ p	$1 \cdot 754(9)$	$\mathrm{Co}-\mathrm{P}$	$2 \cdot 269(2)$
$\mathrm{Ni}-\mathrm{C}(1)$	$2 \cdot 156(10)$	$\mathrm{Co}-\mathrm{C}(\mathrm{T} 1)$	1.795(11)
$\mathrm{Ni}-\mathrm{C}(2)$	$2 \cdot 191$ (11)	$\mathrm{Co}-\mathrm{C}(\mathrm{T} 2)$	1-805(12)
$\mathrm{Ni}-\mathrm{C}(3)$	2.104(11)	$\mathrm{P}-\mathrm{C}(11)$	$1.817(8)$
$\mathrm{Ni}-\mathrm{C}(4)$	2.092(10)	$\mathrm{P}-\mathrm{C}(21)$	$1 \cdot 827(8)$
$\mathrm{Ni}-\mathrm{C}(5)$	2.077(8)	$\mathrm{P}-\mathrm{C}(31)$	$1 \cdot 839(8)$
$\mathrm{C}(\mathrm{Bl})-\mathrm{O}(\mathrm{Bl})$	1.150(12)	$\mathrm{C}(\mathrm{Tl})-\mathrm{O}(\mathrm{Tl})$	$1 \cdot 109(12)$
$\mathrm{C}(\mathrm{B} 2)-\mathrm{O}(\mathrm{B} 2)$	$1 \cdot 157(11)$	$\mathrm{C}(\mathrm{T} 2)-\mathrm{O}(\mathrm{T} 2)$	$1 \cdot 130(13)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 395(15)$	$\mathrm{C}(31)-\mathrm{C}(32)$	$1 \cdot 486(12)$
$\mathrm{C}(2)-\mathrm{C}(3)$	1.412(17)	C(32)-C(33)	1.511(14)
$\mathrm{C}(3)-\mathrm{C}(4)$	$1 \cdot 422(17)$	$\mathrm{C}(33)-\mathrm{C}(34)$	1-447(18)
$\mathrm{C}(4)-\mathrm{C}(5)$	$1 \cdot 414(15)$	$\mathrm{C}(34)-\mathrm{C}(35)$	1-482(16)
$\mathrm{C}(5)-\mathrm{C}(1)$	1-402(15)	$\mathrm{C}(35)-\mathrm{C}(36)$	1.491(13)
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.501(17)$	$\mathrm{C}(36)-\mathrm{C}(31)$	1-488(12)
$\mathrm{C}(11)-\mathrm{C}(12)$	$1 \cdot 390$ (11)	$\mathrm{C}(21)-\mathrm{C}(22)$	1-402(12)
$\mathrm{C}(12)-\mathrm{C}(13)$	$1 \cdot 397(13)$	$\mathrm{C}(22)-\mathrm{C}(23)$	1-417(13)
$\mathrm{C}(13)-\mathrm{C}(14)$	$1 \cdot 359(15)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1 \cdot 385(15)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1 \cdot 373$ (14)	$\mathrm{C}(24)-\mathrm{C}(25)$	$1 \cdot 388(15)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1 \cdot 405(13)$	$\mathrm{C}(25)-\mathrm{C}(26)$	$1 \cdot 417(13)$
$\mathrm{C}(16)-\mathrm{C}(11)$	1-405(11)	$\mathrm{C}(26)-\mathrm{C}(21)$	1-419(22)
(b) Angles			
C (Bl) - $\mathrm{Ni}-\mathrm{C}(32)$	$91.9(5)$	$\mathrm{C}(\mathrm{B1})-\mathrm{Co}-\mathrm{C}(\mathrm{B2})$	87.3(4)
$\mathrm{Co}-\mathrm{Ni}-\mathrm{CP}^{\text {P }}$	159.1(3)	$\mathrm{Ni}-\mathrm{Co}-\mathrm{P}$	111.8(1)
$\mathrm{C}(\mathrm{Bl})-\mathrm{Ni}-\mathrm{Cp}$	132.7(6)	$\mathrm{Ni}-\mathrm{Co}-\mathrm{C}(\mathrm{Tl})$	122.3(3)
$\mathrm{C}(\mathrm{B} 2)-\mathrm{Ni}-\mathrm{Cp}$	134.9(6)	$\mathrm{Ni}-\mathrm{Co}-\mathrm{C}(\mathrm{T} 2)$	110.6(3)
$\mathrm{P}-\mathrm{Co}-\mathrm{C}(\mathrm{Tl})$	109.3(3)	$\mathrm{P}-\mathrm{Co}-\mathrm{C}(\mathrm{T} 2)$	89.9(3)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	$125 \cdot 6(12)$	$\mathrm{C}(\mathrm{Tl})-\mathrm{Co}-\mathrm{C}(\mathrm{T} 2)$	108.2(5)
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(5)$	126.1(11)	$\mathrm{Co}-\mathrm{P}-\mathrm{C}(11)$	111.0(2)
