Crystal and Molecular Structure of Di- μ-carbonyl-dicarbonyl(π-cyclo-pentadienyInickelio)(tris-p-fluorophenylphosphine)cobalt

By lan L. C. Campbell and Frederick S. Stephens,* \dagger Department of Chemistry, University of Essex, Colchester CO4 3SQ

The crystal structure of the title compound has been determined by X-ray diffraction methods from counter data. Refinement to $R 0.071$ for 2464 reflections was carried out by a least-squares procedure. The monoclinic unit cell, space group $12 / a$, has dimensions $a=16.396 \pm 0.042, b=10.663 \pm 0.058, c=29.260 \pm 0.084 \AA$, $\beta=91 \cdot 1 \pm 0 \cdot 1^{\circ}$, for $Z=8$. The dimer molecule has a non-planar $\mathrm{Ni}(\mathrm{CO})_{2} \mathrm{Co}$ bridging system, the angle between the two $\mathrm{Ni}(\mathrm{CO}) \mathrm{Co}$ planes being 133.9°. The metal to bridge-carbon distances are not equivalent: $\mathrm{Co}^{-}-\mathrm{C}_{\mathrm{b}}$ $1.90(1)$ and $2.03(1)$, and $\mathrm{Ni}-\mathrm{C}_{\mathrm{b}} 1.89(1)$ and $1.82(1) \AA$. $\mathrm{Ni} \cdots$ Co is $2 \cdot 425(2)$ and $\mathrm{Co}-\mathrm{P}$ is $2.243 \AA$.

Infrared spectral studies of complexes of the type (π-dienyl) $\mathrm{MCo}(\mathrm{CO})_{4} \mathrm{~L} \quad[\mathrm{M}=\mathrm{Fe}(\mathrm{CO})$ or $\mathrm{Ni}, \mathrm{L}=$ phosphine] have shown them to contain bridging-carbonyl groups. ${ }^{1} \quad X$-Ray structural analyses of several of these compounds ${ }^{2-3}$ have shown that a distortion in the cobalt to bridge-carbon distances appears to be related to the $\mathrm{Co}-\mathrm{P}$ distance, and to the geometry around the
\dagger Present address: School of Chemistry, Macquarie University, North Ryde 2113, New Sonth Wales, Australia.
cobalt atom. The crystal structure of the title compound was undertaken to determine the effect on the bridging system of a modified electronic and steric environment of the cobalt atom, and to enable the relationships of an extended series to be assessed.

[^0]
EXPERIMENTAL

Crystal Data.- $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{CoF}_{3} \mathrm{NiO}_{4} \mathrm{P}, \quad M=611 \cdot 0$, Monoclinic, $\quad a=16.396 \pm 0.042, \quad b=10.663 \pm 0.058, \quad c=$ $29 \cdot 260 \pm 0.084 \AA, \beta=91 \cdot 1 \pm 0 \cdot 1^{\circ}, U=5114.5 \AA^{3}, D_{\mathrm{m}}=$ 1.62 (by flotation), $Z=8, D_{\mathrm{c}}=1.587, F(000)=2464$. Mo- K_{α} radiation, $\lambda=0.71069 \AA$, for cell dimensions and intensity measurements; $\mu\left(\mathrm{Mo}-K_{\alpha}\right)=15 \cdot 3 \mathrm{~cm}^{-1}$. Systematic absences: $h k l$ for $h+h+l=2 n+1, h 0 l$ for $h(l)=$ $\because n+1$. Space group $I a$ or $I 2 / a$ [non-standard forms of C_{c} (No. 9) and C2/c (No. 15)].

The complex crystallises in a tabular form on (001) elongated along the b axis with pinacoids $\{010\}$ and $\{001\}$. Unit-cell parameters were determined from single-crystal precession photographs by use of $\mathrm{Mo}-K_{\alpha}$ radiation. Systematic absences showed the space group to be $I a$ or $I 2 / a$, the latter being indicated by a statistical analysis of the intensity data $\left[N(Z)\right.$ test $\left.{ }^{5}\right]$ and subsequently confirmed by the successful refinement. Intensities were measured on a Philips PAILRED diffractometer. Each reflection in the $h 0-15 l$ layers for $\sin \theta<0.53$ was recorded and 2464 reflections having counts for which $\sigma(I) /(I)<0.5$ were used for the structure analysis. ${ }^{6}$ Intensities were corrected for Lorentz and polarisation effects, but not for absorption or extinction. The intensities of several reflections chosen as standards and measured between the collection of each layer showed a steady decrease in intensity due to slow decomposition of the crystal. The intensities of the standards were used to obtain a scale factor for each layer and these were used to put each layer onto a common arbitrary scale.

Scattering factor curves for all atoms were taken from ref. 7, the values for the nickel and cobalt atoms being corrected for anomalous dispersion. Calculations were carried out on a PDP 10 computer at the University of Essex with programmes written by F. S. S.

Structure Determination.-The three-dimensional Patterson synthesis indicated the space group to be centric and rielded the positions of the two metal atoms. A Fourier synthesis phased by these atoms gave the positions for all non-hydrogen atoms. Refinement of the structure was carried out by a least-squares procedure in which the function minimised was $\Sigma w \Delta^{2}$. The weight for each reflection w, was initially unity and in the final refinement given by $w=\left(92.5-0.3\left|F_{0}\right|+0.0013\left|F_{0}\right|^{2}\right)^{-1}$. For this latter weighting scheme mean values of $w \Delta^{2}$ for ranges of increasing $\left|F_{0}\right|$ were almost constant. Reflections, for which $\left|F_{\mathrm{c}}\right|<\frac{1}{3}\left|F_{\mathrm{o}}\right|$, were omitted from the least-squares analysis.