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	108.3(10)	$\mathrm{Co}-\mathrm{P}-\mathrm{C}(21)$	114.2(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	107.5(11)	$\mathrm{Co}-\mathrm{P}-\mathrm{C}(31)$	118.1(3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$109 \cdot 2(10)$	$\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(21)$	105.4(4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	105.6(10)	$\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(31)$	104.3(4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	$109 \cdot 4(9)$	$\mathrm{C}(21)-\mathrm{P}-\mathrm{C}(31)$	102.7(4)
$\mathrm{Ni}-\mathrm{C}(\mathrm{Bl})-\mathrm{Co}$	79.7(4)	$\mathrm{Ni}-\mathrm{C}$ (B 2$)-\mathrm{Co}$	79.3(4)
$\mathrm{Ni}-\mathrm{C}(\mathrm{Bl})-\mathrm{O}(\mathrm{Bl})$	140.5(8)	$\mathrm{Ni}-\mathrm{C}(\mathrm{B} 2)-\mathrm{O}(\mathrm{B} 2)$	137.2(8)
$\mathrm{Co}-\mathrm{C}(\mathrm{Bl})-\mathrm{O}(\mathrm{Bl})$	139.3(9)	$\mathrm{Co}-\mathrm{C}(\mathrm{B} 2)-\mathrm{O}(\mathrm{B} 2)$	143.5(8)
$\mathrm{Co}-\mathrm{C}(\mathrm{Tl})-\mathrm{O}(\mathrm{Tl})$	175-3(11)	$\mathrm{Co}-\mathrm{C}(\mathrm{T} 2)-\mathrm{O}(\mathrm{T} 2)$	174.4(11)
$\mathrm{P}-\mathrm{C}(11)-\mathrm{C}(12)$	120.0(6)	$\mathrm{P}-\mathrm{C}(21)-\mathrm{C}(22)$	122.1(7)
$\mathrm{P}-\mathrm{C}(11)-\mathrm{C}(16)$	121.3(6)	$\mathrm{P}-\mathrm{C}(21)-\mathrm{C}(26)$	116.7(6)
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)$	$118 \cdot 2(8)$	$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{C}(22)$	118.7(8)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	120.4(8)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	119.2(8)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$120 \cdot 9(10)$	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	120.2(9)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$120 \cdot 1(10)$	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$119.8(9)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$120 \cdot 2(9)$	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	119.1(10)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	$120 \cdot 1(8)$	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(21)$	$119.3(9)$
$\mathrm{P}-\mathrm{C}(31)-\mathrm{C}(32)$	117.1(6)	$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	114.3(10)
$\mathrm{P}-\mathrm{C}(31)-\mathrm{C}(36)$	112.7(6)	$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	116.0(10)
$\mathrm{C}(36)-\mathrm{C}(31)-\mathrm{C}(32)$	$114 \cdot 2(8)$	$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$	$115 \cdot 2(10)$
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	113.8(9)	$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(31)$	$114.0(9)$