Initial refinement used a full-matrix procedure in which positional and individual isotropic thermal parameters for each atom were refined. When the maximum shift in any parameter was of the order of its σ a difference-Fourier synthesis was calculated which gave the approximate positions of all hydrogen atoms. In further calculations the hydrogen atom contributions were included using positions calculated assuming $\mathrm{C}-\mathrm{H} \mathrm{\quad 1.0} \AA$ and a thermal parameter of $B 6.0 \AA^{2}$, but at no time were their parameters refined.

Final refinement was carried out with anisotropic thermal parameters for all non-hydrogen atoms. The large number of parameters (335) necessitated this refinement being

* See Notice to Authors No. 7, in J.C.S. Dalton, 1973, Index issue.
${ }^{4}$ I. L. C. Campbell and F. S. Stephens, preceding paper.
${ }_{5}$ E. R. Howells, D. C. Phillips, and D. Rogers, Acta Cryst., $1950,3,210$.
carried out in five block matrices: (1) the overall scale and thermal parameter, (2) the metals, phosphorus atom, carbonyl groups, and cyclopentadienyl ligand, and (3)-(5) each fluorophenyl group. Refinement was terminated when the maximum shift in a parameter was $<0 \cdot 1 \sigma .2459$ reflections were included in the final cycle of refinement. The final value for R, based on 2464 reflections, was 0.071 and for $R^{\prime}\left[=\left(\Sigma w \Delta^{2} / \Sigma w\left|F_{0}\right|^{2}\right)^{\frac{1}{2}}\right]$ was 0.076 .

Table 1
Atomic co-ordinates (fractional), with estimated standard deviations in parentheses

	x / a	y / b	z / c	$\sigma_{\text {rme }} / \AA$
Ni	$0 \cdot 27493$ (8)	$0 \cdot 27762(14)$	$0 \cdot 12942(5)$	0.0014
Co	$0 \cdot 40422(9)$	$0 \cdot 35705(13)$	0.10283(5)	0.0014
P	$0.5194(2)$	$0 \cdot 2496(3)$	$0 \cdot 1173(1)$	0.0026
$\mathrm{F}(1)$	$0 \cdot 6866(5)$	$0 \cdot 1681$ (9)	-0.0577(2)	0.008
$\mathrm{F}(2)$	0.7751 (5)	$0 \cdot 4705(10)$	$0 \cdot 2394$ (3)	0.009
F (3)	$0.4577(5)$	$-0.2423(7)$	$0 \cdot 2034(3)$	0.008
$\mathrm{O}(\mathrm{Bl})$	$0 \cdot 3930$ (5)	$0 \cdot 3030(10)$	0.2013(3)	0.009
O (B2)	$0 \cdot 2525(6)$	$0 \cdot 4837(10)$	$0.0696(4)$	0.010
O (T1)	$0 \cdot 3960$ (8)	$0 \cdot 2687(14)$	0.0071 (3)	0.013
O(T2)	$0 \cdot 4631$ (7)	$0 \cdot 6124(10)$	$0 \cdot 1043(4)$	0.011
C(Bl)	$0.3712(7)$	$0 \cdot 3173(11)$	$0 \cdot 1632(4)$	0.011
C(B2)	$0 \cdot 2872(7)$	$0 \cdot 4120(12)$	$0.0917(5)$	0.013
C(T1)	$0 \cdot 4001$ (8)	$0 \cdot 3014(12)$	$0 \cdot 0438(5)$	0.013
C(T2)	$0 \cdot 4396$ (8)	$0 \cdot 5108(13)$	$0 \cdot 1056$ (4)	0.013
C(1)	$0 \cdot 2414$ (8)	$0 \cdot 1056(14)$	$0 \cdot 1597$ (6)	0.015
C(2)	$0 \cdot 2200$ (9)	$0.0941(14)$	$0 \cdot 1152(5)$	0.015
$\mathrm{C}(3)$	$0 \cdot 1659(9)$	$0 \cdot 1917(14)$	$0 \cdot 1032(5)$	0.014
C(4)	$0 \cdot 1508(7)$	$0 \cdot 2600$ (15)	$0 \cdot 1456(6)$	0.015
C(5)	$0 \cdot 2005$ (8)	$0 \cdot 2025(16)$	$0 \cdot 1780(5)$	0.015
C(11)	0.5746 (6)	$0 \cdot 2195(11)$	$0 \cdot 0649(3)$	0.010
C(12)	$0 \cdot 6034$ (7)	$0 \cdot 3199(11)$	$0 \cdot 0399(4)$	0.012
C(13)	0.6423 (6)	$0 \cdot 3028(13)$	$-0.0003(4)$	0.012
$\mathrm{C}(14)$	0.6497 (6)	$0 \cdot 1855(14)$	$-0.0176(3)$	0.012
$\mathrm{C}(15)$	0.6211 (8)	$0 \cdot 0794(14)$	0.0051 (4)	0.013
C(16)	$0.5838(7)$	$0 \cdot 0969(11)$	$0 \cdot 0468(4)$	0.011
$\mathrm{C}(21)$	0.5991 (6)	$0 \cdot 3224(10)$	$0 \cdot 1534(3)$	0.010
$\mathrm{C}(22)$	0.5787 (7)	$0 \cdot 4100(12)$	$0 \cdot 1861$ (4)	0.012
C(23)	0.6391 (8)	$0 \cdot 4613(13)$	$0 \cdot 2157(4)$	0.012
C(24)	$0 \cdot 7176$ (8)	$0 \cdot 4189(14)$	$0 \cdot 2104(4)$	0.013
$\mathrm{C}(25)$	$0.7404(8)$	$0 \cdot 3376(15)$	$0 \cdot 1790$ (5)	0.014
$\mathrm{C}(26)$	0.6800(6)	$0 \cdot 2847(14)$	$0 \cdot 1496$ (4)	0.013
C(31)	$0 \cdot 5046$ (6)	$0.0977(10)$	$0 \cdot 1444$ (3)	0.010
$\mathrm{C}(32)$	$0 \cdot 4463(7)$	0.0171(12)	$0 \cdot 1257$ (4)	0.012
C(33)	0.4310 (8)	-0.0978(12)	$0 \cdot 1445(5)$	0.013
C(34)	$0 \cdot 4747(7)$	$-0.1316(11)$	$0 \cdot 1846(4)$	0.012
$\mathrm{C}(35)$	$0.5302(8)$	-0.0543(13)	$0 \cdot 2038(4)$	0.013
$\mathrm{C}(36)$	0.5466 (6)	$0.0616(12)$	$0 \cdot 1838(4)$	0.011
H(1)	0.281	$0 \cdot 050$	$0 \cdot 176$	
H(2)	$0 \cdot 239$	$0 \cdot 027$	0.094	
$\mathrm{H}(3)$	$0 \cdot 142$	$0 \cdot 211$	0.072	
$\mathrm{H}(4)$	(0.11)	$0 \cdot 332$	$0 \cdot 150$	
H(5)	$0 \cdot 206$	$0 \cdot 229$	0.211	
H(12)	0.595	$0 \cdot 407$	0.052	
$\mathrm{H}(13)$	0.665	$0 \cdot 376$	-0.017	
H(15)	0.627	-0.006	-0.008	
$\mathrm{H}(16)$	0.563	$0 \cdot 023$	$0 \cdot 064$	
$\mathrm{H}(22)$	0.521	0.438	$0 \cdot 189$	
$\mathrm{H}(23)$	0.625	$0 \cdot 526$	0.239	
$\mathrm{H}(25)$	0.799	$0 \cdot 314$	$0 \cdot 176$	
$\mathrm{H}(26)$	0.695	$0 \cdot 221$	$0 \cdot 126$	
$\mathrm{H}(32)$	$0 \cdot 415$	$0 \cdot 044$	$0 \cdot 098$	
$\mathrm{H}(33)$	$0 \cdot 390$	-0.156	$0 \cdot 130$	
$\mathrm{H}(35)$	0.560	-0.080	$0 \cdot 232$	
$\mathrm{H}(36)$	0.588	$0 \cdot 119$	$0 \cdot 198$	

Final atomic co-ordinates and thermal parameters are given together with their estimated standard deviations in Tables 1 and 2. Observed and calculated structure factors are listed in Supplementary Publication No. SUP 21183 (15 pp., 1 microfiche).*
${ }^{6}$ M. Mack, Norelco Reporter, 1965, 12, 40.
${ }^{7}$ ' International Tables for X-Ray Crystallography,' vol. III, Kynoch Press, Birmingham, 1962.

Table 2
Thermal parameters $\left(\times 10^{4}\right)$,* with estimated standard deviations in parentheses

	b_{11}	b_{22}	b_{33}	b_{12}	b_{13}	b_{23}
Ni	26.0(5)	81.4(14)	8.6(2)	$-5 \cdot 3(8)$	$-3 \cdot 9(2)$	2.5(4)
Co	$25 \cdot 1(5)$	58.6(13)	7-6(2)	$0 \cdot 7(8)$	$-3 \cdot 3(2)$	$-2.2(4)$
P	25.2(10)	$58.2(26)$	4.8(3)	$-2 \cdot 7(13)$	$-3 \cdot 2(4)$	$-1.8(7)$
F(1)	55(4)	247(14)	8(1)	$-1(6)$	$5(2)$	$-11(3)$
$\mathrm{F}(2)$	52(4)	286(17)	16(1)	-46(7)	-14(2)	-24(4)
$\mathrm{F}(3)$	86(5)	104(9)	16(1)	11 (6)	-2(2)	23 (3)
O (B1)	45(4)	213(15)	6(1)	$-10(6)$	-2(2)	$-6(3)$
O(B2)	44(5)	144(13)	26(2)	$24(6)$	-3(2)	35 (4)
O (T1)	102(8)	309(24)	10(1)	58(11)	$-15(3)$	$-27(5)$
O(T2)	76(7)	70(10)	33(2)	$-12(8)$	$-12(3)$	4(4)
C (B1)	38(5)	93(12)	7(1)	$-21(7)$	-1(2)	$-5(3)$
C (B2)	$31(5)$	81(13)	18(2)	9 (7)	$-2(3)$	$-4(5)$
C (T1)	46(6)	$75(13)$	16(2)	7(7)	$-7(3)$	$-5(4)$
C(T2)	$38(6)$	$95(14)$	13(2)	7 (8)	$-6(3)$	4(4)
C(1)	33(6)	104(15)	22(3)	$5(8)$	$1(3)$	$4(5)$
$\mathrm{C}(2)$	52(7)	115(17)	17(2)	$-28(9)$	$-1(3)$	--14(5)
$\mathrm{C}(3)$	ธ2(7)	125(17)	13(2)	-32(9)	--11(3)	12(5)
C(4)	18(4)	141(19)	25(3)	$-3(8)$	-3(3)	$5(6)$
$\mathrm{C}(5)$	$38(6)$	177(21)	13(2)	$-34(10)$	$0(3)$	6(6)
C(11)	$23(4)$	101(12)	5(1)	11 (6)	$-1(2)$	$-13(3)$
C(12)	$32(5)$	86(13)	13(2)	$-17(7)$	$1(2)$	$5(4)$
C(13)	27(5)	137(16)	7(1)	-22(7)	$3(2)$	$-3(4)$
C(14)	$21(4)$	180(20)	5(1)	10(7)	$3(2)$	--9(4)
$\mathrm{C}(15)$	45 (6)	137(17)	8(1)	$0(8)$	$3(2)$	$-1(4)$
$\mathrm{C}(16)$	44(5)	$73(11)$	6(1)	$4(7)$	0 (2)	-4(3)
$\mathrm{C}(21)$	28(4)	80(11)	6(1)	$-21(6)$	-5(2)	$-7(3)$
$\mathrm{C}(22)$	36(5)	108(14)	$9(2)$	$-10(7)$	0 (2)	$-2(4)$
$\mathrm{C}(23)$	$39(6)$	129(17)	8(1)	-26(8)	$-2(2)$	$-14(4)$
$\mathrm{C}(24)$	$39(6)$	157(18)	$9(2)$	-47(9)	-10(2)	-8(2)
$\mathrm{C}(25)$	36(6)	177(20)	14(2)	$-10(9)$	-13(3)	$-12(6)$
$\mathrm{C}(26)$	15(4)	167(18)	16(2)	-18(7)	-4(2)	$-16(5)$
C(31)	$25(4)$	64(10)	$5(1)$	$10(5)$	-6(2)	$2(3)$
C(32)	37(5)	86(13)	$11(2)$	2(7)	$-5(2)$	2(4)
$\mathrm{C}(33)$	45(6)	$72(12)$	16(2)	$5(7)$	-2(3)	0 (4)
C(34)	43(6)	$73(12)$	11(2)	6(7)	$-1(2)$	18(4)
$\mathrm{C}(35)$	$51(7)$	$118(16)$	$8(2)$	$11(9)$	0 (3)	11(4)
$\mathrm{C}(36)$	24(4)	111(14)	8(1)	$8(6)$	-2(2)	$-1(4)$