* $\mathrm{C} p$ is the centroid of the cyclopentadienyl fragment.

The two phenyl rings of the phosphine ligand are planar (Table 4) and the cyclohexyl ring is in a chair conformation.

The methylcyclopentadienyl ligand exhibits the expected planarity (Table 5). The $\mathrm{C}-\mathrm{C}$ distances within the ligand are in accord with those previously reported, ${ }^{2,8}$ mean $1-41 \AA$. The nickel to ring-carbon distances are $2.08-2.18 \AA$, mean $2.12 \AA$. The nickel to ring-centroid distance is $1.75 \AA$, and the angle between this direction and the $\mathrm{Ni} \cdots$ Co direction is $159 \cdot 1^{\circ}$. The $\mathrm{Ni} \cdots$ Co distance $(2 \cdot 418 \AA)$ is in good agreement
with that found $(2 \cdot 410 \AA)$ in $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{NiCo}(\mathrm{CO})_{4}\left(\mathrm{PEt}_{3}\right)\right],{ }^{2}$ and is consistent with the metal-metal distance derived from the parent compounds. The $\mathrm{Ni}(\mathrm{CO})_{2} \mathrm{Co}$ bridging system exhibits the expected non-planarity. The angle

Figure 2 Unit-cell contents projected on the ac plane
Table 4
Least-squares planes and their equations given by $l X^{\prime}+$ $m Y^{\prime}+n Z^{\prime}-p=0$ where X^{\prime}, Y^{\prime}, and Z^{\prime} are orthogonal co-ordinates related to the atomic co-ordinates X, Y, and Z by $X^{\prime}=X \sin \beta, Y^{\prime}=Y, Z^{\prime}=Z+$ $X \cos \beta$. Deviations (\AA) of the most relevant atoms from the planes are given in square brackets
 $\mathrm{O}(\mathrm{Bl})$
[Ni 0.007, Co 0.007, C(B1) $-0.030, \mathrm{O}(\mathrm{Bl}) 0.017]$
$\begin{array}{lllll}\text { Plane (5) : Ni, Co, C(B2), } & 0.5898 & 0.0343 & 0.8068 & 4.3913\end{array}$ O(B2) $[\mathrm{Ni}-0.001, \mathrm{Co}-0.002, \mathrm{C}(\mathrm{B} 2) 0.007, \mathrm{O}(\mathrm{B} 2)-0.004]$
Plane (6): P(1),
C(B1), C(B2) $\quad 0.8995 \quad 0.4065 \quad 0.1602 \quad 3.9484$ $[\mathrm{Co}-0.43, \mathrm{C}(\mathrm{T} 1)-2 \cdot 20, \mathrm{C}(\mathrm{T} 2)-0 \cdot 05]$
Plane (7): $P(1)$, $\begin{array}{lllll}\mathrm{C}(\mathrm{Bl}), \mathrm{C}(\mathrm{T} 1) & -0.3494 & 0.9336 & 0.0796 & 0.1095\end{array}$ $[\mathrm{Co}-0.06, \mathrm{C}(\mathrm{B} 2) 1.85, \mathrm{C}(\mathrm{T} 2)-1.79]$
Plane (8): $P(1)$,
$\begin{array}{lllll}\mathrm{C}(\mathrm{B} 1), \mathrm{C}(\mathrm{T} 2) & 0.9110 & 0.3808 & 0.1583 & 3.9525\end{array}$ $[\mathrm{Co}-0.43, \mathrm{C}(\mathrm{B} 2)-0 \cdot 05, \mathrm{C}(\mathrm{T} 1)-2 \cdot 20]$
between the two $\mathrm{Ni}(\mathrm{CO})$ Co planes ($133 \cdot 9^{\circ}$) agrees well with that ($133 \cdot 7^{\circ}$) in $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{NiCo}(\mathrm{CO})_{4}\left(\mathrm{PEt}_{3}\right)\right],{ }^{2}$ being
intermediate between the values for the parent compounds $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]\left(127^{\circ}\right)^{9}$ and $\left[\left\{\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{NiCO}\right\}_{2}\right]\left(142^{\circ}\right)^{10}$

The distortion in the bridge distances observed for $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{NiCo}(\mathrm{CO})_{4}\left(\mathrm{PEt}_{3}\right)\right]^{2}$ is not apparent in this complex. As might be expected the two $\mathrm{Ni}-\mathrm{C}_{\mathrm{b}} \quad(\mathrm{b}=$ bridge) distances are equivalent ($1.85 \AA$) as are the two $\mathrm{Co}^{-} \mathrm{C}_{\mathrm{b}}$ distances ($1.93 \AA$). However some distortion in the angles around one of the bridge-carbon atoms is evident. The two $\mathrm{Ni}-\mathrm{C}_{\mathrm{b}}-\mathrm{Co}$ angles are equivalent (mean 79.5°) as are the two $\mathrm{M}-\mathrm{C}(\mathrm{Bl})-\mathrm{O}(\mathrm{Bl})$ angles
$\left.\left(\mathrm{PPh}_{2} \mathrm{Me}\right)\right]^{8}$ (Table 5). Comparing the $\mathrm{Co}-\mathrm{P}$ and $\mathrm{Co}-\mathrm{C}_{\mathrm{b}}$ bond-lengths in these two compounds with those in the present structure, it is apparent that as the $\mathrm{Co}_{0}-\mathrm{P}$ bond becomes shorter, the $\mathrm{Co}^{-} \mathrm{C}_{\mathrm{b}}$ distance trans to the phosphine ligand increases. This further correlates with the geometry round the cobalt; the nearer the geometry to a square-based pyramidal arrangement the longer the $\mathrm{Co}-\mathrm{P}$ bond (Table 5). Thus the suggested ${ }^{8}$ trans-influence of the phosphine ligand via the axialaxial bonds of a trigonal-bipyramidal cobalt atom in