For all hydrogen atoms $B=6 \cdot 0 \AA^{2}$.

* Anisotropic thermal parameters in the form: exp $-\left(h^{2} b_{11}+k^{2} b_{22}+l^{2} b_{33}+2 h k b_{12}+2 h l b_{13}+2 k l b_{23}\right)$.

DISCUSSION

Figure 1 shows a perspective drawing of the molecule and the labelling of the atoms. ${ }^{8}$ Figure 2 shows the

Figure 1 A perspective drawing of the molecule and the labelling of the atoms. Thermal ellipsoids are scaled to include 36% probability
packing of the molecules in the crystal. ${ }^{8}$ The molecules are held in the crystal by van der Waals forces. Closest intermolecular contacts are: $\mathrm{O}(\mathrm{T} 2) \cdots \mathrm{F}(3)$ at x, $1+y, z(3 \cdot 29 \AA)$ and $\mathrm{F}(1) \cdots \mathrm{C}(33)$ at $1-x,-y,-z$ $(3 \cdot 25 \AA)$. All other intermolecular contacts are $>3 \cdot 3 \AA$.

Bond distances and angles, together with their estimated standard deviations derived directly from the leastsquares inverse matrices, are given in Table 3.

Table 3
Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$, with estimated standard deviations in parentheses

(a) Distances *	$\mathrm{Ni} \cdots \mathrm{Co}$	2.425(2)	
$\mathrm{Ni}-\mathrm{C}(\mathrm{Bl})$	1.894(11)	$\mathrm{Co}-\mathrm{C}(\mathrm{Bl})$	1-904(11)
$\mathrm{Ni}-\mathrm{C}(\mathrm{B} 2)$	1-823(14)	$\mathrm{Co}-\mathrm{C}(\mathrm{B2})$	2.026(12)
$\mathrm{Ni}-\mathrm{C}$ p	$1 \cdot 761$ (12)	$\mathrm{CO}-\mathrm{P}$	$2 \cdot 242$ (3)
$\mathrm{Ni}-\mathrm{C}(1)$	$2 \cdot 115(14)$	$\mathrm{Co}-\mathrm{C}(\mathrm{Tl})$	$1.827(14)$
$\mathrm{Ni}-\mathrm{C}(2)$	$2 \cdot 191(13)$	$\mathrm{Co}-\mathrm{C}(\mathrm{T} 2)$	1.740 (15)
$\mathrm{Ni}-\mathrm{C}(3)$	$2 \cdot 138(12)$	$\mathrm{P}-\mathrm{C}(11)$	1-824(10)
$\mathrm{Ni}-\mathrm{C}(4)$	$2 \cdot 107(12)$	$\mathrm{P}-\mathrm{C}(21)$	$1.836(9)$
$\mathrm{Ni}-\mathrm{C}(5)$	$2 \cdot 054(13)$	$\mathrm{P}-\mathrm{C}(31)$	$1 \cdot 822$ (10)
$\mathrm{C}(\mathrm{Bl})-\mathrm{O}(\mathrm{Bl})$	$1 \cdot 176(12)$	$\mathrm{C}(\mathrm{B} 2)-\mathrm{O}(\mathrm{B2})$	$1 \cdot 145(14)$
$\mathrm{C}(\mathrm{Tl})-\mathrm{O}(\mathrm{T} 1)$	$1 \cdot 130(14)$	$\mathrm{C}(\mathrm{T} 2)-\mathrm{O}(\mathrm{T} 2)$	$1 \cdot 150(15)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1 \cdot 349$ (19)	$\mathrm{C}(21)-\mathrm{C}(22)$	$1 \cdot 383$ (15)
$\mathrm{C}(2)-\mathrm{C}(3)$	1-408(20)	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.413(15)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1 \cdot 464(20)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1 \cdot 376(18)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1 \cdot 381(19)$	$\mathrm{C}(24)-\mathrm{C}(25)$	$1 \cdot 323(18)$
$\mathrm{C}(5)-\mathrm{C}(1)$	$1 \cdot 349(20)$	$\mathrm{C}(25)-\mathrm{C}(26)$	$1.416(15)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1 \cdot 384(15)$	$\mathrm{C}(26)-\mathrm{C}(21)$	$1 \cdot 392(15)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1 \cdot 361$ (15)	$\mathrm{C}(31)-\mathrm{C}(32)$	$1 \cdot 390$ (14)
$\mathrm{C}(13)-\mathrm{C}(14)$	$1 \cdot 356(17)$	$\mathrm{C}(32)-\mathrm{C}(33)$	$1 \cdot 368$ (16)
$\mathrm{C}(14)-\mathrm{C}(15)$	$1 \cdot 397(18)$	$\mathrm{C}(33)-\mathrm{C}(34)$	1-409(16)
$\mathrm{C}(15)-\mathrm{C}(16)$	$1 \cdot 388(15)$	$\mathrm{C}(34)-\mathrm{C}(35)$	$1 \cdot 343(17)$
$\mathrm{C}(16)-\mathrm{C}(11)$	1-420(15)	$\mathrm{C}(35)-\mathrm{C}(36)$	$1 \cdot 396(17)$
$\mathrm{C}(14)-\mathrm{F}(1)$	1.343(11)	$\mathrm{C}(36)-\mathrm{C}(31)$	1-384(13)
$\mathrm{C}(24)-\mathrm{F}(2)$	$1 \cdot 370(11)$	$\mathrm{C}(34)-\mathrm{F}(3)$	$1 \cdot 334(13)$
(b) Angles			
$\mathrm{C}(\mathrm{Bl})-\mathrm{Ni}-\mathrm{C}(\mathrm{B2} 2)$	$92 \cdot 3(5)$	$\mathrm{C}(\mathrm{Bl})-\mathrm{Co}-\mathrm{C}(\mathrm{B} 2)$	$85.9(5)$
$\mathrm{Co}-\mathrm{Ni}-\mathrm{C}(\mathrm{Bl})$	$50 \cdot 5(3)$	$\mathrm{Ni}-\mathrm{Co}-\mathrm{C}(\mathrm{Bl})$	$50 \cdot 1(3)$
$\mathrm{Co}-\mathrm{Ni}-\mathrm{C}(\mathrm{B2} 2)$	54.8(4)	$\mathrm{Ni}-\mathrm{Co}-\mathrm{C}(\mathrm{B2} 2)$	47.3(4)
$\mathrm{Co}-\mathrm{Ni}-\mathrm{Cp}{ }^{*}$	159.5(4)	$\mathrm{P}-\mathrm{Co}-\mathrm{C}(\mathrm{Bl})$	$88 \cdot 0$ (4)
$\mathrm{C}(\mathrm{Bl})-\mathrm{Ni}-\mathrm{C} \mathrm{p}^{*}$	131.3(6)	$\mathrm{P}-\mathrm{Co}-\mathrm{C}(\mathrm{B2})$	165.8(4)
$\mathrm{C}(\mathrm{B} 2)-\mathrm{Ni}-\mathrm{Cp}$ *	135-2(6)	$\mathrm{P}-\mathrm{Co}-\mathrm{C}(\mathrm{T} 1)$	$91 \cdot 7(4)$
$\mathrm{Co}-\mathrm{P}-\mathrm{C}(11)$	111.2(3)	$\mathrm{P}-\mathrm{Co}-\mathrm{C}(\mathrm{T} 2)$	101.2(4)
$\mathrm{Co}-\mathrm{P}-\mathrm{C}(21)$	118.7(4)	$\mathrm{C}(\mathrm{Bl})-\mathrm{Co}-\mathrm{C}(\mathrm{Tl})$	$143 \cdot 0(5)$
$\mathrm{C}-\mathrm{P}-\mathrm{C}(31)$	114.7(3)	$\mathrm{C}(\mathrm{B1})-\mathrm{Co}-\mathrm{C}(\mathrm{T} 2)$	105.5(5)
$\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(21)$	101.4(5)	$\mathrm{C}(\mathrm{B2})-\mathrm{Co}-\mathrm{C}(\mathrm{T1})$	85.6(6)
$\mathrm{C}(11)-\mathrm{P}-\mathrm{C}(31)$	$106 \cdot 4(5)$	$\mathrm{C}(\mathrm{B} 2)-\mathrm{Co}-\mathrm{C}(\mathrm{T} 2)$	92.8(5)
$\mathrm{C}(21)-\mathrm{P}-\mathrm{C}(31)$	103.0(4)	$\mathrm{C}(\mathrm{T} 1)-\mathrm{Co}-\mathrm{C}(\mathrm{T} 2)$	$110 \cdot 9(6)$
$\mathrm{Ni}-\mathrm{C}(\mathrm{Bl})-\mathrm{Co}$	79.4(4)	$\mathrm{Ni}-\mathrm{C}(\mathrm{B2})-\mathrm{Co}$	77.9(5)
$\mathrm{Ni}-\mathrm{C}(\mathrm{Bl})-\mathrm{O}(\mathrm{Bl})$	$134.5(9)$	$\mathrm{Ni}-\mathrm{C}(\mathrm{B2} 2)-\mathrm{O}(\mathrm{B2} 2)$	$143 \cdot 8(11)$
$\mathrm{Co}-\mathrm{C}(\mathrm{Bl})-\mathrm{O}(\mathrm{Bl})$	$145 \cdot 4(10)$	$\mathrm{Co}-\mathrm{C}(\mathrm{B2})-\mathrm{O}(\mathrm{B2})$	$138 \cdot 0(11)$
$\mathrm{Co}-\mathrm{C}(\mathrm{Tl})-\mathrm{O}(\mathrm{Tl})$	178.4(12)	$\mathrm{Co}-\mathrm{C}(\mathrm{T} 2)-\mathrm{O}(\mathrm{T} 2)$	175-3(13)
$\mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	109.3(14)	$\mathrm{P}-\mathrm{C}(21)-\mathrm{C}(22)$	120-3(8)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	108.9(13)	$\mathrm{P}-\mathrm{C}(21)-\mathrm{C}(26)$	$120 \cdot 1(8)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$105 \cdot 9(11)$	$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{C}(22)$	$119 \cdot 6(9)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	104.7(13)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	120.7(11)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(1)$	$111 \cdot 1(14)$	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	116.7(11)
$\mathrm{P}-\mathrm{C}(11)-\mathrm{C}(12)$	$119 \cdot 2(9)$	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$124 \cdot 8(10)$
$\mathrm{P}-\mathrm{C}(11)-\mathrm{C}(16)$	122-3(9)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{F}(2)$	115•7(12)
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)$	$118 \cdot 3(9)$	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{F}(2)$	$119.5(12)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	121.6(11)	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$118 \cdot 7(12)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$119 \cdot 5(11)$	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(21)$	$119.5(12)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	122.5(10)	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	$121.7(10)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{F}(1)$	$119.9(12)$	$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	$118 \cdot 0(12)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{F}(1)$	$117 \cdot 7(12)$	$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	$121 \cdot 3(11)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	117.8(12)	$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{F}(3)$	117.6(11)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	120.2(11)	$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{F}(3)$	$121 \cdot 1(10)$
$\mathrm{P}-\mathrm{C}(31)-\mathrm{C}(32)$	$118.4(7)$	$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$	$120 \cdot 3(10)$
$\mathrm{P}-\mathrm{C}(31)-\mathrm{C}(36)$	122.8(8)	$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(31)$	$119 \cdot 9(11)$
$\mathrm{C}(36)-\mathrm{C}(31)-\mathrm{C}(32)$	118.8(10)		
* Cp is the centroid of the cyclopentadienyl ring.			