Table 5
Comparison of trigonal bipyramidal vs. square-based pyramidal environment about the cobalt atom, and of the $\mathrm{Co}-\mathrm{P}$ and $\mathrm{Co}^{-} \mathrm{C}_{\mathrm{b}}$ (trans to P) distances (\AA). Planes are defined by the axial-equatorial-axial atoms of a trigonal bipyramid. In the present structure atoms P and $C(B 1)$ are axial

			Equatorial atoms defining plane		
Compound	$\mathrm{Co}-\mathrm{P}$	$\mathrm{Co}-\mathrm{C}_{\mathrm{b}}$	$\mathrm{C}(\mathrm{B} 2)$: $\mathrm{C}(\mathrm{T} 1)$	$\mathrm{C}(\mathrm{T} 2): \mathrm{C}(\mathrm{T} 1)$	$\mathrm{C}(\mathrm{T} 2): \mathrm{C}(\mathrm{B} 2)$
$\left(\mathrm{MeC}_{5} \mathrm{H}_{4}\right) \mathrm{NiCo}(\mathrm{CO})_{4}\left[\mathrm{PPh}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)\right]^{\text {a }}$	$2 \cdot 269$	1.929	$92 \cdot 9$	$94 \cdot 5$	$178 \cdot 4$
$\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{NiCo}(\mathrm{CO})_{4}\left(\mathrm{PEt}_{3}\right)^{b}$	$2 \cdot 236$	1.956	$102 \cdot 3$	$102 \cdot 4$	155-2
$\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{FeCo}(\mathrm{CO})_{5}\left[\mathrm{PPh}_{2}(\mathrm{Mc})\right]^{\text {c }}$	$2 \cdot 221$	$2 \cdot 027$	$103 \cdot 1$	$107 \cdot 6$	$149 \cdot 3$
Trigonal bipyramid			120	120	120
Square-based pyramid			90	90	180

(mean 139.9 ${ }^{\circ}$). The distortion about C(B2) involves an opening of the angle to the cobalt atom $\left(143 \cdot 5^{\circ}\right)$ with a corresponding closing of the angle to nickel ($137 \cdot 2^{\circ}$), thus maintaining the planar environment of $\mathrm{C}(\mathrm{B} 2)$. This angular distortion is also present in $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$ $\mathrm{NiCo}(\mathrm{CO})_{4}\left(\mathrm{PEt}_{3}\right)$ _. 2 A probable explanation in this instance is the close proximity of $\mathrm{H}(31)$ on the cyclohexyl ring causing a steric repulsion to take place.
The cobalt is in a square-based pyramidal environment as can be demonstrated by the angles between the mean planes of the axial-equatorial-axial atoms which would define a trigonal bipyramid (Tables 4 and 5). This contrasts with the intermediate geometry shown by $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{NiCo}(\mathrm{CO})_{4}\left(\mathrm{PEt}_{3}\right)\right]^{2}$ and $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{FeC}(\mathrm{CO})_{4}{ }^{-}\right.$
these complexes appears to be substantiated. However, it is still not clear what factors govern the particular cobalt atom environment. Intramolecular contacts, particularly those involving the bulky phosphine ligand, will be important, but an over-riding factor may be the intermolecular forces arising from the packing of the molecules in the crystal.
We thank Dr. A. R. Manning for supplying a sample of the compound and the S.R.C. for the award of a research studentship (to I. L. C. C.).
[4/1255 Received, 25th June, 1974]

[^0]
[^0]: ${ }^{9}$ G. G. Sumner, H. P. Klug, and L. E. Alexander, Acta Cryst., 1964, 17, 732.
 ${ }_{10}$ J. P. Nice, Ph.D. Thesis, University of Manchester, 1966.