The compound crystallises as discrete molecules, with the nickel and cobalt atoms bridged by two carbonyl groups. The cyclopentadienyl ligand is π-bonded to the
${ }^{8}$ C. K. Johnson, ORTEP: A Fortran Thermal Ellipsoid Plot Program for Crystal Structure Illustrations Report ORNL 3794, 1965, Revised 1971, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Table 4
Least-squares planes and their equations given by $l X^{\prime}+$ $m Y^{\prime}+n Z^{\prime}-p=0$, where X^{\prime}, Y^{\prime}, and Z^{\prime} are orthogonal co-ordinates related to the atomic co-ordinates X, Y, and Z by $X^{\prime}=X \sin \beta, Y^{\prime}=Y, Z^{\prime}=Z+$ $X \cos \beta$. Deviations (\AA) of the most relevant atoms from the planes are given in square brackets

	l	m	n	p
$\begin{aligned} & \text { Plane }(\mathbf{l}): \mathrm{Ni}, \\ & \mathrm{Co}, \mathrm{C}(\mathrm{Bl}), \mathrm{O}(\mathrm{Bl}) \\ & \quad[\mathrm{Ni}-0.009, \mathrm{Co}-0.01 \end{aligned}$	$\begin{aligned} & -0.3128 \\ & 12, \mathrm{C}(\mathrm{~B} 1) \end{aligned}$	0.9359 048, O($0 \cdot 1621$ 1) -0.02	1.9698
Plane (2): Ni, $\mathrm{Co}, \mathrm{C}(\mathrm{B} 2), \mathrm{O}(\mathrm{B} 2)$ $[\mathrm{Ni}-0.008, \mathrm{Co}-0.00$	$\begin{array}{r} 0.0531 \\ 06, \mathrm{C}(\mathrm{~B} 2) \end{array}$	0.6230 $032, \mathrm{O}(\mathrm{B}$	0.7804 -0.01	$4 \cdot 9786$
$\begin{aligned} & \text { Plane }(3): \mathrm{C}(1)-(5) \\ & \quad[\mathrm{C}(1) 0.011, \mathrm{C}(2)-0.02] \end{aligned}$	$\begin{array}{r} 0.7559 \\ 21, \mathrm{C}(3) 0 . \end{array}$	$\begin{array}{r} 0.6100 \\ 22, C(4) \end{array}$	$\begin{array}{r} -0.2375 \\ -0.016, C \end{array}$	$\begin{gathered} 2.5756 \\ 0.004 \end{gathered}$
$\begin{aligned} & \text { Plane (4): } C(11)-(16) \\ & \quad[C(11) 0.005, C(12)-0 \\ & \quad-0.007, C(16)-0.00 \end{aligned}$	$\begin{gathered} 0.8825 \\ 0 \cdot 015, \mathrm{C}(19 \\ 007, \mathrm{~F}(1) \end{gathered}$		0.4620 14) -0.0 $0 \cdot 106]$	$\begin{array}{r} 8 \cdot 8964 \\ 4, \mathrm{C}(15) \end{array}$
$\begin{aligned} & \text { Plane (5): } \mathrm{C}(21)-(26) \\ & \quad[\mathrm{C}(21)-0.003, \mathrm{C}(22) 0 \\ & \quad 0 \cdot 013, \mathrm{C}(26)-0.005 \end{aligned}$	$\begin{gathered} 0 \cdot 1545 \\ 0 \cdot 004, \mathrm{C}(2 \\ 5, \mathrm{~F}(2) \end{gathered}$	0.7384 $0 \cdot 004$, $006, \mathrm{P}$	$\begin{gathered} -0.6564 \\ (24)-0 \cdot 6 \\ 0 \cdot 100] \end{gathered}$	$\begin{array}{r} 1 \cdot 2349 \\ 3, C(25) \end{array}$
Plane (6): $\mathrm{C}(31)-(36)$ $[\mathrm{C}(31) 0.005, \mathrm{C}(32)-0.0$ $-0.006, \mathrm{C}(36) 0.003$	$\begin{array}{r} 0.7075 \\ 0 \cdot 010, \mathrm{C}(\\ 3, \mathrm{~F}(3) \end{array}$	0.4174 $0 \cdot 007$, 19, P	$\begin{aligned} & -0.5703 \\ & \mathrm{C}(34) 0.0 \\ & -0.044] \end{aligned}$	$\begin{aligned} & 3 \cdot 3093 \\ & , C(35) \end{aligned}$
Plane (7): P,C(B2), C(B1) [Co 0.25]) 0.3782	$0 \cdot 9058$	$0 \cdot 1910$	$6 \cdot 2550$
$\begin{gathered} \text { Plane (8): } \mathrm{P} \\ \mathrm{C}(\mathrm{~B} 2), \mathrm{C}(\mathrm{~T} 1) \\ {[\mathrm{Co} 0.26]} \end{gathered}$	$0 \cdot 4329$	0.8854	$-0 \cdot 1692$	$5 \cdot 4892$
$\begin{gathered} \text { Plane }(9): \mathrm{P}, \\ \mathrm{C}(\mathrm{~B} 2), \mathrm{C}(\mathrm{~T} 2) \\ \quad[\mathrm{Co}-0.04] \end{gathered}$	$-0 \cdot 1578$	$0 \cdot 0383$	0.9867	1.9834

nickel and the phosphine co-ordinated to the cobalt. The molecule was the expected non-planar carbonylbridged structure. The value of the angle between the
system. The metal to bridge-carbon distances are not equivalent $[\mathrm{Ni}-\mathrm{C}(\mathrm{Bl}) \quad 1.894(11), \mathrm{Ni}-\mathrm{C}(\mathrm{B} 2) \mathrm{l} .823(14)$, $\mathrm{Co}-\mathrm{C}(\mathrm{B} 1) \quad 1.904(11)$, and $\mathrm{Co}-\mathrm{C}(\mathrm{B} 2) 2.026(12)], \mathrm{C}(\mathrm{B} 2)$

Figure 2 The packing of the molecules in the crystal
being trans to the phosphine ligand about the cobalt atom. Also, the angles around $\mathrm{C}(\mathrm{Bl})$ are not regular. The $\mathrm{Co}-\mathrm{C}(\mathrm{Bl})-\mathrm{O}(\mathrm{Bl})$ angle has opened to $145 \cdot 4^{\circ}$, but the planar environment about $\mathrm{C}(\mathrm{Bl})$ has been maintained by a corresponding closure of the angle to nickel.

The three fluorophenyl rings are each planar (Table 4) with the fluorine atoms in the para-position. The carbon atoms bound to the phosphorus atom exhibit the expected trigonal symmetry about the $\mathrm{Co}-\mathrm{P}$ direction but this three-fold symmetry is not maintained by the orientation of the phenyl rings. Ring $C(21)-(26)$ is rotated such that the contacts between $C(22)$ and $\mathrm{H}(22)$ to the carbonyl groups (B1) and (T2) are approximately equivalent.

Table 5
Comparison of trigonal bipyramidal vs. square-based pyramidal cobalt atom environment, and of $\mathrm{Co}-\mathrm{P}$ and $\mathrm{Co}^{-} \mathrm{C}_{\mathrm{b}}$ (trans to P) distances (\AA) for compounds closely related to the present complex. Planes are defined by the axial-equatorialaxial atoms of a trigonal bipyramid, and in the present structure atoms P and $C(B 2)$ are axial

	Distances*		Equatorial atoms defining planes		
Compound	$\mathrm{Co}-\mathrm{P}$	$\mathrm{Co}-\mathrm{C}$	\bigcirc C(B1): $\mathrm{C}(\mathrm{T} 2)$	$\mathrm{C}(\mathrm{T} 1): \mathrm{C}(\mathrm{T} 2)$	$\mathrm{C}(\mathrm{Bl}): \mathrm{C}(\mathrm{Tl})$
$\left[\left(\pi-\mathrm{MeC}_{5} \mathrm{H}_{4}\right) \mathrm{NiCo}(\mathrm{CO})_{4}\left\{\mathrm{PPh}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)\right\}\right]^{a}$	$2 \cdot 269(2)$	$1.929(10)$	$92 \cdot 9$	$94 \cdot 5$	178.4
$\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{NiCo}(\mathrm{CO})_{4}\left\{\mathrm{P}\left(p-\mathrm{FC}_{8} \mathrm{H}_{4}\right)_{3}\right\}\right]^{\boldsymbol{b}}$	$2 \cdot 242(3)$	2.026(12)	$99 \cdot 4$	101.6	$159 \cdot 0$
$\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{NiCo}(\mathrm{CO})_{4}\left(\mathrm{PEt}_{3}\right)\right]^{c}$	$2 \cdot 236(1)$	1.956(6)	$102 \cdot 3$	$102 \cdot 4$	155.2
$\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{FeCo}(\mathrm{CO})_{5}\left(\mathrm{PPh}_{2} \mathrm{Me}\right)\right]^{d}$	2.221(6)	2.027(20)	$103 \cdot 1$	$107 \cdot 6$	$149 \cdot 3$
Trigonal-bipyramid			120	120	120
Square-based pyramid			90	90	180

two $\mathrm{Ni}(\mathrm{CO})$ Co planes $\left(133 \cdot 9^{\circ}\right)$ lies between those of the parent compounds $\mathrm{Co}_{2}(\mathrm{CO})_{8}\left(127^{\circ}\right)^{9}$ and $\left[\left\{\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.\right.$ $\left.\mathrm{Ni}(\mathrm{CO})\}_{2}\right] \quad\left(142^{\circ}\right),{ }^{10}$ and is not significantly different from that found in other similar compounds: [$[\pi-$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{NiCo}(\mathrm{CO})_{4}\left\{\mathrm{PPh}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)\right\}\right]\left(133 \cdot 9^{\circ}\right)^{4}$ and $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)\right.$ $\left.\mathrm{NiCo}(\mathrm{CO})_{4}\left(\mathrm{PEt}_{3}\right)\right] \quad\left(132 \cdot 4^{\circ}\right) .{ }^{2}$ The $\mathrm{Ni} \cdot \mathrm{Co}_{0}$ distance ($2 \cdot 425 \AA$) is in accord with those previously reported for similar complexes. ${ }^{2.4}$ The cyclopentadienyl ring is planar (see Table 4). The distance of the nickel atom from the centroid of the C_{5} ring is $1.761 \AA$ and the angle between this direction and the $\mathrm{Ni} \cdots$ Co direction is 159.5°.
As has been observed for other similar compounds, ${ }^{2,3}$ there is a striking distortion present in the bridging
${ }^{a}$ Ref. 4. ${ }^{b}$ Present work. ${ }^{c}$ Ref. 2. ${ }^{d}$ Ref. 3.

The environment about the cobalt atom is intermediate between trigonal bipyramidal and squarebased pyramidal (Table 5). This is similar to that found in $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{NiCo}(\mathrm{CO})_{4}\left(\mathrm{PEt}_{3}\right)\right]^{2}$ and in $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)-\right.$ $\left.\mathrm{FeCo}(\mathrm{CO})_{5}\left(\mathrm{PPh}_{2} \mathrm{Me}\right)\right]^{3}$ but contrasts with the squarebased pyramidal environment of the cobalt in $[(\pi-$ $\left.\left.\mathrm{MeC}_{5} \mathrm{H}_{4}\right) \mathrm{NiCo}(\mathrm{CO})_{4}\left\{\mathrm{PPh}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)\right\}\right]^{4} \quad$ The Co $\cdots \mathrm{P}$ distance $(2.242 \AA)$ lies between that in $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{NiCo}(\mathrm{CO})_{4}-\right.$ $\left.\left(\mathrm{PEt}_{3}\right)\right](2 \cdot 236 \AA)^{2}$ and in $\left[\left(\pi-\mathrm{MeC}_{5} \mathrm{H}_{4}\right) \mathrm{NiCo}_{(}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{2}{ }^{-}\right.\right.$ $\left.\left.\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)\right\}\right](2 \cdot 269 \AA) .{ }^{4}$
${ }^{9}$ G. G. Sumner, H. P. Klug, and L. E. Alexander, Acta Cryst., 1964, 17, 732.
${ }^{10}$ J. P. Nice, Ph.D. Thesis, University of Manchester, 1966.

The study of similar compounds has shown a possible relationship between the length of the cobalt to carbonbridge bond trans to the phosphine ligand and the $\mathrm{Co}-\mathrm{P}$ distance. ${ }^{3,4}$ It has been suggested, from structural studies of similar compounds, that the phosphine ligand exerts a trans-effect causing a distortion in the carbonylbridging system. This effect seems to be nullified by a change from a trigonal bipyramidal to a square-based pyramidal environment about the cobalt atom. ${ }^{4}$ In the present structure the relationship of the $\mathrm{Co}^{-}-\mathrm{P}$ distance with the cobalt atom geometry is consistent with previous observations ${ }^{2-4}$ (Table 5). However the
$\mathrm{Co}-\mathrm{C}(\mathrm{B} 2)$ distance is longer than might have been predicted. Whilst the suggested hypothesis seems to be a good working model, it is obvious that the situation is more complex, and that other factors, such as the packing of the molecules in the crystal, need to be considered. The determination of other similar structures is necessary to enable this to be attempted.

We thank Dr. A. R. Manning for supplying a sample of the compound and the S.R.C. for the award of a research studentship (to I. L. C. C.).
[4/1528 Received, 23rd July, 1974]

[^0]: ${ }^{1}$ A. R. Manning, J. Organometallic Chem., 1972, 37, C41; 40, C73.
 \therefore F. S. Stephens, J.C.S. Dalton, 1974, 1067.
 ${ }^{3}$ G. Davey and F. S. Stephens, J.C.S. Dalton, 1974, 698.

